xref: /openbmc/linux/fs/aio.c (revision 1b69c6d0ae90b7f1a4f61d5c8209d5cb7a55f849)
1  /*
2   *	An async IO implementation for Linux
3   *	Written by Benjamin LaHaise <bcrl@kvack.org>
4   *
5   *	Implements an efficient asynchronous io interface.
6   *
7   *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8   *
9   *	See ../COPYING for licensing terms.
10   */
11  #define pr_fmt(fmt) "%s: " fmt, __func__
12  
13  #include <linux/kernel.h>
14  #include <linux/init.h>
15  #include <linux/errno.h>
16  #include <linux/time.h>
17  #include <linux/aio_abi.h>
18  #include <linux/export.h>
19  #include <linux/syscalls.h>
20  #include <linux/backing-dev.h>
21  #include <linux/uio.h>
22  
23  #include <linux/sched.h>
24  #include <linux/fs.h>
25  #include <linux/file.h>
26  #include <linux/mm.h>
27  #include <linux/mman.h>
28  #include <linux/mmu_context.h>
29  #include <linux/percpu.h>
30  #include <linux/slab.h>
31  #include <linux/timer.h>
32  #include <linux/aio.h>
33  #include <linux/highmem.h>
34  #include <linux/workqueue.h>
35  #include <linux/security.h>
36  #include <linux/eventfd.h>
37  #include <linux/blkdev.h>
38  #include <linux/compat.h>
39  #include <linux/migrate.h>
40  #include <linux/ramfs.h>
41  #include <linux/percpu-refcount.h>
42  #include <linux/mount.h>
43  
44  #include <asm/kmap_types.h>
45  #include <asm/uaccess.h>
46  
47  #include "internal.h"
48  
49  #define AIO_RING_MAGIC			0xa10a10a1
50  #define AIO_RING_COMPAT_FEATURES	1
51  #define AIO_RING_INCOMPAT_FEATURES	0
52  struct aio_ring {
53  	unsigned	id;	/* kernel internal index number */
54  	unsigned	nr;	/* number of io_events */
55  	unsigned	head;	/* Written to by userland or under ring_lock
56  				 * mutex by aio_read_events_ring(). */
57  	unsigned	tail;
58  
59  	unsigned	magic;
60  	unsigned	compat_features;
61  	unsigned	incompat_features;
62  	unsigned	header_length;	/* size of aio_ring */
63  
64  
65  	struct io_event		io_events[0];
66  }; /* 128 bytes + ring size */
67  
68  #define AIO_RING_PAGES	8
69  
70  struct kioctx_table {
71  	struct rcu_head	rcu;
72  	unsigned	nr;
73  	struct kioctx	*table[];
74  };
75  
76  struct kioctx_cpu {
77  	unsigned		reqs_available;
78  };
79  
80  struct ctx_rq_wait {
81  	struct completion comp;
82  	atomic_t count;
83  };
84  
85  struct kioctx {
86  	struct percpu_ref	users;
87  	atomic_t		dead;
88  
89  	struct percpu_ref	reqs;
90  
91  	unsigned long		user_id;
92  
93  	struct __percpu kioctx_cpu *cpu;
94  
95  	/*
96  	 * For percpu reqs_available, number of slots we move to/from global
97  	 * counter at a time:
98  	 */
99  	unsigned		req_batch;
100  	/*
101  	 * This is what userspace passed to io_setup(), it's not used for
102  	 * anything but counting against the global max_reqs quota.
103  	 *
104  	 * The real limit is nr_events - 1, which will be larger (see
105  	 * aio_setup_ring())
106  	 */
107  	unsigned		max_reqs;
108  
109  	/* Size of ringbuffer, in units of struct io_event */
110  	unsigned		nr_events;
111  
112  	unsigned long		mmap_base;
113  	unsigned long		mmap_size;
114  
115  	struct page		**ring_pages;
116  	long			nr_pages;
117  
118  	struct work_struct	free_work;
119  
120  	/*
121  	 * signals when all in-flight requests are done
122  	 */
123  	struct ctx_rq_wait	*rq_wait;
124  
125  	struct {
126  		/*
127  		 * This counts the number of available slots in the ringbuffer,
128  		 * so we avoid overflowing it: it's decremented (if positive)
129  		 * when allocating a kiocb and incremented when the resulting
130  		 * io_event is pulled off the ringbuffer.
131  		 *
132  		 * We batch accesses to it with a percpu version.
133  		 */
134  		atomic_t	reqs_available;
135  	} ____cacheline_aligned_in_smp;
136  
137  	struct {
138  		spinlock_t	ctx_lock;
139  		struct list_head active_reqs;	/* used for cancellation */
140  	} ____cacheline_aligned_in_smp;
141  
142  	struct {
143  		struct mutex	ring_lock;
144  		wait_queue_head_t wait;
145  	} ____cacheline_aligned_in_smp;
146  
147  	struct {
148  		unsigned	tail;
149  		unsigned	completed_events;
150  		spinlock_t	completion_lock;
151  	} ____cacheline_aligned_in_smp;
152  
153  	struct page		*internal_pages[AIO_RING_PAGES];
154  	struct file		*aio_ring_file;
155  
156  	unsigned		id;
157  };
158  
159  /*
160   * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161   * cancelled or completed (this makes a certain amount of sense because
162   * successful cancellation - io_cancel() - does deliver the completion to
163   * userspace).
164   *
165   * And since most things don't implement kiocb cancellation and we'd really like
166   * kiocb completion to be lockless when possible, we use ki_cancel to
167   * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168   * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169   */
170  #define KIOCB_CANCELLED		((void *) (~0ULL))
171  
172  struct aio_kiocb {
173  	struct kiocb		common;
174  
175  	struct kioctx		*ki_ctx;
176  	kiocb_cancel_fn		*ki_cancel;
177  
178  	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
179  	__u64			ki_user_data;	/* user's data for completion */
180  
181  	struct list_head	ki_list;	/* the aio core uses this
182  						 * for cancellation */
183  
184  	/*
185  	 * If the aio_resfd field of the userspace iocb is not zero,
186  	 * this is the underlying eventfd context to deliver events to.
187  	 */
188  	struct eventfd_ctx	*ki_eventfd;
189  };
190  
191  /*------ sysctl variables----*/
192  static DEFINE_SPINLOCK(aio_nr_lock);
193  unsigned long aio_nr;		/* current system wide number of aio requests */
194  unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195  /*----end sysctl variables---*/
196  
197  static struct kmem_cache	*kiocb_cachep;
198  static struct kmem_cache	*kioctx_cachep;
199  
200  static struct vfsmount *aio_mnt;
201  
202  static const struct file_operations aio_ring_fops;
203  static const struct address_space_operations aio_ctx_aops;
204  
205  static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206  {
207  	struct qstr this = QSTR_INIT("[aio]", 5);
208  	struct file *file;
209  	struct path path;
210  	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211  	if (IS_ERR(inode))
212  		return ERR_CAST(inode);
213  
214  	inode->i_mapping->a_ops = &aio_ctx_aops;
215  	inode->i_mapping->private_data = ctx;
216  	inode->i_size = PAGE_SIZE * nr_pages;
217  
218  	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219  	if (!path.dentry) {
220  		iput(inode);
221  		return ERR_PTR(-ENOMEM);
222  	}
223  	path.mnt = mntget(aio_mnt);
224  
225  	d_instantiate(path.dentry, inode);
226  	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227  	if (IS_ERR(file)) {
228  		path_put(&path);
229  		return file;
230  	}
231  
232  	file->f_flags = O_RDWR;
233  	return file;
234  }
235  
236  static struct dentry *aio_mount(struct file_system_type *fs_type,
237  				int flags, const char *dev_name, void *data)
238  {
239  	static const struct dentry_operations ops = {
240  		.d_dname	= simple_dname,
241  	};
242  	return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
243  }
244  
245  /* aio_setup
246   *	Creates the slab caches used by the aio routines, panic on
247   *	failure as this is done early during the boot sequence.
248   */
249  static int __init aio_setup(void)
250  {
251  	static struct file_system_type aio_fs = {
252  		.name		= "aio",
253  		.mount		= aio_mount,
254  		.kill_sb	= kill_anon_super,
255  	};
256  	aio_mnt = kern_mount(&aio_fs);
257  	if (IS_ERR(aio_mnt))
258  		panic("Failed to create aio fs mount.");
259  
260  	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
261  	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
262  
263  	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
264  
265  	return 0;
266  }
267  __initcall(aio_setup);
268  
269  static void put_aio_ring_file(struct kioctx *ctx)
270  {
271  	struct file *aio_ring_file = ctx->aio_ring_file;
272  	if (aio_ring_file) {
273  		truncate_setsize(aio_ring_file->f_inode, 0);
274  
275  		/* Prevent further access to the kioctx from migratepages */
276  		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
277  		aio_ring_file->f_inode->i_mapping->private_data = NULL;
278  		ctx->aio_ring_file = NULL;
279  		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
280  
281  		fput(aio_ring_file);
282  	}
283  }
284  
285  static void aio_free_ring(struct kioctx *ctx)
286  {
287  	int i;
288  
289  	/* Disconnect the kiotx from the ring file.  This prevents future
290  	 * accesses to the kioctx from page migration.
291  	 */
292  	put_aio_ring_file(ctx);
293  
294  	for (i = 0; i < ctx->nr_pages; i++) {
295  		struct page *page;
296  		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
297  				page_count(ctx->ring_pages[i]));
298  		page = ctx->ring_pages[i];
299  		if (!page)
300  			continue;
301  		ctx->ring_pages[i] = NULL;
302  		put_page(page);
303  	}
304  
305  	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
306  		kfree(ctx->ring_pages);
307  		ctx->ring_pages = NULL;
308  	}
309  }
310  
311  static int aio_ring_mremap(struct vm_area_struct *vma)
312  {
313  	struct file *file = vma->vm_file;
314  	struct mm_struct *mm = vma->vm_mm;
315  	struct kioctx_table *table;
316  	int i, res = -EINVAL;
317  
318  	spin_lock(&mm->ioctx_lock);
319  	rcu_read_lock();
320  	table = rcu_dereference(mm->ioctx_table);
321  	for (i = 0; i < table->nr; i++) {
322  		struct kioctx *ctx;
323  
324  		ctx = table->table[i];
325  		if (ctx && ctx->aio_ring_file == file) {
326  			if (!atomic_read(&ctx->dead)) {
327  				ctx->user_id = ctx->mmap_base = vma->vm_start;
328  				res = 0;
329  			}
330  			break;
331  		}
332  	}
333  
334  	rcu_read_unlock();
335  	spin_unlock(&mm->ioctx_lock);
336  	return res;
337  }
338  
339  static const struct vm_operations_struct aio_ring_vm_ops = {
340  	.mremap		= aio_ring_mremap,
341  #if IS_ENABLED(CONFIG_MMU)
342  	.fault		= filemap_fault,
343  	.map_pages	= filemap_map_pages,
344  	.page_mkwrite	= filemap_page_mkwrite,
345  #endif
346  };
347  
348  static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
349  {
350  	vma->vm_flags |= VM_DONTEXPAND;
351  	vma->vm_ops = &aio_ring_vm_ops;
352  	return 0;
353  }
354  
355  static const struct file_operations aio_ring_fops = {
356  	.mmap = aio_ring_mmap,
357  };
358  
359  #if IS_ENABLED(CONFIG_MIGRATION)
360  static int aio_migratepage(struct address_space *mapping, struct page *new,
361  			struct page *old, enum migrate_mode mode)
362  {
363  	struct kioctx *ctx;
364  	unsigned long flags;
365  	pgoff_t idx;
366  	int rc;
367  
368  	rc = 0;
369  
370  	/* mapping->private_lock here protects against the kioctx teardown.  */
371  	spin_lock(&mapping->private_lock);
372  	ctx = mapping->private_data;
373  	if (!ctx) {
374  		rc = -EINVAL;
375  		goto out;
376  	}
377  
378  	/* The ring_lock mutex.  The prevents aio_read_events() from writing
379  	 * to the ring's head, and prevents page migration from mucking in
380  	 * a partially initialized kiotx.
381  	 */
382  	if (!mutex_trylock(&ctx->ring_lock)) {
383  		rc = -EAGAIN;
384  		goto out;
385  	}
386  
387  	idx = old->index;
388  	if (idx < (pgoff_t)ctx->nr_pages) {
389  		/* Make sure the old page hasn't already been changed */
390  		if (ctx->ring_pages[idx] != old)
391  			rc = -EAGAIN;
392  	} else
393  		rc = -EINVAL;
394  
395  	if (rc != 0)
396  		goto out_unlock;
397  
398  	/* Writeback must be complete */
399  	BUG_ON(PageWriteback(old));
400  	get_page(new);
401  
402  	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
403  	if (rc != MIGRATEPAGE_SUCCESS) {
404  		put_page(new);
405  		goto out_unlock;
406  	}
407  
408  	/* Take completion_lock to prevent other writes to the ring buffer
409  	 * while the old page is copied to the new.  This prevents new
410  	 * events from being lost.
411  	 */
412  	spin_lock_irqsave(&ctx->completion_lock, flags);
413  	migrate_page_copy(new, old);
414  	BUG_ON(ctx->ring_pages[idx] != old);
415  	ctx->ring_pages[idx] = new;
416  	spin_unlock_irqrestore(&ctx->completion_lock, flags);
417  
418  	/* The old page is no longer accessible. */
419  	put_page(old);
420  
421  out_unlock:
422  	mutex_unlock(&ctx->ring_lock);
423  out:
424  	spin_unlock(&mapping->private_lock);
425  	return rc;
426  }
427  #endif
428  
429  static const struct address_space_operations aio_ctx_aops = {
430  	.set_page_dirty = __set_page_dirty_no_writeback,
431  #if IS_ENABLED(CONFIG_MIGRATION)
432  	.migratepage	= aio_migratepage,
433  #endif
434  };
435  
436  static int aio_setup_ring(struct kioctx *ctx)
437  {
438  	struct aio_ring *ring;
439  	unsigned nr_events = ctx->max_reqs;
440  	struct mm_struct *mm = current->mm;
441  	unsigned long size, unused;
442  	int nr_pages;
443  	int i;
444  	struct file *file;
445  
446  	/* Compensate for the ring buffer's head/tail overlap entry */
447  	nr_events += 2;	/* 1 is required, 2 for good luck */
448  
449  	size = sizeof(struct aio_ring);
450  	size += sizeof(struct io_event) * nr_events;
451  
452  	nr_pages = PFN_UP(size);
453  	if (nr_pages < 0)
454  		return -EINVAL;
455  
456  	file = aio_private_file(ctx, nr_pages);
457  	if (IS_ERR(file)) {
458  		ctx->aio_ring_file = NULL;
459  		return -ENOMEM;
460  	}
461  
462  	ctx->aio_ring_file = file;
463  	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
464  			/ sizeof(struct io_event);
465  
466  	ctx->ring_pages = ctx->internal_pages;
467  	if (nr_pages > AIO_RING_PAGES) {
468  		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
469  					  GFP_KERNEL);
470  		if (!ctx->ring_pages) {
471  			put_aio_ring_file(ctx);
472  			return -ENOMEM;
473  		}
474  	}
475  
476  	for (i = 0; i < nr_pages; i++) {
477  		struct page *page;
478  		page = find_or_create_page(file->f_inode->i_mapping,
479  					   i, GFP_HIGHUSER | __GFP_ZERO);
480  		if (!page)
481  			break;
482  		pr_debug("pid(%d) page[%d]->count=%d\n",
483  			 current->pid, i, page_count(page));
484  		SetPageUptodate(page);
485  		unlock_page(page);
486  
487  		ctx->ring_pages[i] = page;
488  	}
489  	ctx->nr_pages = i;
490  
491  	if (unlikely(i != nr_pages)) {
492  		aio_free_ring(ctx);
493  		return -ENOMEM;
494  	}
495  
496  	ctx->mmap_size = nr_pages * PAGE_SIZE;
497  	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
498  
499  	down_write(&mm->mmap_sem);
500  	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
501  				       PROT_READ | PROT_WRITE,
502  				       MAP_SHARED, 0, &unused);
503  	up_write(&mm->mmap_sem);
504  	if (IS_ERR((void *)ctx->mmap_base)) {
505  		ctx->mmap_size = 0;
506  		aio_free_ring(ctx);
507  		return -ENOMEM;
508  	}
509  
510  	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
511  
512  	ctx->user_id = ctx->mmap_base;
513  	ctx->nr_events = nr_events; /* trusted copy */
514  
515  	ring = kmap_atomic(ctx->ring_pages[0]);
516  	ring->nr = nr_events;	/* user copy */
517  	ring->id = ~0U;
518  	ring->head = ring->tail = 0;
519  	ring->magic = AIO_RING_MAGIC;
520  	ring->compat_features = AIO_RING_COMPAT_FEATURES;
521  	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
522  	ring->header_length = sizeof(struct aio_ring);
523  	kunmap_atomic(ring);
524  	flush_dcache_page(ctx->ring_pages[0]);
525  
526  	return 0;
527  }
528  
529  #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
530  #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
531  #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
532  
533  void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
534  {
535  	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
536  	struct kioctx *ctx = req->ki_ctx;
537  	unsigned long flags;
538  
539  	spin_lock_irqsave(&ctx->ctx_lock, flags);
540  
541  	if (!req->ki_list.next)
542  		list_add(&req->ki_list, &ctx->active_reqs);
543  
544  	req->ki_cancel = cancel;
545  
546  	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
547  }
548  EXPORT_SYMBOL(kiocb_set_cancel_fn);
549  
550  static int kiocb_cancel(struct aio_kiocb *kiocb)
551  {
552  	kiocb_cancel_fn *old, *cancel;
553  
554  	/*
555  	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
556  	 * actually has a cancel function, hence the cmpxchg()
557  	 */
558  
559  	cancel = ACCESS_ONCE(kiocb->ki_cancel);
560  	do {
561  		if (!cancel || cancel == KIOCB_CANCELLED)
562  			return -EINVAL;
563  
564  		old = cancel;
565  		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
566  	} while (cancel != old);
567  
568  	return cancel(&kiocb->common);
569  }
570  
571  static void free_ioctx(struct work_struct *work)
572  {
573  	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
574  
575  	pr_debug("freeing %p\n", ctx);
576  
577  	aio_free_ring(ctx);
578  	free_percpu(ctx->cpu);
579  	percpu_ref_exit(&ctx->reqs);
580  	percpu_ref_exit(&ctx->users);
581  	kmem_cache_free(kioctx_cachep, ctx);
582  }
583  
584  static void free_ioctx_reqs(struct percpu_ref *ref)
585  {
586  	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
587  
588  	/* At this point we know that there are no any in-flight requests */
589  	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
590  		complete(&ctx->rq_wait->comp);
591  
592  	INIT_WORK(&ctx->free_work, free_ioctx);
593  	schedule_work(&ctx->free_work);
594  }
595  
596  /*
597   * When this function runs, the kioctx has been removed from the "hash table"
598   * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
599   * now it's safe to cancel any that need to be.
600   */
601  static void free_ioctx_users(struct percpu_ref *ref)
602  {
603  	struct kioctx *ctx = container_of(ref, struct kioctx, users);
604  	struct aio_kiocb *req;
605  
606  	spin_lock_irq(&ctx->ctx_lock);
607  
608  	while (!list_empty(&ctx->active_reqs)) {
609  		req = list_first_entry(&ctx->active_reqs,
610  				       struct aio_kiocb, ki_list);
611  
612  		list_del_init(&req->ki_list);
613  		kiocb_cancel(req);
614  	}
615  
616  	spin_unlock_irq(&ctx->ctx_lock);
617  
618  	percpu_ref_kill(&ctx->reqs);
619  	percpu_ref_put(&ctx->reqs);
620  }
621  
622  static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
623  {
624  	unsigned i, new_nr;
625  	struct kioctx_table *table, *old;
626  	struct aio_ring *ring;
627  
628  	spin_lock(&mm->ioctx_lock);
629  	table = rcu_dereference_raw(mm->ioctx_table);
630  
631  	while (1) {
632  		if (table)
633  			for (i = 0; i < table->nr; i++)
634  				if (!table->table[i]) {
635  					ctx->id = i;
636  					table->table[i] = ctx;
637  					spin_unlock(&mm->ioctx_lock);
638  
639  					/* While kioctx setup is in progress,
640  					 * we are protected from page migration
641  					 * changes ring_pages by ->ring_lock.
642  					 */
643  					ring = kmap_atomic(ctx->ring_pages[0]);
644  					ring->id = ctx->id;
645  					kunmap_atomic(ring);
646  					return 0;
647  				}
648  
649  		new_nr = (table ? table->nr : 1) * 4;
650  		spin_unlock(&mm->ioctx_lock);
651  
652  		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
653  				new_nr, GFP_KERNEL);
654  		if (!table)
655  			return -ENOMEM;
656  
657  		table->nr = new_nr;
658  
659  		spin_lock(&mm->ioctx_lock);
660  		old = rcu_dereference_raw(mm->ioctx_table);
661  
662  		if (!old) {
663  			rcu_assign_pointer(mm->ioctx_table, table);
664  		} else if (table->nr > old->nr) {
665  			memcpy(table->table, old->table,
666  			       old->nr * sizeof(struct kioctx *));
667  
668  			rcu_assign_pointer(mm->ioctx_table, table);
669  			kfree_rcu(old, rcu);
670  		} else {
671  			kfree(table);
672  			table = old;
673  		}
674  	}
675  }
676  
677  static void aio_nr_sub(unsigned nr)
678  {
679  	spin_lock(&aio_nr_lock);
680  	if (WARN_ON(aio_nr - nr > aio_nr))
681  		aio_nr = 0;
682  	else
683  		aio_nr -= nr;
684  	spin_unlock(&aio_nr_lock);
685  }
686  
687  /* ioctx_alloc
688   *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
689   */
690  static struct kioctx *ioctx_alloc(unsigned nr_events)
691  {
692  	struct mm_struct *mm = current->mm;
693  	struct kioctx *ctx;
694  	int err = -ENOMEM;
695  
696  	/*
697  	 * We keep track of the number of available ringbuffer slots, to prevent
698  	 * overflow (reqs_available), and we also use percpu counters for this.
699  	 *
700  	 * So since up to half the slots might be on other cpu's percpu counters
701  	 * and unavailable, double nr_events so userspace sees what they
702  	 * expected: additionally, we move req_batch slots to/from percpu
703  	 * counters at a time, so make sure that isn't 0:
704  	 */
705  	nr_events = max(nr_events, num_possible_cpus() * 4);
706  	nr_events *= 2;
707  
708  	/* Prevent overflows */
709  	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
710  		pr_debug("ENOMEM: nr_events too high\n");
711  		return ERR_PTR(-EINVAL);
712  	}
713  
714  	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
715  		return ERR_PTR(-EAGAIN);
716  
717  	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
718  	if (!ctx)
719  		return ERR_PTR(-ENOMEM);
720  
721  	ctx->max_reqs = nr_events;
722  
723  	spin_lock_init(&ctx->ctx_lock);
724  	spin_lock_init(&ctx->completion_lock);
725  	mutex_init(&ctx->ring_lock);
726  	/* Protect against page migration throughout kiotx setup by keeping
727  	 * the ring_lock mutex held until setup is complete. */
728  	mutex_lock(&ctx->ring_lock);
729  	init_waitqueue_head(&ctx->wait);
730  
731  	INIT_LIST_HEAD(&ctx->active_reqs);
732  
733  	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
734  		goto err;
735  
736  	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
737  		goto err;
738  
739  	ctx->cpu = alloc_percpu(struct kioctx_cpu);
740  	if (!ctx->cpu)
741  		goto err;
742  
743  	err = aio_setup_ring(ctx);
744  	if (err < 0)
745  		goto err;
746  
747  	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
748  	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
749  	if (ctx->req_batch < 1)
750  		ctx->req_batch = 1;
751  
752  	/* limit the number of system wide aios */
753  	spin_lock(&aio_nr_lock);
754  	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
755  	    aio_nr + nr_events < aio_nr) {
756  		spin_unlock(&aio_nr_lock);
757  		err = -EAGAIN;
758  		goto err_ctx;
759  	}
760  	aio_nr += ctx->max_reqs;
761  	spin_unlock(&aio_nr_lock);
762  
763  	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
764  	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
765  
766  	err = ioctx_add_table(ctx, mm);
767  	if (err)
768  		goto err_cleanup;
769  
770  	/* Release the ring_lock mutex now that all setup is complete. */
771  	mutex_unlock(&ctx->ring_lock);
772  
773  	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
774  		 ctx, ctx->user_id, mm, ctx->nr_events);
775  	return ctx;
776  
777  err_cleanup:
778  	aio_nr_sub(ctx->max_reqs);
779  err_ctx:
780  	atomic_set(&ctx->dead, 1);
781  	if (ctx->mmap_size)
782  		vm_munmap(ctx->mmap_base, ctx->mmap_size);
783  	aio_free_ring(ctx);
784  err:
785  	mutex_unlock(&ctx->ring_lock);
786  	free_percpu(ctx->cpu);
787  	percpu_ref_exit(&ctx->reqs);
788  	percpu_ref_exit(&ctx->users);
789  	kmem_cache_free(kioctx_cachep, ctx);
790  	pr_debug("error allocating ioctx %d\n", err);
791  	return ERR_PTR(err);
792  }
793  
794  /* kill_ioctx
795   *	Cancels all outstanding aio requests on an aio context.  Used
796   *	when the processes owning a context have all exited to encourage
797   *	the rapid destruction of the kioctx.
798   */
799  static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
800  		      struct ctx_rq_wait *wait)
801  {
802  	struct kioctx_table *table;
803  
804  	spin_lock(&mm->ioctx_lock);
805  	if (atomic_xchg(&ctx->dead, 1)) {
806  		spin_unlock(&mm->ioctx_lock);
807  		return -EINVAL;
808  	}
809  
810  	table = rcu_dereference_raw(mm->ioctx_table);
811  	WARN_ON(ctx != table->table[ctx->id]);
812  	table->table[ctx->id] = NULL;
813  	spin_unlock(&mm->ioctx_lock);
814  
815  	/* percpu_ref_kill() will do the necessary call_rcu() */
816  	wake_up_all(&ctx->wait);
817  
818  	/*
819  	 * It'd be more correct to do this in free_ioctx(), after all
820  	 * the outstanding kiocbs have finished - but by then io_destroy
821  	 * has already returned, so io_setup() could potentially return
822  	 * -EAGAIN with no ioctxs actually in use (as far as userspace
823  	 *  could tell).
824  	 */
825  	aio_nr_sub(ctx->max_reqs);
826  
827  	if (ctx->mmap_size)
828  		vm_munmap(ctx->mmap_base, ctx->mmap_size);
829  
830  	ctx->rq_wait = wait;
831  	percpu_ref_kill(&ctx->users);
832  	return 0;
833  }
834  
835  /*
836   * exit_aio: called when the last user of mm goes away.  At this point, there is
837   * no way for any new requests to be submited or any of the io_* syscalls to be
838   * called on the context.
839   *
840   * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
841   * them.
842   */
843  void exit_aio(struct mm_struct *mm)
844  {
845  	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
846  	struct ctx_rq_wait wait;
847  	int i, skipped;
848  
849  	if (!table)
850  		return;
851  
852  	atomic_set(&wait.count, table->nr);
853  	init_completion(&wait.comp);
854  
855  	skipped = 0;
856  	for (i = 0; i < table->nr; ++i) {
857  		struct kioctx *ctx = table->table[i];
858  
859  		if (!ctx) {
860  			skipped++;
861  			continue;
862  		}
863  
864  		/*
865  		 * We don't need to bother with munmap() here - exit_mmap(mm)
866  		 * is coming and it'll unmap everything. And we simply can't,
867  		 * this is not necessarily our ->mm.
868  		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
869  		 * that it needs to unmap the area, just set it to 0.
870  		 */
871  		ctx->mmap_size = 0;
872  		kill_ioctx(mm, ctx, &wait);
873  	}
874  
875  	if (!atomic_sub_and_test(skipped, &wait.count)) {
876  		/* Wait until all IO for the context are done. */
877  		wait_for_completion(&wait.comp);
878  	}
879  
880  	RCU_INIT_POINTER(mm->ioctx_table, NULL);
881  	kfree(table);
882  }
883  
884  static void put_reqs_available(struct kioctx *ctx, unsigned nr)
885  {
886  	struct kioctx_cpu *kcpu;
887  	unsigned long flags;
888  
889  	local_irq_save(flags);
890  	kcpu = this_cpu_ptr(ctx->cpu);
891  	kcpu->reqs_available += nr;
892  
893  	while (kcpu->reqs_available >= ctx->req_batch * 2) {
894  		kcpu->reqs_available -= ctx->req_batch;
895  		atomic_add(ctx->req_batch, &ctx->reqs_available);
896  	}
897  
898  	local_irq_restore(flags);
899  }
900  
901  static bool get_reqs_available(struct kioctx *ctx)
902  {
903  	struct kioctx_cpu *kcpu;
904  	bool ret = false;
905  	unsigned long flags;
906  
907  	local_irq_save(flags);
908  	kcpu = this_cpu_ptr(ctx->cpu);
909  	if (!kcpu->reqs_available) {
910  		int old, avail = atomic_read(&ctx->reqs_available);
911  
912  		do {
913  			if (avail < ctx->req_batch)
914  				goto out;
915  
916  			old = avail;
917  			avail = atomic_cmpxchg(&ctx->reqs_available,
918  					       avail, avail - ctx->req_batch);
919  		} while (avail != old);
920  
921  		kcpu->reqs_available += ctx->req_batch;
922  	}
923  
924  	ret = true;
925  	kcpu->reqs_available--;
926  out:
927  	local_irq_restore(flags);
928  	return ret;
929  }
930  
931  /* refill_reqs_available
932   *	Updates the reqs_available reference counts used for tracking the
933   *	number of free slots in the completion ring.  This can be called
934   *	from aio_complete() (to optimistically update reqs_available) or
935   *	from aio_get_req() (the we're out of events case).  It must be
936   *	called holding ctx->completion_lock.
937   */
938  static void refill_reqs_available(struct kioctx *ctx, unsigned head,
939                                    unsigned tail)
940  {
941  	unsigned events_in_ring, completed;
942  
943  	/* Clamp head since userland can write to it. */
944  	head %= ctx->nr_events;
945  	if (head <= tail)
946  		events_in_ring = tail - head;
947  	else
948  		events_in_ring = ctx->nr_events - (head - tail);
949  
950  	completed = ctx->completed_events;
951  	if (events_in_ring < completed)
952  		completed -= events_in_ring;
953  	else
954  		completed = 0;
955  
956  	if (!completed)
957  		return;
958  
959  	ctx->completed_events -= completed;
960  	put_reqs_available(ctx, completed);
961  }
962  
963  /* user_refill_reqs_available
964   *	Called to refill reqs_available when aio_get_req() encounters an
965   *	out of space in the completion ring.
966   */
967  static void user_refill_reqs_available(struct kioctx *ctx)
968  {
969  	spin_lock_irq(&ctx->completion_lock);
970  	if (ctx->completed_events) {
971  		struct aio_ring *ring;
972  		unsigned head;
973  
974  		/* Access of ring->head may race with aio_read_events_ring()
975  		 * here, but that's okay since whether we read the old version
976  		 * or the new version, and either will be valid.  The important
977  		 * part is that head cannot pass tail since we prevent
978  		 * aio_complete() from updating tail by holding
979  		 * ctx->completion_lock.  Even if head is invalid, the check
980  		 * against ctx->completed_events below will make sure we do the
981  		 * safe/right thing.
982  		 */
983  		ring = kmap_atomic(ctx->ring_pages[0]);
984  		head = ring->head;
985  		kunmap_atomic(ring);
986  
987  		refill_reqs_available(ctx, head, ctx->tail);
988  	}
989  
990  	spin_unlock_irq(&ctx->completion_lock);
991  }
992  
993  /* aio_get_req
994   *	Allocate a slot for an aio request.
995   * Returns NULL if no requests are free.
996   */
997  static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
998  {
999  	struct aio_kiocb *req;
1000  
1001  	if (!get_reqs_available(ctx)) {
1002  		user_refill_reqs_available(ctx);
1003  		if (!get_reqs_available(ctx))
1004  			return NULL;
1005  	}
1006  
1007  	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1008  	if (unlikely(!req))
1009  		goto out_put;
1010  
1011  	percpu_ref_get(&ctx->reqs);
1012  
1013  	req->ki_ctx = ctx;
1014  	return req;
1015  out_put:
1016  	put_reqs_available(ctx, 1);
1017  	return NULL;
1018  }
1019  
1020  static void kiocb_free(struct aio_kiocb *req)
1021  {
1022  	if (req->common.ki_filp)
1023  		fput(req->common.ki_filp);
1024  	if (req->ki_eventfd != NULL)
1025  		eventfd_ctx_put(req->ki_eventfd);
1026  	kmem_cache_free(kiocb_cachep, req);
1027  }
1028  
1029  static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1030  {
1031  	struct aio_ring __user *ring  = (void __user *)ctx_id;
1032  	struct mm_struct *mm = current->mm;
1033  	struct kioctx *ctx, *ret = NULL;
1034  	struct kioctx_table *table;
1035  	unsigned id;
1036  
1037  	if (get_user(id, &ring->id))
1038  		return NULL;
1039  
1040  	rcu_read_lock();
1041  	table = rcu_dereference(mm->ioctx_table);
1042  
1043  	if (!table || id >= table->nr)
1044  		goto out;
1045  
1046  	ctx = table->table[id];
1047  	if (ctx && ctx->user_id == ctx_id) {
1048  		percpu_ref_get(&ctx->users);
1049  		ret = ctx;
1050  	}
1051  out:
1052  	rcu_read_unlock();
1053  	return ret;
1054  }
1055  
1056  /* aio_complete
1057   *	Called when the io request on the given iocb is complete.
1058   */
1059  static void aio_complete(struct kiocb *kiocb, long res, long res2)
1060  {
1061  	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1062  	struct kioctx	*ctx = iocb->ki_ctx;
1063  	struct aio_ring	*ring;
1064  	struct io_event	*ev_page, *event;
1065  	unsigned tail, pos, head;
1066  	unsigned long	flags;
1067  
1068  	/*
1069  	 * Special case handling for sync iocbs:
1070  	 *  - events go directly into the iocb for fast handling
1071  	 *  - the sync task with the iocb in its stack holds the single iocb
1072  	 *    ref, no other paths have a way to get another ref
1073  	 *  - the sync task helpfully left a reference to itself in the iocb
1074  	 */
1075  	BUG_ON(is_sync_kiocb(kiocb));
1076  
1077  	if (iocb->ki_list.next) {
1078  		unsigned long flags;
1079  
1080  		spin_lock_irqsave(&ctx->ctx_lock, flags);
1081  		list_del(&iocb->ki_list);
1082  		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1083  	}
1084  
1085  	/*
1086  	 * Add a completion event to the ring buffer. Must be done holding
1087  	 * ctx->completion_lock to prevent other code from messing with the tail
1088  	 * pointer since we might be called from irq context.
1089  	 */
1090  	spin_lock_irqsave(&ctx->completion_lock, flags);
1091  
1092  	tail = ctx->tail;
1093  	pos = tail + AIO_EVENTS_OFFSET;
1094  
1095  	if (++tail >= ctx->nr_events)
1096  		tail = 0;
1097  
1098  	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1099  	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1100  
1101  	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1102  	event->data = iocb->ki_user_data;
1103  	event->res = res;
1104  	event->res2 = res2;
1105  
1106  	kunmap_atomic(ev_page);
1107  	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1108  
1109  	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1110  		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1111  		 res, res2);
1112  
1113  	/* after flagging the request as done, we
1114  	 * must never even look at it again
1115  	 */
1116  	smp_wmb();	/* make event visible before updating tail */
1117  
1118  	ctx->tail = tail;
1119  
1120  	ring = kmap_atomic(ctx->ring_pages[0]);
1121  	head = ring->head;
1122  	ring->tail = tail;
1123  	kunmap_atomic(ring);
1124  	flush_dcache_page(ctx->ring_pages[0]);
1125  
1126  	ctx->completed_events++;
1127  	if (ctx->completed_events > 1)
1128  		refill_reqs_available(ctx, head, tail);
1129  	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1130  
1131  	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1132  
1133  	/*
1134  	 * Check if the user asked us to deliver the result through an
1135  	 * eventfd. The eventfd_signal() function is safe to be called
1136  	 * from IRQ context.
1137  	 */
1138  	if (iocb->ki_eventfd != NULL)
1139  		eventfd_signal(iocb->ki_eventfd, 1);
1140  
1141  	/* everything turned out well, dispose of the aiocb. */
1142  	kiocb_free(iocb);
1143  
1144  	/*
1145  	 * We have to order our ring_info tail store above and test
1146  	 * of the wait list below outside the wait lock.  This is
1147  	 * like in wake_up_bit() where clearing a bit has to be
1148  	 * ordered with the unlocked test.
1149  	 */
1150  	smp_mb();
1151  
1152  	if (waitqueue_active(&ctx->wait))
1153  		wake_up(&ctx->wait);
1154  
1155  	percpu_ref_put(&ctx->reqs);
1156  }
1157  
1158  /* aio_read_events_ring
1159   *	Pull an event off of the ioctx's event ring.  Returns the number of
1160   *	events fetched
1161   */
1162  static long aio_read_events_ring(struct kioctx *ctx,
1163  				 struct io_event __user *event, long nr)
1164  {
1165  	struct aio_ring *ring;
1166  	unsigned head, tail, pos;
1167  	long ret = 0;
1168  	int copy_ret;
1169  
1170  	/*
1171  	 * The mutex can block and wake us up and that will cause
1172  	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1173  	 * and repeat. This should be rare enough that it doesn't cause
1174  	 * peformance issues. See the comment in read_events() for more detail.
1175  	 */
1176  	sched_annotate_sleep();
1177  	mutex_lock(&ctx->ring_lock);
1178  
1179  	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1180  	ring = kmap_atomic(ctx->ring_pages[0]);
1181  	head = ring->head;
1182  	tail = ring->tail;
1183  	kunmap_atomic(ring);
1184  
1185  	/*
1186  	 * Ensure that once we've read the current tail pointer, that
1187  	 * we also see the events that were stored up to the tail.
1188  	 */
1189  	smp_rmb();
1190  
1191  	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1192  
1193  	if (head == tail)
1194  		goto out;
1195  
1196  	head %= ctx->nr_events;
1197  	tail %= ctx->nr_events;
1198  
1199  	while (ret < nr) {
1200  		long avail;
1201  		struct io_event *ev;
1202  		struct page *page;
1203  
1204  		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1205  		if (head == tail)
1206  			break;
1207  
1208  		avail = min(avail, nr - ret);
1209  		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1210  			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1211  
1212  		pos = head + AIO_EVENTS_OFFSET;
1213  		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1214  		pos %= AIO_EVENTS_PER_PAGE;
1215  
1216  		ev = kmap(page);
1217  		copy_ret = copy_to_user(event + ret, ev + pos,
1218  					sizeof(*ev) * avail);
1219  		kunmap(page);
1220  
1221  		if (unlikely(copy_ret)) {
1222  			ret = -EFAULT;
1223  			goto out;
1224  		}
1225  
1226  		ret += avail;
1227  		head += avail;
1228  		head %= ctx->nr_events;
1229  	}
1230  
1231  	ring = kmap_atomic(ctx->ring_pages[0]);
1232  	ring->head = head;
1233  	kunmap_atomic(ring);
1234  	flush_dcache_page(ctx->ring_pages[0]);
1235  
1236  	pr_debug("%li  h%u t%u\n", ret, head, tail);
1237  out:
1238  	mutex_unlock(&ctx->ring_lock);
1239  
1240  	return ret;
1241  }
1242  
1243  static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1244  			    struct io_event __user *event, long *i)
1245  {
1246  	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1247  
1248  	if (ret > 0)
1249  		*i += ret;
1250  
1251  	if (unlikely(atomic_read(&ctx->dead)))
1252  		ret = -EINVAL;
1253  
1254  	if (!*i)
1255  		*i = ret;
1256  
1257  	return ret < 0 || *i >= min_nr;
1258  }
1259  
1260  static long read_events(struct kioctx *ctx, long min_nr, long nr,
1261  			struct io_event __user *event,
1262  			struct timespec __user *timeout)
1263  {
1264  	ktime_t until = { .tv64 = KTIME_MAX };
1265  	long ret = 0;
1266  
1267  	if (timeout) {
1268  		struct timespec	ts;
1269  
1270  		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1271  			return -EFAULT;
1272  
1273  		until = timespec_to_ktime(ts);
1274  	}
1275  
1276  	/*
1277  	 * Note that aio_read_events() is being called as the conditional - i.e.
1278  	 * we're calling it after prepare_to_wait() has set task state to
1279  	 * TASK_INTERRUPTIBLE.
1280  	 *
1281  	 * But aio_read_events() can block, and if it blocks it's going to flip
1282  	 * the task state back to TASK_RUNNING.
1283  	 *
1284  	 * This should be ok, provided it doesn't flip the state back to
1285  	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286  	 * will only happen if the mutex_lock() call blocks, and we then find
1287  	 * the ringbuffer empty. So in practice we should be ok, but it's
1288  	 * something to be aware of when touching this code.
1289  	 */
1290  	if (until.tv64 == 0)
1291  		aio_read_events(ctx, min_nr, nr, event, &ret);
1292  	else
1293  		wait_event_interruptible_hrtimeout(ctx->wait,
1294  				aio_read_events(ctx, min_nr, nr, event, &ret),
1295  				until);
1296  
1297  	if (!ret && signal_pending(current))
1298  		ret = -EINTR;
1299  
1300  	return ret;
1301  }
1302  
1303  /* sys_io_setup:
1304   *	Create an aio_context capable of receiving at least nr_events.
1305   *	ctxp must not point to an aio_context that already exists, and
1306   *	must be initialized to 0 prior to the call.  On successful
1307   *	creation of the aio_context, *ctxp is filled in with the resulting
1308   *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1309   *	if the specified nr_events exceeds internal limits.  May fail
1310   *	with -EAGAIN if the specified nr_events exceeds the user's limit
1311   *	of available events.  May fail with -ENOMEM if insufficient kernel
1312   *	resources are available.  May fail with -EFAULT if an invalid
1313   *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1314   *	implemented.
1315   */
1316  SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1317  {
1318  	struct kioctx *ioctx = NULL;
1319  	unsigned long ctx;
1320  	long ret;
1321  
1322  	ret = get_user(ctx, ctxp);
1323  	if (unlikely(ret))
1324  		goto out;
1325  
1326  	ret = -EINVAL;
1327  	if (unlikely(ctx || nr_events == 0)) {
1328  		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1329  		         ctx, nr_events);
1330  		goto out;
1331  	}
1332  
1333  	ioctx = ioctx_alloc(nr_events);
1334  	ret = PTR_ERR(ioctx);
1335  	if (!IS_ERR(ioctx)) {
1336  		ret = put_user(ioctx->user_id, ctxp);
1337  		if (ret)
1338  			kill_ioctx(current->mm, ioctx, NULL);
1339  		percpu_ref_put(&ioctx->users);
1340  	}
1341  
1342  out:
1343  	return ret;
1344  }
1345  
1346  /* sys_io_destroy:
1347   *	Destroy the aio_context specified.  May cancel any outstanding
1348   *	AIOs and block on completion.  Will fail with -ENOSYS if not
1349   *	implemented.  May fail with -EINVAL if the context pointed to
1350   *	is invalid.
1351   */
1352  SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1353  {
1354  	struct kioctx *ioctx = lookup_ioctx(ctx);
1355  	if (likely(NULL != ioctx)) {
1356  		struct ctx_rq_wait wait;
1357  		int ret;
1358  
1359  		init_completion(&wait.comp);
1360  		atomic_set(&wait.count, 1);
1361  
1362  		/* Pass requests_done to kill_ioctx() where it can be set
1363  		 * in a thread-safe way. If we try to set it here then we have
1364  		 * a race condition if two io_destroy() called simultaneously.
1365  		 */
1366  		ret = kill_ioctx(current->mm, ioctx, &wait);
1367  		percpu_ref_put(&ioctx->users);
1368  
1369  		/* Wait until all IO for the context are done. Otherwise kernel
1370  		 * keep using user-space buffers even if user thinks the context
1371  		 * is destroyed.
1372  		 */
1373  		if (!ret)
1374  			wait_for_completion(&wait.comp);
1375  
1376  		return ret;
1377  	}
1378  	pr_debug("EINVAL: invalid context id\n");
1379  	return -EINVAL;
1380  }
1381  
1382  typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1383  
1384  static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1385  				 struct iovec **iovec,
1386  				 bool compat,
1387  				 struct iov_iter *iter)
1388  {
1389  #ifdef CONFIG_COMPAT
1390  	if (compat)
1391  		return compat_import_iovec(rw,
1392  				(struct compat_iovec __user *)buf,
1393  				len, UIO_FASTIOV, iovec, iter);
1394  #endif
1395  	return import_iovec(rw, (struct iovec __user *)buf,
1396  				len, UIO_FASTIOV, iovec, iter);
1397  }
1398  
1399  /*
1400   * aio_run_iocb:
1401   *	Performs the initial checks and io submission.
1402   */
1403  static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1404  			    char __user *buf, size_t len, bool compat)
1405  {
1406  	struct file *file = req->ki_filp;
1407  	ssize_t ret;
1408  	int rw;
1409  	fmode_t mode;
1410  	rw_iter_op *iter_op;
1411  	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1412  	struct iov_iter iter;
1413  
1414  	switch (opcode) {
1415  	case IOCB_CMD_PREAD:
1416  	case IOCB_CMD_PREADV:
1417  		mode	= FMODE_READ;
1418  		rw	= READ;
1419  		iter_op	= file->f_op->read_iter;
1420  		goto rw_common;
1421  
1422  	case IOCB_CMD_PWRITE:
1423  	case IOCB_CMD_PWRITEV:
1424  		mode	= FMODE_WRITE;
1425  		rw	= WRITE;
1426  		iter_op	= file->f_op->write_iter;
1427  		goto rw_common;
1428  rw_common:
1429  		if (unlikely(!(file->f_mode & mode)))
1430  			return -EBADF;
1431  
1432  		if (!iter_op)
1433  			return -EINVAL;
1434  
1435  		if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1436  			ret = aio_setup_vectored_rw(rw, buf, len,
1437  						&iovec, compat, &iter);
1438  		else {
1439  			ret = import_single_range(rw, buf, len, iovec, &iter);
1440  			iovec = NULL;
1441  		}
1442  		if (!ret)
1443  			ret = rw_verify_area(rw, file, &req->ki_pos,
1444  					     iov_iter_count(&iter));
1445  		if (ret < 0) {
1446  			kfree(iovec);
1447  			return ret;
1448  		}
1449  
1450  		len = ret;
1451  
1452  		if (rw == WRITE)
1453  			file_start_write(file);
1454  
1455  		ret = iter_op(req, &iter);
1456  
1457  		if (rw == WRITE)
1458  			file_end_write(file);
1459  		kfree(iovec);
1460  		break;
1461  
1462  	case IOCB_CMD_FDSYNC:
1463  		if (!file->f_op->aio_fsync)
1464  			return -EINVAL;
1465  
1466  		ret = file->f_op->aio_fsync(req, 1);
1467  		break;
1468  
1469  	case IOCB_CMD_FSYNC:
1470  		if (!file->f_op->aio_fsync)
1471  			return -EINVAL;
1472  
1473  		ret = file->f_op->aio_fsync(req, 0);
1474  		break;
1475  
1476  	default:
1477  		pr_debug("EINVAL: no operation provided\n");
1478  		return -EINVAL;
1479  	}
1480  
1481  	if (ret != -EIOCBQUEUED) {
1482  		/*
1483  		 * There's no easy way to restart the syscall since other AIO's
1484  		 * may be already running. Just fail this IO with EINTR.
1485  		 */
1486  		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1487  			     ret == -ERESTARTNOHAND ||
1488  			     ret == -ERESTART_RESTARTBLOCK))
1489  			ret = -EINTR;
1490  		aio_complete(req, ret, 0);
1491  	}
1492  
1493  	return 0;
1494  }
1495  
1496  static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1497  			 struct iocb *iocb, bool compat)
1498  {
1499  	struct aio_kiocb *req;
1500  	ssize_t ret;
1501  
1502  	/* enforce forwards compatibility on users */
1503  	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1504  		pr_debug("EINVAL: reserve field set\n");
1505  		return -EINVAL;
1506  	}
1507  
1508  	/* prevent overflows */
1509  	if (unlikely(
1510  	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1511  	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1512  	    ((ssize_t)iocb->aio_nbytes < 0)
1513  	   )) {
1514  		pr_debug("EINVAL: overflow check\n");
1515  		return -EINVAL;
1516  	}
1517  
1518  	req = aio_get_req(ctx);
1519  	if (unlikely(!req))
1520  		return -EAGAIN;
1521  
1522  	req->common.ki_filp = fget(iocb->aio_fildes);
1523  	if (unlikely(!req->common.ki_filp)) {
1524  		ret = -EBADF;
1525  		goto out_put_req;
1526  	}
1527  	req->common.ki_pos = iocb->aio_offset;
1528  	req->common.ki_complete = aio_complete;
1529  	req->common.ki_flags = iocb_flags(req->common.ki_filp);
1530  
1531  	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1532  		/*
1533  		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1534  		 * instance of the file* now. The file descriptor must be
1535  		 * an eventfd() fd, and will be signaled for each completed
1536  		 * event using the eventfd_signal() function.
1537  		 */
1538  		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1539  		if (IS_ERR(req->ki_eventfd)) {
1540  			ret = PTR_ERR(req->ki_eventfd);
1541  			req->ki_eventfd = NULL;
1542  			goto out_put_req;
1543  		}
1544  
1545  		req->common.ki_flags |= IOCB_EVENTFD;
1546  	}
1547  
1548  	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1549  	if (unlikely(ret)) {
1550  		pr_debug("EFAULT: aio_key\n");
1551  		goto out_put_req;
1552  	}
1553  
1554  	req->ki_user_iocb = user_iocb;
1555  	req->ki_user_data = iocb->aio_data;
1556  
1557  	ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1558  			   (char __user *)(unsigned long)iocb->aio_buf,
1559  			   iocb->aio_nbytes,
1560  			   compat);
1561  	if (ret)
1562  		goto out_put_req;
1563  
1564  	return 0;
1565  out_put_req:
1566  	put_reqs_available(ctx, 1);
1567  	percpu_ref_put(&ctx->reqs);
1568  	kiocb_free(req);
1569  	return ret;
1570  }
1571  
1572  long do_io_submit(aio_context_t ctx_id, long nr,
1573  		  struct iocb __user *__user *iocbpp, bool compat)
1574  {
1575  	struct kioctx *ctx;
1576  	long ret = 0;
1577  	int i = 0;
1578  	struct blk_plug plug;
1579  
1580  	if (unlikely(nr < 0))
1581  		return -EINVAL;
1582  
1583  	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1584  		nr = LONG_MAX/sizeof(*iocbpp);
1585  
1586  	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1587  		return -EFAULT;
1588  
1589  	ctx = lookup_ioctx(ctx_id);
1590  	if (unlikely(!ctx)) {
1591  		pr_debug("EINVAL: invalid context id\n");
1592  		return -EINVAL;
1593  	}
1594  
1595  	blk_start_plug(&plug);
1596  
1597  	/*
1598  	 * AKPM: should this return a partial result if some of the IOs were
1599  	 * successfully submitted?
1600  	 */
1601  	for (i=0; i<nr; i++) {
1602  		struct iocb __user *user_iocb;
1603  		struct iocb tmp;
1604  
1605  		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1606  			ret = -EFAULT;
1607  			break;
1608  		}
1609  
1610  		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1611  			ret = -EFAULT;
1612  			break;
1613  		}
1614  
1615  		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1616  		if (ret)
1617  			break;
1618  	}
1619  	blk_finish_plug(&plug);
1620  
1621  	percpu_ref_put(&ctx->users);
1622  	return i ? i : ret;
1623  }
1624  
1625  /* sys_io_submit:
1626   *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1627   *	the number of iocbs queued.  May return -EINVAL if the aio_context
1628   *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1629   *	*iocbpp[0] is not properly initialized, if the operation specified
1630   *	is invalid for the file descriptor in the iocb.  May fail with
1631   *	-EFAULT if any of the data structures point to invalid data.  May
1632   *	fail with -EBADF if the file descriptor specified in the first
1633   *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1634   *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1635   *	fail with -ENOSYS if not implemented.
1636   */
1637  SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1638  		struct iocb __user * __user *, iocbpp)
1639  {
1640  	return do_io_submit(ctx_id, nr, iocbpp, 0);
1641  }
1642  
1643  /* lookup_kiocb
1644   *	Finds a given iocb for cancellation.
1645   */
1646  static struct aio_kiocb *
1647  lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1648  {
1649  	struct aio_kiocb *kiocb;
1650  
1651  	assert_spin_locked(&ctx->ctx_lock);
1652  
1653  	if (key != KIOCB_KEY)
1654  		return NULL;
1655  
1656  	/* TODO: use a hash or array, this sucks. */
1657  	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1658  		if (kiocb->ki_user_iocb == iocb)
1659  			return kiocb;
1660  	}
1661  	return NULL;
1662  }
1663  
1664  /* sys_io_cancel:
1665   *	Attempts to cancel an iocb previously passed to io_submit.  If
1666   *	the operation is successfully cancelled, the resulting event is
1667   *	copied into the memory pointed to by result without being placed
1668   *	into the completion queue and 0 is returned.  May fail with
1669   *	-EFAULT if any of the data structures pointed to are invalid.
1670   *	May fail with -EINVAL if aio_context specified by ctx_id is
1671   *	invalid.  May fail with -EAGAIN if the iocb specified was not
1672   *	cancelled.  Will fail with -ENOSYS if not implemented.
1673   */
1674  SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1675  		struct io_event __user *, result)
1676  {
1677  	struct kioctx *ctx;
1678  	struct aio_kiocb *kiocb;
1679  	u32 key;
1680  	int ret;
1681  
1682  	ret = get_user(key, &iocb->aio_key);
1683  	if (unlikely(ret))
1684  		return -EFAULT;
1685  
1686  	ctx = lookup_ioctx(ctx_id);
1687  	if (unlikely(!ctx))
1688  		return -EINVAL;
1689  
1690  	spin_lock_irq(&ctx->ctx_lock);
1691  
1692  	kiocb = lookup_kiocb(ctx, iocb, key);
1693  	if (kiocb)
1694  		ret = kiocb_cancel(kiocb);
1695  	else
1696  		ret = -EINVAL;
1697  
1698  	spin_unlock_irq(&ctx->ctx_lock);
1699  
1700  	if (!ret) {
1701  		/*
1702  		 * The result argument is no longer used - the io_event is
1703  		 * always delivered via the ring buffer. -EINPROGRESS indicates
1704  		 * cancellation is progress:
1705  		 */
1706  		ret = -EINPROGRESS;
1707  	}
1708  
1709  	percpu_ref_put(&ctx->users);
1710  
1711  	return ret;
1712  }
1713  
1714  /* io_getevents:
1715   *	Attempts to read at least min_nr events and up to nr events from
1716   *	the completion queue for the aio_context specified by ctx_id. If
1717   *	it succeeds, the number of read events is returned. May fail with
1718   *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1719   *	out of range, if timeout is out of range.  May fail with -EFAULT
1720   *	if any of the memory specified is invalid.  May return 0 or
1721   *	< min_nr if the timeout specified by timeout has elapsed
1722   *	before sufficient events are available, where timeout == NULL
1723   *	specifies an infinite timeout. Note that the timeout pointed to by
1724   *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1725   */
1726  SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1727  		long, min_nr,
1728  		long, nr,
1729  		struct io_event __user *, events,
1730  		struct timespec __user *, timeout)
1731  {
1732  	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1733  	long ret = -EINVAL;
1734  
1735  	if (likely(ioctx)) {
1736  		if (likely(min_nr <= nr && min_nr >= 0))
1737  			ret = read_events(ioctx, min_nr, nr, events, timeout);
1738  		percpu_ref_put(&ioctx->users);
1739  	}
1740  	return ret;
1741  }
1742