1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; 56 unsigned tail; 57 58 unsigned magic; 59 unsigned compat_features; 60 unsigned incompat_features; 61 unsigned header_length; /* size of aio_ring */ 62 63 64 struct io_event io_events[0]; 65 }; /* 128 bytes + ring size */ 66 67 #define AIO_RING_PAGES 8 68 69 struct kioctx_table { 70 struct rcu_head rcu; 71 unsigned nr; 72 struct kioctx *table[]; 73 }; 74 75 struct kioctx_cpu { 76 unsigned reqs_available; 77 }; 78 79 struct kioctx { 80 struct percpu_ref users; 81 atomic_t dead; 82 83 struct percpu_ref reqs; 84 85 unsigned long user_id; 86 87 struct __percpu kioctx_cpu *cpu; 88 89 /* 90 * For percpu reqs_available, number of slots we move to/from global 91 * counter at a time: 92 */ 93 unsigned req_batch; 94 /* 95 * This is what userspace passed to io_setup(), it's not used for 96 * anything but counting against the global max_reqs quota. 97 * 98 * The real limit is nr_events - 1, which will be larger (see 99 * aio_setup_ring()) 100 */ 101 unsigned max_reqs; 102 103 /* Size of ringbuffer, in units of struct io_event */ 104 unsigned nr_events; 105 106 unsigned long mmap_base; 107 unsigned long mmap_size; 108 109 struct page **ring_pages; 110 long nr_pages; 111 112 struct work_struct free_work; 113 114 struct { 115 /* 116 * This counts the number of available slots in the ringbuffer, 117 * so we avoid overflowing it: it's decremented (if positive) 118 * when allocating a kiocb and incremented when the resulting 119 * io_event is pulled off the ringbuffer. 120 * 121 * We batch accesses to it with a percpu version. 122 */ 123 atomic_t reqs_available; 124 } ____cacheline_aligned_in_smp; 125 126 struct { 127 spinlock_t ctx_lock; 128 struct list_head active_reqs; /* used for cancellation */ 129 } ____cacheline_aligned_in_smp; 130 131 struct { 132 struct mutex ring_lock; 133 wait_queue_head_t wait; 134 } ____cacheline_aligned_in_smp; 135 136 struct { 137 unsigned tail; 138 spinlock_t completion_lock; 139 } ____cacheline_aligned_in_smp; 140 141 struct page *internal_pages[AIO_RING_PAGES]; 142 struct file *aio_ring_file; 143 144 unsigned id; 145 }; 146 147 /*------ sysctl variables----*/ 148 static DEFINE_SPINLOCK(aio_nr_lock); 149 unsigned long aio_nr; /* current system wide number of aio requests */ 150 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 151 /*----end sysctl variables---*/ 152 153 static struct kmem_cache *kiocb_cachep; 154 static struct kmem_cache *kioctx_cachep; 155 156 static struct vfsmount *aio_mnt; 157 158 static const struct file_operations aio_ring_fops; 159 static const struct address_space_operations aio_ctx_aops; 160 161 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 162 { 163 struct qstr this = QSTR_INIT("[aio]", 5); 164 struct file *file; 165 struct path path; 166 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 167 if (IS_ERR(inode)) 168 return ERR_CAST(inode); 169 170 inode->i_mapping->a_ops = &aio_ctx_aops; 171 inode->i_mapping->private_data = ctx; 172 inode->i_size = PAGE_SIZE * nr_pages; 173 174 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 175 if (!path.dentry) { 176 iput(inode); 177 return ERR_PTR(-ENOMEM); 178 } 179 path.mnt = mntget(aio_mnt); 180 181 d_instantiate(path.dentry, inode); 182 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 183 if (IS_ERR(file)) { 184 path_put(&path); 185 return file; 186 } 187 188 file->f_flags = O_RDWR; 189 file->private_data = ctx; 190 return file; 191 } 192 193 static struct dentry *aio_mount(struct file_system_type *fs_type, 194 int flags, const char *dev_name, void *data) 195 { 196 static const struct dentry_operations ops = { 197 .d_dname = simple_dname, 198 }; 199 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1); 200 } 201 202 /* aio_setup 203 * Creates the slab caches used by the aio routines, panic on 204 * failure as this is done early during the boot sequence. 205 */ 206 static int __init aio_setup(void) 207 { 208 static struct file_system_type aio_fs = { 209 .name = "aio", 210 .mount = aio_mount, 211 .kill_sb = kill_anon_super, 212 }; 213 aio_mnt = kern_mount(&aio_fs); 214 if (IS_ERR(aio_mnt)) 215 panic("Failed to create aio fs mount."); 216 217 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 218 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 219 220 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 221 222 return 0; 223 } 224 __initcall(aio_setup); 225 226 static void put_aio_ring_file(struct kioctx *ctx) 227 { 228 struct file *aio_ring_file = ctx->aio_ring_file; 229 if (aio_ring_file) { 230 truncate_setsize(aio_ring_file->f_inode, 0); 231 232 /* Prevent further access to the kioctx from migratepages */ 233 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 234 aio_ring_file->f_inode->i_mapping->private_data = NULL; 235 ctx->aio_ring_file = NULL; 236 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 237 238 fput(aio_ring_file); 239 } 240 } 241 242 static void aio_free_ring(struct kioctx *ctx) 243 { 244 int i; 245 246 for (i = 0; i < ctx->nr_pages; i++) { 247 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 248 page_count(ctx->ring_pages[i])); 249 put_page(ctx->ring_pages[i]); 250 } 251 252 put_aio_ring_file(ctx); 253 254 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 255 kfree(ctx->ring_pages); 256 ctx->ring_pages = NULL; 257 } 258 } 259 260 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 261 { 262 vma->vm_ops = &generic_file_vm_ops; 263 return 0; 264 } 265 266 static const struct file_operations aio_ring_fops = { 267 .mmap = aio_ring_mmap, 268 }; 269 270 static int aio_set_page_dirty(struct page *page) 271 { 272 return 0; 273 } 274 275 #if IS_ENABLED(CONFIG_MIGRATION) 276 static int aio_migratepage(struct address_space *mapping, struct page *new, 277 struct page *old, enum migrate_mode mode) 278 { 279 struct kioctx *ctx; 280 unsigned long flags; 281 int rc; 282 283 /* Writeback must be complete */ 284 BUG_ON(PageWriteback(old)); 285 put_page(old); 286 287 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode); 288 if (rc != MIGRATEPAGE_SUCCESS) { 289 get_page(old); 290 return rc; 291 } 292 293 get_page(new); 294 295 /* We can potentially race against kioctx teardown here. Use the 296 * address_space's private data lock to protect the mapping's 297 * private_data. 298 */ 299 spin_lock(&mapping->private_lock); 300 ctx = mapping->private_data; 301 if (ctx) { 302 pgoff_t idx; 303 spin_lock_irqsave(&ctx->completion_lock, flags); 304 migrate_page_copy(new, old); 305 idx = old->index; 306 if (idx < (pgoff_t)ctx->nr_pages) 307 ctx->ring_pages[idx] = new; 308 spin_unlock_irqrestore(&ctx->completion_lock, flags); 309 } else 310 rc = -EBUSY; 311 spin_unlock(&mapping->private_lock); 312 313 return rc; 314 } 315 #endif 316 317 static const struct address_space_operations aio_ctx_aops = { 318 .set_page_dirty = aio_set_page_dirty, 319 #if IS_ENABLED(CONFIG_MIGRATION) 320 .migratepage = aio_migratepage, 321 #endif 322 }; 323 324 static int aio_setup_ring(struct kioctx *ctx) 325 { 326 struct aio_ring *ring; 327 unsigned nr_events = ctx->max_reqs; 328 struct mm_struct *mm = current->mm; 329 unsigned long size, populate; 330 int nr_pages; 331 int i; 332 struct file *file; 333 334 /* Compensate for the ring buffer's head/tail overlap entry */ 335 nr_events += 2; /* 1 is required, 2 for good luck */ 336 337 size = sizeof(struct aio_ring); 338 size += sizeof(struct io_event) * nr_events; 339 340 nr_pages = PFN_UP(size); 341 if (nr_pages < 0) 342 return -EINVAL; 343 344 file = aio_private_file(ctx, nr_pages); 345 if (IS_ERR(file)) { 346 ctx->aio_ring_file = NULL; 347 return -EAGAIN; 348 } 349 350 for (i = 0; i < nr_pages; i++) { 351 struct page *page; 352 page = find_or_create_page(file->f_inode->i_mapping, 353 i, GFP_HIGHUSER | __GFP_ZERO); 354 if (!page) 355 break; 356 pr_debug("pid(%d) page[%d]->count=%d\n", 357 current->pid, i, page_count(page)); 358 SetPageUptodate(page); 359 SetPageDirty(page); 360 unlock_page(page); 361 } 362 ctx->aio_ring_file = file; 363 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 364 / sizeof(struct io_event); 365 366 ctx->ring_pages = ctx->internal_pages; 367 if (nr_pages > AIO_RING_PAGES) { 368 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 369 GFP_KERNEL); 370 if (!ctx->ring_pages) { 371 put_aio_ring_file(ctx); 372 return -ENOMEM; 373 } 374 } 375 376 ctx->mmap_size = nr_pages * PAGE_SIZE; 377 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 378 379 down_write(&mm->mmap_sem); 380 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 381 PROT_READ | PROT_WRITE, 382 MAP_SHARED | MAP_POPULATE, 0, &populate); 383 if (IS_ERR((void *)ctx->mmap_base)) { 384 up_write(&mm->mmap_sem); 385 ctx->mmap_size = 0; 386 aio_free_ring(ctx); 387 return -EAGAIN; 388 } 389 390 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 391 392 /* We must do this while still holding mmap_sem for write, as we 393 * need to be protected against userspace attempting to mremap() 394 * or munmap() the ring buffer. 395 */ 396 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages, 397 1, 0, ctx->ring_pages, NULL); 398 399 /* Dropping the reference here is safe as the page cache will hold 400 * onto the pages for us. It is also required so that page migration 401 * can unmap the pages and get the right reference count. 402 */ 403 for (i = 0; i < ctx->nr_pages; i++) 404 put_page(ctx->ring_pages[i]); 405 406 up_write(&mm->mmap_sem); 407 408 if (unlikely(ctx->nr_pages != nr_pages)) { 409 aio_free_ring(ctx); 410 return -EAGAIN; 411 } 412 413 ctx->user_id = ctx->mmap_base; 414 ctx->nr_events = nr_events; /* trusted copy */ 415 416 ring = kmap_atomic(ctx->ring_pages[0]); 417 ring->nr = nr_events; /* user copy */ 418 ring->id = ~0U; 419 ring->head = ring->tail = 0; 420 ring->magic = AIO_RING_MAGIC; 421 ring->compat_features = AIO_RING_COMPAT_FEATURES; 422 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 423 ring->header_length = sizeof(struct aio_ring); 424 kunmap_atomic(ring); 425 flush_dcache_page(ctx->ring_pages[0]); 426 427 return 0; 428 } 429 430 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 431 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 432 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 433 434 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 435 { 436 struct kioctx *ctx = req->ki_ctx; 437 unsigned long flags; 438 439 spin_lock_irqsave(&ctx->ctx_lock, flags); 440 441 if (!req->ki_list.next) 442 list_add(&req->ki_list, &ctx->active_reqs); 443 444 req->ki_cancel = cancel; 445 446 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 447 } 448 EXPORT_SYMBOL(kiocb_set_cancel_fn); 449 450 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb) 451 { 452 kiocb_cancel_fn *old, *cancel; 453 454 /* 455 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 456 * actually has a cancel function, hence the cmpxchg() 457 */ 458 459 cancel = ACCESS_ONCE(kiocb->ki_cancel); 460 do { 461 if (!cancel || cancel == KIOCB_CANCELLED) 462 return -EINVAL; 463 464 old = cancel; 465 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 466 } while (cancel != old); 467 468 return cancel(kiocb); 469 } 470 471 static void free_ioctx(struct work_struct *work) 472 { 473 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 474 475 pr_debug("freeing %p\n", ctx); 476 477 aio_free_ring(ctx); 478 free_percpu(ctx->cpu); 479 kmem_cache_free(kioctx_cachep, ctx); 480 } 481 482 static void free_ioctx_reqs(struct percpu_ref *ref) 483 { 484 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 485 486 INIT_WORK(&ctx->free_work, free_ioctx); 487 schedule_work(&ctx->free_work); 488 } 489 490 /* 491 * When this function runs, the kioctx has been removed from the "hash table" 492 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 493 * now it's safe to cancel any that need to be. 494 */ 495 static void free_ioctx_users(struct percpu_ref *ref) 496 { 497 struct kioctx *ctx = container_of(ref, struct kioctx, users); 498 struct kiocb *req; 499 500 spin_lock_irq(&ctx->ctx_lock); 501 502 while (!list_empty(&ctx->active_reqs)) { 503 req = list_first_entry(&ctx->active_reqs, 504 struct kiocb, ki_list); 505 506 list_del_init(&req->ki_list); 507 kiocb_cancel(ctx, req); 508 } 509 510 spin_unlock_irq(&ctx->ctx_lock); 511 512 percpu_ref_kill(&ctx->reqs); 513 percpu_ref_put(&ctx->reqs); 514 } 515 516 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 517 { 518 unsigned i, new_nr; 519 struct kioctx_table *table, *old; 520 struct aio_ring *ring; 521 522 spin_lock(&mm->ioctx_lock); 523 rcu_read_lock(); 524 table = rcu_dereference(mm->ioctx_table); 525 526 while (1) { 527 if (table) 528 for (i = 0; i < table->nr; i++) 529 if (!table->table[i]) { 530 ctx->id = i; 531 table->table[i] = ctx; 532 rcu_read_unlock(); 533 spin_unlock(&mm->ioctx_lock); 534 535 ring = kmap_atomic(ctx->ring_pages[0]); 536 ring->id = ctx->id; 537 kunmap_atomic(ring); 538 return 0; 539 } 540 541 new_nr = (table ? table->nr : 1) * 4; 542 543 rcu_read_unlock(); 544 spin_unlock(&mm->ioctx_lock); 545 546 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 547 new_nr, GFP_KERNEL); 548 if (!table) 549 return -ENOMEM; 550 551 table->nr = new_nr; 552 553 spin_lock(&mm->ioctx_lock); 554 rcu_read_lock(); 555 old = rcu_dereference(mm->ioctx_table); 556 557 if (!old) { 558 rcu_assign_pointer(mm->ioctx_table, table); 559 } else if (table->nr > old->nr) { 560 memcpy(table->table, old->table, 561 old->nr * sizeof(struct kioctx *)); 562 563 rcu_assign_pointer(mm->ioctx_table, table); 564 kfree_rcu(old, rcu); 565 } else { 566 kfree(table); 567 table = old; 568 } 569 } 570 } 571 572 static void aio_nr_sub(unsigned nr) 573 { 574 spin_lock(&aio_nr_lock); 575 if (WARN_ON(aio_nr - nr > aio_nr)) 576 aio_nr = 0; 577 else 578 aio_nr -= nr; 579 spin_unlock(&aio_nr_lock); 580 } 581 582 /* ioctx_alloc 583 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 584 */ 585 static struct kioctx *ioctx_alloc(unsigned nr_events) 586 { 587 struct mm_struct *mm = current->mm; 588 struct kioctx *ctx; 589 int err = -ENOMEM; 590 591 /* 592 * We keep track of the number of available ringbuffer slots, to prevent 593 * overflow (reqs_available), and we also use percpu counters for this. 594 * 595 * So since up to half the slots might be on other cpu's percpu counters 596 * and unavailable, double nr_events so userspace sees what they 597 * expected: additionally, we move req_batch slots to/from percpu 598 * counters at a time, so make sure that isn't 0: 599 */ 600 nr_events = max(nr_events, num_possible_cpus() * 4); 601 nr_events *= 2; 602 603 /* Prevent overflows */ 604 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 605 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 606 pr_debug("ENOMEM: nr_events too high\n"); 607 return ERR_PTR(-EINVAL); 608 } 609 610 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 611 return ERR_PTR(-EAGAIN); 612 613 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 614 if (!ctx) 615 return ERR_PTR(-ENOMEM); 616 617 ctx->max_reqs = nr_events; 618 619 if (percpu_ref_init(&ctx->users, free_ioctx_users)) 620 goto err; 621 622 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs)) 623 goto err; 624 625 spin_lock_init(&ctx->ctx_lock); 626 spin_lock_init(&ctx->completion_lock); 627 mutex_init(&ctx->ring_lock); 628 init_waitqueue_head(&ctx->wait); 629 630 INIT_LIST_HEAD(&ctx->active_reqs); 631 632 ctx->cpu = alloc_percpu(struct kioctx_cpu); 633 if (!ctx->cpu) 634 goto err; 635 636 if (aio_setup_ring(ctx) < 0) 637 goto err; 638 639 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 640 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 641 if (ctx->req_batch < 1) 642 ctx->req_batch = 1; 643 644 /* limit the number of system wide aios */ 645 spin_lock(&aio_nr_lock); 646 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 647 aio_nr + nr_events < aio_nr) { 648 spin_unlock(&aio_nr_lock); 649 err = -EAGAIN; 650 goto err_ctx; 651 } 652 aio_nr += ctx->max_reqs; 653 spin_unlock(&aio_nr_lock); 654 655 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 656 657 err = ioctx_add_table(ctx, mm); 658 if (err) 659 goto err_cleanup; 660 661 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 662 ctx, ctx->user_id, mm, ctx->nr_events); 663 return ctx; 664 665 err_cleanup: 666 aio_nr_sub(ctx->max_reqs); 667 err_ctx: 668 aio_free_ring(ctx); 669 err: 670 free_percpu(ctx->cpu); 671 free_percpu(ctx->reqs.pcpu_count); 672 free_percpu(ctx->users.pcpu_count); 673 kmem_cache_free(kioctx_cachep, ctx); 674 pr_debug("error allocating ioctx %d\n", err); 675 return ERR_PTR(err); 676 } 677 678 /* kill_ioctx 679 * Cancels all outstanding aio requests on an aio context. Used 680 * when the processes owning a context have all exited to encourage 681 * the rapid destruction of the kioctx. 682 */ 683 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx) 684 { 685 if (!atomic_xchg(&ctx->dead, 1)) { 686 struct kioctx_table *table; 687 688 spin_lock(&mm->ioctx_lock); 689 rcu_read_lock(); 690 table = rcu_dereference(mm->ioctx_table); 691 692 WARN_ON(ctx != table->table[ctx->id]); 693 table->table[ctx->id] = NULL; 694 rcu_read_unlock(); 695 spin_unlock(&mm->ioctx_lock); 696 697 /* percpu_ref_kill() will do the necessary call_rcu() */ 698 wake_up_all(&ctx->wait); 699 700 /* 701 * It'd be more correct to do this in free_ioctx(), after all 702 * the outstanding kiocbs have finished - but by then io_destroy 703 * has already returned, so io_setup() could potentially return 704 * -EAGAIN with no ioctxs actually in use (as far as userspace 705 * could tell). 706 */ 707 aio_nr_sub(ctx->max_reqs); 708 709 if (ctx->mmap_size) 710 vm_munmap(ctx->mmap_base, ctx->mmap_size); 711 712 percpu_ref_kill(&ctx->users); 713 } 714 } 715 716 /* wait_on_sync_kiocb: 717 * Waits on the given sync kiocb to complete. 718 */ 719 ssize_t wait_on_sync_kiocb(struct kiocb *req) 720 { 721 while (!req->ki_ctx) { 722 set_current_state(TASK_UNINTERRUPTIBLE); 723 if (req->ki_ctx) 724 break; 725 io_schedule(); 726 } 727 __set_current_state(TASK_RUNNING); 728 return req->ki_user_data; 729 } 730 EXPORT_SYMBOL(wait_on_sync_kiocb); 731 732 /* 733 * exit_aio: called when the last user of mm goes away. At this point, there is 734 * no way for any new requests to be submited or any of the io_* syscalls to be 735 * called on the context. 736 * 737 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 738 * them. 739 */ 740 void exit_aio(struct mm_struct *mm) 741 { 742 struct kioctx_table *table; 743 struct kioctx *ctx; 744 unsigned i = 0; 745 746 while (1) { 747 rcu_read_lock(); 748 table = rcu_dereference(mm->ioctx_table); 749 750 do { 751 if (!table || i >= table->nr) { 752 rcu_read_unlock(); 753 rcu_assign_pointer(mm->ioctx_table, NULL); 754 if (table) 755 kfree(table); 756 return; 757 } 758 759 ctx = table->table[i++]; 760 } while (!ctx); 761 762 rcu_read_unlock(); 763 764 /* 765 * We don't need to bother with munmap() here - 766 * exit_mmap(mm) is coming and it'll unmap everything. 767 * Since aio_free_ring() uses non-zero ->mmap_size 768 * as indicator that it needs to unmap the area, 769 * just set it to 0; aio_free_ring() is the only 770 * place that uses ->mmap_size, so it's safe. 771 */ 772 ctx->mmap_size = 0; 773 774 kill_ioctx(mm, ctx); 775 } 776 } 777 778 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 779 { 780 struct kioctx_cpu *kcpu; 781 782 preempt_disable(); 783 kcpu = this_cpu_ptr(ctx->cpu); 784 785 kcpu->reqs_available += nr; 786 while (kcpu->reqs_available >= ctx->req_batch * 2) { 787 kcpu->reqs_available -= ctx->req_batch; 788 atomic_add(ctx->req_batch, &ctx->reqs_available); 789 } 790 791 preempt_enable(); 792 } 793 794 static bool get_reqs_available(struct kioctx *ctx) 795 { 796 struct kioctx_cpu *kcpu; 797 bool ret = false; 798 799 preempt_disable(); 800 kcpu = this_cpu_ptr(ctx->cpu); 801 802 if (!kcpu->reqs_available) { 803 int old, avail = atomic_read(&ctx->reqs_available); 804 805 do { 806 if (avail < ctx->req_batch) 807 goto out; 808 809 old = avail; 810 avail = atomic_cmpxchg(&ctx->reqs_available, 811 avail, avail - ctx->req_batch); 812 } while (avail != old); 813 814 kcpu->reqs_available += ctx->req_batch; 815 } 816 817 ret = true; 818 kcpu->reqs_available--; 819 out: 820 preempt_enable(); 821 return ret; 822 } 823 824 /* aio_get_req 825 * Allocate a slot for an aio request. 826 * Returns NULL if no requests are free. 827 */ 828 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 829 { 830 struct kiocb *req; 831 832 if (!get_reqs_available(ctx)) 833 return NULL; 834 835 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 836 if (unlikely(!req)) 837 goto out_put; 838 839 percpu_ref_get(&ctx->reqs); 840 841 req->ki_ctx = ctx; 842 return req; 843 out_put: 844 put_reqs_available(ctx, 1); 845 return NULL; 846 } 847 848 static void kiocb_free(struct kiocb *req) 849 { 850 if (req->ki_filp) 851 fput(req->ki_filp); 852 if (req->ki_eventfd != NULL) 853 eventfd_ctx_put(req->ki_eventfd); 854 kmem_cache_free(kiocb_cachep, req); 855 } 856 857 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 858 { 859 struct aio_ring __user *ring = (void __user *)ctx_id; 860 struct mm_struct *mm = current->mm; 861 struct kioctx *ctx, *ret = NULL; 862 struct kioctx_table *table; 863 unsigned id; 864 865 if (get_user(id, &ring->id)) 866 return NULL; 867 868 rcu_read_lock(); 869 table = rcu_dereference(mm->ioctx_table); 870 871 if (!table || id >= table->nr) 872 goto out; 873 874 ctx = table->table[id]; 875 if (ctx && ctx->user_id == ctx_id) { 876 percpu_ref_get(&ctx->users); 877 ret = ctx; 878 } 879 out: 880 rcu_read_unlock(); 881 return ret; 882 } 883 884 /* aio_complete 885 * Called when the io request on the given iocb is complete. 886 */ 887 void aio_complete(struct kiocb *iocb, long res, long res2) 888 { 889 struct kioctx *ctx = iocb->ki_ctx; 890 struct aio_ring *ring; 891 struct io_event *ev_page, *event; 892 unsigned long flags; 893 unsigned tail, pos; 894 895 /* 896 * Special case handling for sync iocbs: 897 * - events go directly into the iocb for fast handling 898 * - the sync task with the iocb in its stack holds the single iocb 899 * ref, no other paths have a way to get another ref 900 * - the sync task helpfully left a reference to itself in the iocb 901 */ 902 if (is_sync_kiocb(iocb)) { 903 iocb->ki_user_data = res; 904 smp_wmb(); 905 iocb->ki_ctx = ERR_PTR(-EXDEV); 906 wake_up_process(iocb->ki_obj.tsk); 907 return; 908 } 909 910 if (iocb->ki_list.next) { 911 unsigned long flags; 912 913 spin_lock_irqsave(&ctx->ctx_lock, flags); 914 list_del(&iocb->ki_list); 915 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 916 } 917 918 /* 919 * Add a completion event to the ring buffer. Must be done holding 920 * ctx->completion_lock to prevent other code from messing with the tail 921 * pointer since we might be called from irq context. 922 */ 923 spin_lock_irqsave(&ctx->completion_lock, flags); 924 925 tail = ctx->tail; 926 pos = tail + AIO_EVENTS_OFFSET; 927 928 if (++tail >= ctx->nr_events) 929 tail = 0; 930 931 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 932 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 933 934 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 935 event->data = iocb->ki_user_data; 936 event->res = res; 937 event->res2 = res2; 938 939 kunmap_atomic(ev_page); 940 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 941 942 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 943 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 944 res, res2); 945 946 /* after flagging the request as done, we 947 * must never even look at it again 948 */ 949 smp_wmb(); /* make event visible before updating tail */ 950 951 ctx->tail = tail; 952 953 ring = kmap_atomic(ctx->ring_pages[0]); 954 ring->tail = tail; 955 kunmap_atomic(ring); 956 flush_dcache_page(ctx->ring_pages[0]); 957 958 spin_unlock_irqrestore(&ctx->completion_lock, flags); 959 960 pr_debug("added to ring %p at [%u]\n", iocb, tail); 961 962 /* 963 * Check if the user asked us to deliver the result through an 964 * eventfd. The eventfd_signal() function is safe to be called 965 * from IRQ context. 966 */ 967 if (iocb->ki_eventfd != NULL) 968 eventfd_signal(iocb->ki_eventfd, 1); 969 970 /* everything turned out well, dispose of the aiocb. */ 971 kiocb_free(iocb); 972 973 /* 974 * We have to order our ring_info tail store above and test 975 * of the wait list below outside the wait lock. This is 976 * like in wake_up_bit() where clearing a bit has to be 977 * ordered with the unlocked test. 978 */ 979 smp_mb(); 980 981 if (waitqueue_active(&ctx->wait)) 982 wake_up(&ctx->wait); 983 984 percpu_ref_put(&ctx->reqs); 985 } 986 EXPORT_SYMBOL(aio_complete); 987 988 /* aio_read_events 989 * Pull an event off of the ioctx's event ring. Returns the number of 990 * events fetched 991 */ 992 static long aio_read_events_ring(struct kioctx *ctx, 993 struct io_event __user *event, long nr) 994 { 995 struct aio_ring *ring; 996 unsigned head, tail, pos; 997 long ret = 0; 998 int copy_ret; 999 1000 mutex_lock(&ctx->ring_lock); 1001 1002 ring = kmap_atomic(ctx->ring_pages[0]); 1003 head = ring->head; 1004 tail = ring->tail; 1005 kunmap_atomic(ring); 1006 1007 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1008 1009 if (head == tail) 1010 goto out; 1011 1012 while (ret < nr) { 1013 long avail; 1014 struct io_event *ev; 1015 struct page *page; 1016 1017 avail = (head <= tail ? tail : ctx->nr_events) - head; 1018 if (head == tail) 1019 break; 1020 1021 avail = min(avail, nr - ret); 1022 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1023 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1024 1025 pos = head + AIO_EVENTS_OFFSET; 1026 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1027 pos %= AIO_EVENTS_PER_PAGE; 1028 1029 ev = kmap(page); 1030 copy_ret = copy_to_user(event + ret, ev + pos, 1031 sizeof(*ev) * avail); 1032 kunmap(page); 1033 1034 if (unlikely(copy_ret)) { 1035 ret = -EFAULT; 1036 goto out; 1037 } 1038 1039 ret += avail; 1040 head += avail; 1041 head %= ctx->nr_events; 1042 } 1043 1044 ring = kmap_atomic(ctx->ring_pages[0]); 1045 ring->head = head; 1046 kunmap_atomic(ring); 1047 flush_dcache_page(ctx->ring_pages[0]); 1048 1049 pr_debug("%li h%u t%u\n", ret, head, tail); 1050 1051 put_reqs_available(ctx, ret); 1052 out: 1053 mutex_unlock(&ctx->ring_lock); 1054 1055 return ret; 1056 } 1057 1058 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1059 struct io_event __user *event, long *i) 1060 { 1061 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1062 1063 if (ret > 0) 1064 *i += ret; 1065 1066 if (unlikely(atomic_read(&ctx->dead))) 1067 ret = -EINVAL; 1068 1069 if (!*i) 1070 *i = ret; 1071 1072 return ret < 0 || *i >= min_nr; 1073 } 1074 1075 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1076 struct io_event __user *event, 1077 struct timespec __user *timeout) 1078 { 1079 ktime_t until = { .tv64 = KTIME_MAX }; 1080 long ret = 0; 1081 1082 if (timeout) { 1083 struct timespec ts; 1084 1085 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1086 return -EFAULT; 1087 1088 until = timespec_to_ktime(ts); 1089 } 1090 1091 /* 1092 * Note that aio_read_events() is being called as the conditional - i.e. 1093 * we're calling it after prepare_to_wait() has set task state to 1094 * TASK_INTERRUPTIBLE. 1095 * 1096 * But aio_read_events() can block, and if it blocks it's going to flip 1097 * the task state back to TASK_RUNNING. 1098 * 1099 * This should be ok, provided it doesn't flip the state back to 1100 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1101 * will only happen if the mutex_lock() call blocks, and we then find 1102 * the ringbuffer empty. So in practice we should be ok, but it's 1103 * something to be aware of when touching this code. 1104 */ 1105 wait_event_interruptible_hrtimeout(ctx->wait, 1106 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1107 1108 if (!ret && signal_pending(current)) 1109 ret = -EINTR; 1110 1111 return ret; 1112 } 1113 1114 /* sys_io_setup: 1115 * Create an aio_context capable of receiving at least nr_events. 1116 * ctxp must not point to an aio_context that already exists, and 1117 * must be initialized to 0 prior to the call. On successful 1118 * creation of the aio_context, *ctxp is filled in with the resulting 1119 * handle. May fail with -EINVAL if *ctxp is not initialized, 1120 * if the specified nr_events exceeds internal limits. May fail 1121 * with -EAGAIN if the specified nr_events exceeds the user's limit 1122 * of available events. May fail with -ENOMEM if insufficient kernel 1123 * resources are available. May fail with -EFAULT if an invalid 1124 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1125 * implemented. 1126 */ 1127 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1128 { 1129 struct kioctx *ioctx = NULL; 1130 unsigned long ctx; 1131 long ret; 1132 1133 ret = get_user(ctx, ctxp); 1134 if (unlikely(ret)) 1135 goto out; 1136 1137 ret = -EINVAL; 1138 if (unlikely(ctx || nr_events == 0)) { 1139 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1140 ctx, nr_events); 1141 goto out; 1142 } 1143 1144 ioctx = ioctx_alloc(nr_events); 1145 ret = PTR_ERR(ioctx); 1146 if (!IS_ERR(ioctx)) { 1147 ret = put_user(ioctx->user_id, ctxp); 1148 if (ret) 1149 kill_ioctx(current->mm, ioctx); 1150 percpu_ref_put(&ioctx->users); 1151 } 1152 1153 out: 1154 return ret; 1155 } 1156 1157 /* sys_io_destroy: 1158 * Destroy the aio_context specified. May cancel any outstanding 1159 * AIOs and block on completion. Will fail with -ENOSYS if not 1160 * implemented. May fail with -EINVAL if the context pointed to 1161 * is invalid. 1162 */ 1163 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1164 { 1165 struct kioctx *ioctx = lookup_ioctx(ctx); 1166 if (likely(NULL != ioctx)) { 1167 kill_ioctx(current->mm, ioctx); 1168 percpu_ref_put(&ioctx->users); 1169 return 0; 1170 } 1171 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1172 return -EINVAL; 1173 } 1174 1175 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1176 unsigned long, loff_t); 1177 1178 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1179 int rw, char __user *buf, 1180 unsigned long *nr_segs, 1181 struct iovec **iovec, 1182 bool compat) 1183 { 1184 ssize_t ret; 1185 1186 *nr_segs = kiocb->ki_nbytes; 1187 1188 #ifdef CONFIG_COMPAT 1189 if (compat) 1190 ret = compat_rw_copy_check_uvector(rw, 1191 (struct compat_iovec __user *)buf, 1192 *nr_segs, 1, *iovec, iovec); 1193 else 1194 #endif 1195 ret = rw_copy_check_uvector(rw, 1196 (struct iovec __user *)buf, 1197 *nr_segs, 1, *iovec, iovec); 1198 if (ret < 0) 1199 return ret; 1200 1201 /* ki_nbytes now reflect bytes instead of segs */ 1202 kiocb->ki_nbytes = ret; 1203 return 0; 1204 } 1205 1206 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1207 int rw, char __user *buf, 1208 unsigned long *nr_segs, 1209 struct iovec *iovec) 1210 { 1211 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1212 return -EFAULT; 1213 1214 iovec->iov_base = buf; 1215 iovec->iov_len = kiocb->ki_nbytes; 1216 *nr_segs = 1; 1217 return 0; 1218 } 1219 1220 /* 1221 * aio_setup_iocb: 1222 * Performs the initial checks and aio retry method 1223 * setup for the kiocb at the time of io submission. 1224 */ 1225 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1226 char __user *buf, bool compat) 1227 { 1228 struct file *file = req->ki_filp; 1229 ssize_t ret; 1230 unsigned long nr_segs; 1231 int rw; 1232 fmode_t mode; 1233 aio_rw_op *rw_op; 1234 struct iovec inline_vec, *iovec = &inline_vec; 1235 1236 switch (opcode) { 1237 case IOCB_CMD_PREAD: 1238 case IOCB_CMD_PREADV: 1239 mode = FMODE_READ; 1240 rw = READ; 1241 rw_op = file->f_op->aio_read; 1242 goto rw_common; 1243 1244 case IOCB_CMD_PWRITE: 1245 case IOCB_CMD_PWRITEV: 1246 mode = FMODE_WRITE; 1247 rw = WRITE; 1248 rw_op = file->f_op->aio_write; 1249 goto rw_common; 1250 rw_common: 1251 if (unlikely(!(file->f_mode & mode))) 1252 return -EBADF; 1253 1254 if (!rw_op) 1255 return -EINVAL; 1256 1257 ret = (opcode == IOCB_CMD_PREADV || 1258 opcode == IOCB_CMD_PWRITEV) 1259 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1260 &iovec, compat) 1261 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1262 iovec); 1263 if (ret) 1264 return ret; 1265 1266 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1267 if (ret < 0) { 1268 if (iovec != &inline_vec) 1269 kfree(iovec); 1270 return ret; 1271 } 1272 1273 req->ki_nbytes = ret; 1274 1275 /* XXX: move/kill - rw_verify_area()? */ 1276 /* This matches the pread()/pwrite() logic */ 1277 if (req->ki_pos < 0) { 1278 ret = -EINVAL; 1279 break; 1280 } 1281 1282 if (rw == WRITE) 1283 file_start_write(file); 1284 1285 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1286 1287 if (rw == WRITE) 1288 file_end_write(file); 1289 break; 1290 1291 case IOCB_CMD_FDSYNC: 1292 if (!file->f_op->aio_fsync) 1293 return -EINVAL; 1294 1295 ret = file->f_op->aio_fsync(req, 1); 1296 break; 1297 1298 case IOCB_CMD_FSYNC: 1299 if (!file->f_op->aio_fsync) 1300 return -EINVAL; 1301 1302 ret = file->f_op->aio_fsync(req, 0); 1303 break; 1304 1305 default: 1306 pr_debug("EINVAL: no operation provided\n"); 1307 return -EINVAL; 1308 } 1309 1310 if (iovec != &inline_vec) 1311 kfree(iovec); 1312 1313 if (ret != -EIOCBQUEUED) { 1314 /* 1315 * There's no easy way to restart the syscall since other AIO's 1316 * may be already running. Just fail this IO with EINTR. 1317 */ 1318 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1319 ret == -ERESTARTNOHAND || 1320 ret == -ERESTART_RESTARTBLOCK)) 1321 ret = -EINTR; 1322 aio_complete(req, ret, 0); 1323 } 1324 1325 return 0; 1326 } 1327 1328 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1329 struct iocb *iocb, bool compat) 1330 { 1331 struct kiocb *req; 1332 ssize_t ret; 1333 1334 /* enforce forwards compatibility on users */ 1335 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1336 pr_debug("EINVAL: reserve field set\n"); 1337 return -EINVAL; 1338 } 1339 1340 /* prevent overflows */ 1341 if (unlikely( 1342 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1343 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1344 ((ssize_t)iocb->aio_nbytes < 0) 1345 )) { 1346 pr_debug("EINVAL: io_submit: overflow check\n"); 1347 return -EINVAL; 1348 } 1349 1350 req = aio_get_req(ctx); 1351 if (unlikely(!req)) 1352 return -EAGAIN; 1353 1354 req->ki_filp = fget(iocb->aio_fildes); 1355 if (unlikely(!req->ki_filp)) { 1356 ret = -EBADF; 1357 goto out_put_req; 1358 } 1359 1360 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1361 /* 1362 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1363 * instance of the file* now. The file descriptor must be 1364 * an eventfd() fd, and will be signaled for each completed 1365 * event using the eventfd_signal() function. 1366 */ 1367 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1368 if (IS_ERR(req->ki_eventfd)) { 1369 ret = PTR_ERR(req->ki_eventfd); 1370 req->ki_eventfd = NULL; 1371 goto out_put_req; 1372 } 1373 } 1374 1375 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1376 if (unlikely(ret)) { 1377 pr_debug("EFAULT: aio_key\n"); 1378 goto out_put_req; 1379 } 1380 1381 req->ki_obj.user = user_iocb; 1382 req->ki_user_data = iocb->aio_data; 1383 req->ki_pos = iocb->aio_offset; 1384 req->ki_nbytes = iocb->aio_nbytes; 1385 1386 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1387 (char __user *)(unsigned long)iocb->aio_buf, 1388 compat); 1389 if (ret) 1390 goto out_put_req; 1391 1392 return 0; 1393 out_put_req: 1394 put_reqs_available(ctx, 1); 1395 percpu_ref_put(&ctx->reqs); 1396 kiocb_free(req); 1397 return ret; 1398 } 1399 1400 long do_io_submit(aio_context_t ctx_id, long nr, 1401 struct iocb __user *__user *iocbpp, bool compat) 1402 { 1403 struct kioctx *ctx; 1404 long ret = 0; 1405 int i = 0; 1406 struct blk_plug plug; 1407 1408 if (unlikely(nr < 0)) 1409 return -EINVAL; 1410 1411 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1412 nr = LONG_MAX/sizeof(*iocbpp); 1413 1414 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1415 return -EFAULT; 1416 1417 ctx = lookup_ioctx(ctx_id); 1418 if (unlikely(!ctx)) { 1419 pr_debug("EINVAL: invalid context id\n"); 1420 return -EINVAL; 1421 } 1422 1423 blk_start_plug(&plug); 1424 1425 /* 1426 * AKPM: should this return a partial result if some of the IOs were 1427 * successfully submitted? 1428 */ 1429 for (i=0; i<nr; i++) { 1430 struct iocb __user *user_iocb; 1431 struct iocb tmp; 1432 1433 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1434 ret = -EFAULT; 1435 break; 1436 } 1437 1438 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1439 ret = -EFAULT; 1440 break; 1441 } 1442 1443 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1444 if (ret) 1445 break; 1446 } 1447 blk_finish_plug(&plug); 1448 1449 percpu_ref_put(&ctx->users); 1450 return i ? i : ret; 1451 } 1452 1453 /* sys_io_submit: 1454 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1455 * the number of iocbs queued. May return -EINVAL if the aio_context 1456 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1457 * *iocbpp[0] is not properly initialized, if the operation specified 1458 * is invalid for the file descriptor in the iocb. May fail with 1459 * -EFAULT if any of the data structures point to invalid data. May 1460 * fail with -EBADF if the file descriptor specified in the first 1461 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1462 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1463 * fail with -ENOSYS if not implemented. 1464 */ 1465 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1466 struct iocb __user * __user *, iocbpp) 1467 { 1468 return do_io_submit(ctx_id, nr, iocbpp, 0); 1469 } 1470 1471 /* lookup_kiocb 1472 * Finds a given iocb for cancellation. 1473 */ 1474 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1475 u32 key) 1476 { 1477 struct list_head *pos; 1478 1479 assert_spin_locked(&ctx->ctx_lock); 1480 1481 if (key != KIOCB_KEY) 1482 return NULL; 1483 1484 /* TODO: use a hash or array, this sucks. */ 1485 list_for_each(pos, &ctx->active_reqs) { 1486 struct kiocb *kiocb = list_kiocb(pos); 1487 if (kiocb->ki_obj.user == iocb) 1488 return kiocb; 1489 } 1490 return NULL; 1491 } 1492 1493 /* sys_io_cancel: 1494 * Attempts to cancel an iocb previously passed to io_submit. If 1495 * the operation is successfully cancelled, the resulting event is 1496 * copied into the memory pointed to by result without being placed 1497 * into the completion queue and 0 is returned. May fail with 1498 * -EFAULT if any of the data structures pointed to are invalid. 1499 * May fail with -EINVAL if aio_context specified by ctx_id is 1500 * invalid. May fail with -EAGAIN if the iocb specified was not 1501 * cancelled. Will fail with -ENOSYS if not implemented. 1502 */ 1503 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1504 struct io_event __user *, result) 1505 { 1506 struct kioctx *ctx; 1507 struct kiocb *kiocb; 1508 u32 key; 1509 int ret; 1510 1511 ret = get_user(key, &iocb->aio_key); 1512 if (unlikely(ret)) 1513 return -EFAULT; 1514 1515 ctx = lookup_ioctx(ctx_id); 1516 if (unlikely(!ctx)) 1517 return -EINVAL; 1518 1519 spin_lock_irq(&ctx->ctx_lock); 1520 1521 kiocb = lookup_kiocb(ctx, iocb, key); 1522 if (kiocb) 1523 ret = kiocb_cancel(ctx, kiocb); 1524 else 1525 ret = -EINVAL; 1526 1527 spin_unlock_irq(&ctx->ctx_lock); 1528 1529 if (!ret) { 1530 /* 1531 * The result argument is no longer used - the io_event is 1532 * always delivered via the ring buffer. -EINPROGRESS indicates 1533 * cancellation is progress: 1534 */ 1535 ret = -EINPROGRESS; 1536 } 1537 1538 percpu_ref_put(&ctx->users); 1539 1540 return ret; 1541 } 1542 1543 /* io_getevents: 1544 * Attempts to read at least min_nr events and up to nr events from 1545 * the completion queue for the aio_context specified by ctx_id. If 1546 * it succeeds, the number of read events is returned. May fail with 1547 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1548 * out of range, if timeout is out of range. May fail with -EFAULT 1549 * if any of the memory specified is invalid. May return 0 or 1550 * < min_nr if the timeout specified by timeout has elapsed 1551 * before sufficient events are available, where timeout == NULL 1552 * specifies an infinite timeout. Note that the timeout pointed to by 1553 * timeout is relative. Will fail with -ENOSYS if not implemented. 1554 */ 1555 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1556 long, min_nr, 1557 long, nr, 1558 struct io_event __user *, events, 1559 struct timespec __user *, timeout) 1560 { 1561 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1562 long ret = -EINVAL; 1563 1564 if (likely(ioctx)) { 1565 if (likely(min_nr <= nr && min_nr >= 0)) 1566 ret = read_events(ioctx, min_nr, nr, events, timeout); 1567 percpu_ref_put(&ioctx->users); 1568 } 1569 return ret; 1570 } 1571