xref: /openbmc/linux/fs/aio.c (revision 12eb4683)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;
56 	unsigned	tail;
57 
58 	unsigned	magic;
59 	unsigned	compat_features;
60 	unsigned	incompat_features;
61 	unsigned	header_length;	/* size of aio_ring */
62 
63 
64 	struct io_event		io_events[0];
65 }; /* 128 bytes + ring size */
66 
67 #define AIO_RING_PAGES	8
68 
69 struct kioctx_table {
70 	struct rcu_head	rcu;
71 	unsigned	nr;
72 	struct kioctx	*table[];
73 };
74 
75 struct kioctx_cpu {
76 	unsigned		reqs_available;
77 };
78 
79 struct kioctx {
80 	struct percpu_ref	users;
81 	atomic_t		dead;
82 
83 	struct percpu_ref	reqs;
84 
85 	unsigned long		user_id;
86 
87 	struct __percpu kioctx_cpu *cpu;
88 
89 	/*
90 	 * For percpu reqs_available, number of slots we move to/from global
91 	 * counter at a time:
92 	 */
93 	unsigned		req_batch;
94 	/*
95 	 * This is what userspace passed to io_setup(), it's not used for
96 	 * anything but counting against the global max_reqs quota.
97 	 *
98 	 * The real limit is nr_events - 1, which will be larger (see
99 	 * aio_setup_ring())
100 	 */
101 	unsigned		max_reqs;
102 
103 	/* Size of ringbuffer, in units of struct io_event */
104 	unsigned		nr_events;
105 
106 	unsigned long		mmap_base;
107 	unsigned long		mmap_size;
108 
109 	struct page		**ring_pages;
110 	long			nr_pages;
111 
112 	struct work_struct	free_work;
113 
114 	struct {
115 		/*
116 		 * This counts the number of available slots in the ringbuffer,
117 		 * so we avoid overflowing it: it's decremented (if positive)
118 		 * when allocating a kiocb and incremented when the resulting
119 		 * io_event is pulled off the ringbuffer.
120 		 *
121 		 * We batch accesses to it with a percpu version.
122 		 */
123 		atomic_t	reqs_available;
124 	} ____cacheline_aligned_in_smp;
125 
126 	struct {
127 		spinlock_t	ctx_lock;
128 		struct list_head active_reqs;	/* used for cancellation */
129 	} ____cacheline_aligned_in_smp;
130 
131 	struct {
132 		struct mutex	ring_lock;
133 		wait_queue_head_t wait;
134 	} ____cacheline_aligned_in_smp;
135 
136 	struct {
137 		unsigned	tail;
138 		spinlock_t	completion_lock;
139 	} ____cacheline_aligned_in_smp;
140 
141 	struct page		*internal_pages[AIO_RING_PAGES];
142 	struct file		*aio_ring_file;
143 
144 	unsigned		id;
145 };
146 
147 /*------ sysctl variables----*/
148 static DEFINE_SPINLOCK(aio_nr_lock);
149 unsigned long aio_nr;		/* current system wide number of aio requests */
150 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
151 /*----end sysctl variables---*/
152 
153 static struct kmem_cache	*kiocb_cachep;
154 static struct kmem_cache	*kioctx_cachep;
155 
156 static struct vfsmount *aio_mnt;
157 
158 static const struct file_operations aio_ring_fops;
159 static const struct address_space_operations aio_ctx_aops;
160 
161 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
162 {
163 	struct qstr this = QSTR_INIT("[aio]", 5);
164 	struct file *file;
165 	struct path path;
166 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
167 	if (IS_ERR(inode))
168 		return ERR_CAST(inode);
169 
170 	inode->i_mapping->a_ops = &aio_ctx_aops;
171 	inode->i_mapping->private_data = ctx;
172 	inode->i_size = PAGE_SIZE * nr_pages;
173 
174 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
175 	if (!path.dentry) {
176 		iput(inode);
177 		return ERR_PTR(-ENOMEM);
178 	}
179 	path.mnt = mntget(aio_mnt);
180 
181 	d_instantiate(path.dentry, inode);
182 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
183 	if (IS_ERR(file)) {
184 		path_put(&path);
185 		return file;
186 	}
187 
188 	file->f_flags = O_RDWR;
189 	file->private_data = ctx;
190 	return file;
191 }
192 
193 static struct dentry *aio_mount(struct file_system_type *fs_type,
194 				int flags, const char *dev_name, void *data)
195 {
196 	static const struct dentry_operations ops = {
197 		.d_dname	= simple_dname,
198 	};
199 	return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
200 }
201 
202 /* aio_setup
203  *	Creates the slab caches used by the aio routines, panic on
204  *	failure as this is done early during the boot sequence.
205  */
206 static int __init aio_setup(void)
207 {
208 	static struct file_system_type aio_fs = {
209 		.name		= "aio",
210 		.mount		= aio_mount,
211 		.kill_sb	= kill_anon_super,
212 	};
213 	aio_mnt = kern_mount(&aio_fs);
214 	if (IS_ERR(aio_mnt))
215 		panic("Failed to create aio fs mount.");
216 
217 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
218 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
219 
220 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
221 
222 	return 0;
223 }
224 __initcall(aio_setup);
225 
226 static void put_aio_ring_file(struct kioctx *ctx)
227 {
228 	struct file *aio_ring_file = ctx->aio_ring_file;
229 	if (aio_ring_file) {
230 		truncate_setsize(aio_ring_file->f_inode, 0);
231 
232 		/* Prevent further access to the kioctx from migratepages */
233 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
234 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
235 		ctx->aio_ring_file = NULL;
236 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
237 
238 		fput(aio_ring_file);
239 	}
240 }
241 
242 static void aio_free_ring(struct kioctx *ctx)
243 {
244 	int i;
245 
246 	for (i = 0; i < ctx->nr_pages; i++) {
247 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
248 				page_count(ctx->ring_pages[i]));
249 		put_page(ctx->ring_pages[i]);
250 	}
251 
252 	put_aio_ring_file(ctx);
253 
254 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
255 		kfree(ctx->ring_pages);
256 		ctx->ring_pages = NULL;
257 	}
258 }
259 
260 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
261 {
262 	vma->vm_ops = &generic_file_vm_ops;
263 	return 0;
264 }
265 
266 static const struct file_operations aio_ring_fops = {
267 	.mmap = aio_ring_mmap,
268 };
269 
270 static int aio_set_page_dirty(struct page *page)
271 {
272 	return 0;
273 }
274 
275 #if IS_ENABLED(CONFIG_MIGRATION)
276 static int aio_migratepage(struct address_space *mapping, struct page *new,
277 			struct page *old, enum migrate_mode mode)
278 {
279 	struct kioctx *ctx;
280 	unsigned long flags;
281 	int rc;
282 
283 	/* Writeback must be complete */
284 	BUG_ON(PageWriteback(old));
285 	put_page(old);
286 
287 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
288 	if (rc != MIGRATEPAGE_SUCCESS) {
289 		get_page(old);
290 		return rc;
291 	}
292 
293 	get_page(new);
294 
295 	/* We can potentially race against kioctx teardown here.  Use the
296 	 * address_space's private data lock to protect the mapping's
297 	 * private_data.
298 	 */
299 	spin_lock(&mapping->private_lock);
300 	ctx = mapping->private_data;
301 	if (ctx) {
302 		pgoff_t idx;
303 		spin_lock_irqsave(&ctx->completion_lock, flags);
304 		migrate_page_copy(new, old);
305 		idx = old->index;
306 		if (idx < (pgoff_t)ctx->nr_pages)
307 			ctx->ring_pages[idx] = new;
308 		spin_unlock_irqrestore(&ctx->completion_lock, flags);
309 	} else
310 		rc = -EBUSY;
311 	spin_unlock(&mapping->private_lock);
312 
313 	return rc;
314 }
315 #endif
316 
317 static const struct address_space_operations aio_ctx_aops = {
318 	.set_page_dirty = aio_set_page_dirty,
319 #if IS_ENABLED(CONFIG_MIGRATION)
320 	.migratepage	= aio_migratepage,
321 #endif
322 };
323 
324 static int aio_setup_ring(struct kioctx *ctx)
325 {
326 	struct aio_ring *ring;
327 	unsigned nr_events = ctx->max_reqs;
328 	struct mm_struct *mm = current->mm;
329 	unsigned long size, populate;
330 	int nr_pages;
331 	int i;
332 	struct file *file;
333 
334 	/* Compensate for the ring buffer's head/tail overlap entry */
335 	nr_events += 2;	/* 1 is required, 2 for good luck */
336 
337 	size = sizeof(struct aio_ring);
338 	size += sizeof(struct io_event) * nr_events;
339 
340 	nr_pages = PFN_UP(size);
341 	if (nr_pages < 0)
342 		return -EINVAL;
343 
344 	file = aio_private_file(ctx, nr_pages);
345 	if (IS_ERR(file)) {
346 		ctx->aio_ring_file = NULL;
347 		return -EAGAIN;
348 	}
349 
350 	for (i = 0; i < nr_pages; i++) {
351 		struct page *page;
352 		page = find_or_create_page(file->f_inode->i_mapping,
353 					   i, GFP_HIGHUSER | __GFP_ZERO);
354 		if (!page)
355 			break;
356 		pr_debug("pid(%d) page[%d]->count=%d\n",
357 			 current->pid, i, page_count(page));
358 		SetPageUptodate(page);
359 		SetPageDirty(page);
360 		unlock_page(page);
361 	}
362 	ctx->aio_ring_file = file;
363 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
364 			/ sizeof(struct io_event);
365 
366 	ctx->ring_pages = ctx->internal_pages;
367 	if (nr_pages > AIO_RING_PAGES) {
368 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
369 					  GFP_KERNEL);
370 		if (!ctx->ring_pages) {
371 			put_aio_ring_file(ctx);
372 			return -ENOMEM;
373 		}
374 	}
375 
376 	ctx->mmap_size = nr_pages * PAGE_SIZE;
377 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
378 
379 	down_write(&mm->mmap_sem);
380 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
381 				       PROT_READ | PROT_WRITE,
382 				       MAP_SHARED | MAP_POPULATE, 0, &populate);
383 	if (IS_ERR((void *)ctx->mmap_base)) {
384 		up_write(&mm->mmap_sem);
385 		ctx->mmap_size = 0;
386 		aio_free_ring(ctx);
387 		return -EAGAIN;
388 	}
389 
390 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
391 
392 	/* We must do this while still holding mmap_sem for write, as we
393 	 * need to be protected against userspace attempting to mremap()
394 	 * or munmap() the ring buffer.
395 	 */
396 	ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
397 				       1, 0, ctx->ring_pages, NULL);
398 
399 	/* Dropping the reference here is safe as the page cache will hold
400 	 * onto the pages for us.  It is also required so that page migration
401 	 * can unmap the pages and get the right reference count.
402 	 */
403 	for (i = 0; i < ctx->nr_pages; i++)
404 		put_page(ctx->ring_pages[i]);
405 
406 	up_write(&mm->mmap_sem);
407 
408 	if (unlikely(ctx->nr_pages != nr_pages)) {
409 		aio_free_ring(ctx);
410 		return -EAGAIN;
411 	}
412 
413 	ctx->user_id = ctx->mmap_base;
414 	ctx->nr_events = nr_events; /* trusted copy */
415 
416 	ring = kmap_atomic(ctx->ring_pages[0]);
417 	ring->nr = nr_events;	/* user copy */
418 	ring->id = ~0U;
419 	ring->head = ring->tail = 0;
420 	ring->magic = AIO_RING_MAGIC;
421 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
422 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
423 	ring->header_length = sizeof(struct aio_ring);
424 	kunmap_atomic(ring);
425 	flush_dcache_page(ctx->ring_pages[0]);
426 
427 	return 0;
428 }
429 
430 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
431 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
432 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
433 
434 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
435 {
436 	struct kioctx *ctx = req->ki_ctx;
437 	unsigned long flags;
438 
439 	spin_lock_irqsave(&ctx->ctx_lock, flags);
440 
441 	if (!req->ki_list.next)
442 		list_add(&req->ki_list, &ctx->active_reqs);
443 
444 	req->ki_cancel = cancel;
445 
446 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
447 }
448 EXPORT_SYMBOL(kiocb_set_cancel_fn);
449 
450 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
451 {
452 	kiocb_cancel_fn *old, *cancel;
453 
454 	/*
455 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
456 	 * actually has a cancel function, hence the cmpxchg()
457 	 */
458 
459 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
460 	do {
461 		if (!cancel || cancel == KIOCB_CANCELLED)
462 			return -EINVAL;
463 
464 		old = cancel;
465 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
466 	} while (cancel != old);
467 
468 	return cancel(kiocb);
469 }
470 
471 static void free_ioctx(struct work_struct *work)
472 {
473 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
474 
475 	pr_debug("freeing %p\n", ctx);
476 
477 	aio_free_ring(ctx);
478 	free_percpu(ctx->cpu);
479 	kmem_cache_free(kioctx_cachep, ctx);
480 }
481 
482 static void free_ioctx_reqs(struct percpu_ref *ref)
483 {
484 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
485 
486 	INIT_WORK(&ctx->free_work, free_ioctx);
487 	schedule_work(&ctx->free_work);
488 }
489 
490 /*
491  * When this function runs, the kioctx has been removed from the "hash table"
492  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
493  * now it's safe to cancel any that need to be.
494  */
495 static void free_ioctx_users(struct percpu_ref *ref)
496 {
497 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
498 	struct kiocb *req;
499 
500 	spin_lock_irq(&ctx->ctx_lock);
501 
502 	while (!list_empty(&ctx->active_reqs)) {
503 		req = list_first_entry(&ctx->active_reqs,
504 				       struct kiocb, ki_list);
505 
506 		list_del_init(&req->ki_list);
507 		kiocb_cancel(ctx, req);
508 	}
509 
510 	spin_unlock_irq(&ctx->ctx_lock);
511 
512 	percpu_ref_kill(&ctx->reqs);
513 	percpu_ref_put(&ctx->reqs);
514 }
515 
516 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
517 {
518 	unsigned i, new_nr;
519 	struct kioctx_table *table, *old;
520 	struct aio_ring *ring;
521 
522 	spin_lock(&mm->ioctx_lock);
523 	rcu_read_lock();
524 	table = rcu_dereference(mm->ioctx_table);
525 
526 	while (1) {
527 		if (table)
528 			for (i = 0; i < table->nr; i++)
529 				if (!table->table[i]) {
530 					ctx->id = i;
531 					table->table[i] = ctx;
532 					rcu_read_unlock();
533 					spin_unlock(&mm->ioctx_lock);
534 
535 					ring = kmap_atomic(ctx->ring_pages[0]);
536 					ring->id = ctx->id;
537 					kunmap_atomic(ring);
538 					return 0;
539 				}
540 
541 		new_nr = (table ? table->nr : 1) * 4;
542 
543 		rcu_read_unlock();
544 		spin_unlock(&mm->ioctx_lock);
545 
546 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
547 				new_nr, GFP_KERNEL);
548 		if (!table)
549 			return -ENOMEM;
550 
551 		table->nr = new_nr;
552 
553 		spin_lock(&mm->ioctx_lock);
554 		rcu_read_lock();
555 		old = rcu_dereference(mm->ioctx_table);
556 
557 		if (!old) {
558 			rcu_assign_pointer(mm->ioctx_table, table);
559 		} else if (table->nr > old->nr) {
560 			memcpy(table->table, old->table,
561 			       old->nr * sizeof(struct kioctx *));
562 
563 			rcu_assign_pointer(mm->ioctx_table, table);
564 			kfree_rcu(old, rcu);
565 		} else {
566 			kfree(table);
567 			table = old;
568 		}
569 	}
570 }
571 
572 static void aio_nr_sub(unsigned nr)
573 {
574 	spin_lock(&aio_nr_lock);
575 	if (WARN_ON(aio_nr - nr > aio_nr))
576 		aio_nr = 0;
577 	else
578 		aio_nr -= nr;
579 	spin_unlock(&aio_nr_lock);
580 }
581 
582 /* ioctx_alloc
583  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
584  */
585 static struct kioctx *ioctx_alloc(unsigned nr_events)
586 {
587 	struct mm_struct *mm = current->mm;
588 	struct kioctx *ctx;
589 	int err = -ENOMEM;
590 
591 	/*
592 	 * We keep track of the number of available ringbuffer slots, to prevent
593 	 * overflow (reqs_available), and we also use percpu counters for this.
594 	 *
595 	 * So since up to half the slots might be on other cpu's percpu counters
596 	 * and unavailable, double nr_events so userspace sees what they
597 	 * expected: additionally, we move req_batch slots to/from percpu
598 	 * counters at a time, so make sure that isn't 0:
599 	 */
600 	nr_events = max(nr_events, num_possible_cpus() * 4);
601 	nr_events *= 2;
602 
603 	/* Prevent overflows */
604 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
605 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
606 		pr_debug("ENOMEM: nr_events too high\n");
607 		return ERR_PTR(-EINVAL);
608 	}
609 
610 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
611 		return ERR_PTR(-EAGAIN);
612 
613 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
614 	if (!ctx)
615 		return ERR_PTR(-ENOMEM);
616 
617 	ctx->max_reqs = nr_events;
618 
619 	if (percpu_ref_init(&ctx->users, free_ioctx_users))
620 		goto err;
621 
622 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
623 		goto err;
624 
625 	spin_lock_init(&ctx->ctx_lock);
626 	spin_lock_init(&ctx->completion_lock);
627 	mutex_init(&ctx->ring_lock);
628 	init_waitqueue_head(&ctx->wait);
629 
630 	INIT_LIST_HEAD(&ctx->active_reqs);
631 
632 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
633 	if (!ctx->cpu)
634 		goto err;
635 
636 	if (aio_setup_ring(ctx) < 0)
637 		goto err;
638 
639 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
640 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
641 	if (ctx->req_batch < 1)
642 		ctx->req_batch = 1;
643 
644 	/* limit the number of system wide aios */
645 	spin_lock(&aio_nr_lock);
646 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
647 	    aio_nr + nr_events < aio_nr) {
648 		spin_unlock(&aio_nr_lock);
649 		err = -EAGAIN;
650 		goto err_ctx;
651 	}
652 	aio_nr += ctx->max_reqs;
653 	spin_unlock(&aio_nr_lock);
654 
655 	percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
656 
657 	err = ioctx_add_table(ctx, mm);
658 	if (err)
659 		goto err_cleanup;
660 
661 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
662 		 ctx, ctx->user_id, mm, ctx->nr_events);
663 	return ctx;
664 
665 err_cleanup:
666 	aio_nr_sub(ctx->max_reqs);
667 err_ctx:
668 	aio_free_ring(ctx);
669 err:
670 	free_percpu(ctx->cpu);
671 	free_percpu(ctx->reqs.pcpu_count);
672 	free_percpu(ctx->users.pcpu_count);
673 	kmem_cache_free(kioctx_cachep, ctx);
674 	pr_debug("error allocating ioctx %d\n", err);
675 	return ERR_PTR(err);
676 }
677 
678 /* kill_ioctx
679  *	Cancels all outstanding aio requests on an aio context.  Used
680  *	when the processes owning a context have all exited to encourage
681  *	the rapid destruction of the kioctx.
682  */
683 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
684 {
685 	if (!atomic_xchg(&ctx->dead, 1)) {
686 		struct kioctx_table *table;
687 
688 		spin_lock(&mm->ioctx_lock);
689 		rcu_read_lock();
690 		table = rcu_dereference(mm->ioctx_table);
691 
692 		WARN_ON(ctx != table->table[ctx->id]);
693 		table->table[ctx->id] = NULL;
694 		rcu_read_unlock();
695 		spin_unlock(&mm->ioctx_lock);
696 
697 		/* percpu_ref_kill() will do the necessary call_rcu() */
698 		wake_up_all(&ctx->wait);
699 
700 		/*
701 		 * It'd be more correct to do this in free_ioctx(), after all
702 		 * the outstanding kiocbs have finished - but by then io_destroy
703 		 * has already returned, so io_setup() could potentially return
704 		 * -EAGAIN with no ioctxs actually in use (as far as userspace
705 		 *  could tell).
706 		 */
707 		aio_nr_sub(ctx->max_reqs);
708 
709 		if (ctx->mmap_size)
710 			vm_munmap(ctx->mmap_base, ctx->mmap_size);
711 
712 		percpu_ref_kill(&ctx->users);
713 	}
714 }
715 
716 /* wait_on_sync_kiocb:
717  *	Waits on the given sync kiocb to complete.
718  */
719 ssize_t wait_on_sync_kiocb(struct kiocb *req)
720 {
721 	while (!req->ki_ctx) {
722 		set_current_state(TASK_UNINTERRUPTIBLE);
723 		if (req->ki_ctx)
724 			break;
725 		io_schedule();
726 	}
727 	__set_current_state(TASK_RUNNING);
728 	return req->ki_user_data;
729 }
730 EXPORT_SYMBOL(wait_on_sync_kiocb);
731 
732 /*
733  * exit_aio: called when the last user of mm goes away.  At this point, there is
734  * no way for any new requests to be submited or any of the io_* syscalls to be
735  * called on the context.
736  *
737  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
738  * them.
739  */
740 void exit_aio(struct mm_struct *mm)
741 {
742 	struct kioctx_table *table;
743 	struct kioctx *ctx;
744 	unsigned i = 0;
745 
746 	while (1) {
747 		rcu_read_lock();
748 		table = rcu_dereference(mm->ioctx_table);
749 
750 		do {
751 			if (!table || i >= table->nr) {
752 				rcu_read_unlock();
753 				rcu_assign_pointer(mm->ioctx_table, NULL);
754 				if (table)
755 					kfree(table);
756 				return;
757 			}
758 
759 			ctx = table->table[i++];
760 		} while (!ctx);
761 
762 		rcu_read_unlock();
763 
764 		/*
765 		 * We don't need to bother with munmap() here -
766 		 * exit_mmap(mm) is coming and it'll unmap everything.
767 		 * Since aio_free_ring() uses non-zero ->mmap_size
768 		 * as indicator that it needs to unmap the area,
769 		 * just set it to 0; aio_free_ring() is the only
770 		 * place that uses ->mmap_size, so it's safe.
771 		 */
772 		ctx->mmap_size = 0;
773 
774 		kill_ioctx(mm, ctx);
775 	}
776 }
777 
778 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
779 {
780 	struct kioctx_cpu *kcpu;
781 
782 	preempt_disable();
783 	kcpu = this_cpu_ptr(ctx->cpu);
784 
785 	kcpu->reqs_available += nr;
786 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
787 		kcpu->reqs_available -= ctx->req_batch;
788 		atomic_add(ctx->req_batch, &ctx->reqs_available);
789 	}
790 
791 	preempt_enable();
792 }
793 
794 static bool get_reqs_available(struct kioctx *ctx)
795 {
796 	struct kioctx_cpu *kcpu;
797 	bool ret = false;
798 
799 	preempt_disable();
800 	kcpu = this_cpu_ptr(ctx->cpu);
801 
802 	if (!kcpu->reqs_available) {
803 		int old, avail = atomic_read(&ctx->reqs_available);
804 
805 		do {
806 			if (avail < ctx->req_batch)
807 				goto out;
808 
809 			old = avail;
810 			avail = atomic_cmpxchg(&ctx->reqs_available,
811 					       avail, avail - ctx->req_batch);
812 		} while (avail != old);
813 
814 		kcpu->reqs_available += ctx->req_batch;
815 	}
816 
817 	ret = true;
818 	kcpu->reqs_available--;
819 out:
820 	preempt_enable();
821 	return ret;
822 }
823 
824 /* aio_get_req
825  *	Allocate a slot for an aio request.
826  * Returns NULL if no requests are free.
827  */
828 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
829 {
830 	struct kiocb *req;
831 
832 	if (!get_reqs_available(ctx))
833 		return NULL;
834 
835 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
836 	if (unlikely(!req))
837 		goto out_put;
838 
839 	percpu_ref_get(&ctx->reqs);
840 
841 	req->ki_ctx = ctx;
842 	return req;
843 out_put:
844 	put_reqs_available(ctx, 1);
845 	return NULL;
846 }
847 
848 static void kiocb_free(struct kiocb *req)
849 {
850 	if (req->ki_filp)
851 		fput(req->ki_filp);
852 	if (req->ki_eventfd != NULL)
853 		eventfd_ctx_put(req->ki_eventfd);
854 	kmem_cache_free(kiocb_cachep, req);
855 }
856 
857 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
858 {
859 	struct aio_ring __user *ring  = (void __user *)ctx_id;
860 	struct mm_struct *mm = current->mm;
861 	struct kioctx *ctx, *ret = NULL;
862 	struct kioctx_table *table;
863 	unsigned id;
864 
865 	if (get_user(id, &ring->id))
866 		return NULL;
867 
868 	rcu_read_lock();
869 	table = rcu_dereference(mm->ioctx_table);
870 
871 	if (!table || id >= table->nr)
872 		goto out;
873 
874 	ctx = table->table[id];
875 	if (ctx && ctx->user_id == ctx_id) {
876 		percpu_ref_get(&ctx->users);
877 		ret = ctx;
878 	}
879 out:
880 	rcu_read_unlock();
881 	return ret;
882 }
883 
884 /* aio_complete
885  *	Called when the io request on the given iocb is complete.
886  */
887 void aio_complete(struct kiocb *iocb, long res, long res2)
888 {
889 	struct kioctx	*ctx = iocb->ki_ctx;
890 	struct aio_ring	*ring;
891 	struct io_event	*ev_page, *event;
892 	unsigned long	flags;
893 	unsigned tail, pos;
894 
895 	/*
896 	 * Special case handling for sync iocbs:
897 	 *  - events go directly into the iocb for fast handling
898 	 *  - the sync task with the iocb in its stack holds the single iocb
899 	 *    ref, no other paths have a way to get another ref
900 	 *  - the sync task helpfully left a reference to itself in the iocb
901 	 */
902 	if (is_sync_kiocb(iocb)) {
903 		iocb->ki_user_data = res;
904 		smp_wmb();
905 		iocb->ki_ctx = ERR_PTR(-EXDEV);
906 		wake_up_process(iocb->ki_obj.tsk);
907 		return;
908 	}
909 
910 	if (iocb->ki_list.next) {
911 		unsigned long flags;
912 
913 		spin_lock_irqsave(&ctx->ctx_lock, flags);
914 		list_del(&iocb->ki_list);
915 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
916 	}
917 
918 	/*
919 	 * Add a completion event to the ring buffer. Must be done holding
920 	 * ctx->completion_lock to prevent other code from messing with the tail
921 	 * pointer since we might be called from irq context.
922 	 */
923 	spin_lock_irqsave(&ctx->completion_lock, flags);
924 
925 	tail = ctx->tail;
926 	pos = tail + AIO_EVENTS_OFFSET;
927 
928 	if (++tail >= ctx->nr_events)
929 		tail = 0;
930 
931 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
932 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
933 
934 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
935 	event->data = iocb->ki_user_data;
936 	event->res = res;
937 	event->res2 = res2;
938 
939 	kunmap_atomic(ev_page);
940 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
941 
942 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
943 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
944 		 res, res2);
945 
946 	/* after flagging the request as done, we
947 	 * must never even look at it again
948 	 */
949 	smp_wmb();	/* make event visible before updating tail */
950 
951 	ctx->tail = tail;
952 
953 	ring = kmap_atomic(ctx->ring_pages[0]);
954 	ring->tail = tail;
955 	kunmap_atomic(ring);
956 	flush_dcache_page(ctx->ring_pages[0]);
957 
958 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
959 
960 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
961 
962 	/*
963 	 * Check if the user asked us to deliver the result through an
964 	 * eventfd. The eventfd_signal() function is safe to be called
965 	 * from IRQ context.
966 	 */
967 	if (iocb->ki_eventfd != NULL)
968 		eventfd_signal(iocb->ki_eventfd, 1);
969 
970 	/* everything turned out well, dispose of the aiocb. */
971 	kiocb_free(iocb);
972 
973 	/*
974 	 * We have to order our ring_info tail store above and test
975 	 * of the wait list below outside the wait lock.  This is
976 	 * like in wake_up_bit() where clearing a bit has to be
977 	 * ordered with the unlocked test.
978 	 */
979 	smp_mb();
980 
981 	if (waitqueue_active(&ctx->wait))
982 		wake_up(&ctx->wait);
983 
984 	percpu_ref_put(&ctx->reqs);
985 }
986 EXPORT_SYMBOL(aio_complete);
987 
988 /* aio_read_events
989  *	Pull an event off of the ioctx's event ring.  Returns the number of
990  *	events fetched
991  */
992 static long aio_read_events_ring(struct kioctx *ctx,
993 				 struct io_event __user *event, long nr)
994 {
995 	struct aio_ring *ring;
996 	unsigned head, tail, pos;
997 	long ret = 0;
998 	int copy_ret;
999 
1000 	mutex_lock(&ctx->ring_lock);
1001 
1002 	ring = kmap_atomic(ctx->ring_pages[0]);
1003 	head = ring->head;
1004 	tail = ring->tail;
1005 	kunmap_atomic(ring);
1006 
1007 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1008 
1009 	if (head == tail)
1010 		goto out;
1011 
1012 	while (ret < nr) {
1013 		long avail;
1014 		struct io_event *ev;
1015 		struct page *page;
1016 
1017 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1018 		if (head == tail)
1019 			break;
1020 
1021 		avail = min(avail, nr - ret);
1022 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1023 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1024 
1025 		pos = head + AIO_EVENTS_OFFSET;
1026 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1027 		pos %= AIO_EVENTS_PER_PAGE;
1028 
1029 		ev = kmap(page);
1030 		copy_ret = copy_to_user(event + ret, ev + pos,
1031 					sizeof(*ev) * avail);
1032 		kunmap(page);
1033 
1034 		if (unlikely(copy_ret)) {
1035 			ret = -EFAULT;
1036 			goto out;
1037 		}
1038 
1039 		ret += avail;
1040 		head += avail;
1041 		head %= ctx->nr_events;
1042 	}
1043 
1044 	ring = kmap_atomic(ctx->ring_pages[0]);
1045 	ring->head = head;
1046 	kunmap_atomic(ring);
1047 	flush_dcache_page(ctx->ring_pages[0]);
1048 
1049 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1050 
1051 	put_reqs_available(ctx, ret);
1052 out:
1053 	mutex_unlock(&ctx->ring_lock);
1054 
1055 	return ret;
1056 }
1057 
1058 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1059 			    struct io_event __user *event, long *i)
1060 {
1061 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1062 
1063 	if (ret > 0)
1064 		*i += ret;
1065 
1066 	if (unlikely(atomic_read(&ctx->dead)))
1067 		ret = -EINVAL;
1068 
1069 	if (!*i)
1070 		*i = ret;
1071 
1072 	return ret < 0 || *i >= min_nr;
1073 }
1074 
1075 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1076 			struct io_event __user *event,
1077 			struct timespec __user *timeout)
1078 {
1079 	ktime_t until = { .tv64 = KTIME_MAX };
1080 	long ret = 0;
1081 
1082 	if (timeout) {
1083 		struct timespec	ts;
1084 
1085 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1086 			return -EFAULT;
1087 
1088 		until = timespec_to_ktime(ts);
1089 	}
1090 
1091 	/*
1092 	 * Note that aio_read_events() is being called as the conditional - i.e.
1093 	 * we're calling it after prepare_to_wait() has set task state to
1094 	 * TASK_INTERRUPTIBLE.
1095 	 *
1096 	 * But aio_read_events() can block, and if it blocks it's going to flip
1097 	 * the task state back to TASK_RUNNING.
1098 	 *
1099 	 * This should be ok, provided it doesn't flip the state back to
1100 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1101 	 * will only happen if the mutex_lock() call blocks, and we then find
1102 	 * the ringbuffer empty. So in practice we should be ok, but it's
1103 	 * something to be aware of when touching this code.
1104 	 */
1105 	wait_event_interruptible_hrtimeout(ctx->wait,
1106 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
1107 
1108 	if (!ret && signal_pending(current))
1109 		ret = -EINTR;
1110 
1111 	return ret;
1112 }
1113 
1114 /* sys_io_setup:
1115  *	Create an aio_context capable of receiving at least nr_events.
1116  *	ctxp must not point to an aio_context that already exists, and
1117  *	must be initialized to 0 prior to the call.  On successful
1118  *	creation of the aio_context, *ctxp is filled in with the resulting
1119  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1120  *	if the specified nr_events exceeds internal limits.  May fail
1121  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1122  *	of available events.  May fail with -ENOMEM if insufficient kernel
1123  *	resources are available.  May fail with -EFAULT if an invalid
1124  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1125  *	implemented.
1126  */
1127 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1128 {
1129 	struct kioctx *ioctx = NULL;
1130 	unsigned long ctx;
1131 	long ret;
1132 
1133 	ret = get_user(ctx, ctxp);
1134 	if (unlikely(ret))
1135 		goto out;
1136 
1137 	ret = -EINVAL;
1138 	if (unlikely(ctx || nr_events == 0)) {
1139 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1140 		         ctx, nr_events);
1141 		goto out;
1142 	}
1143 
1144 	ioctx = ioctx_alloc(nr_events);
1145 	ret = PTR_ERR(ioctx);
1146 	if (!IS_ERR(ioctx)) {
1147 		ret = put_user(ioctx->user_id, ctxp);
1148 		if (ret)
1149 			kill_ioctx(current->mm, ioctx);
1150 		percpu_ref_put(&ioctx->users);
1151 	}
1152 
1153 out:
1154 	return ret;
1155 }
1156 
1157 /* sys_io_destroy:
1158  *	Destroy the aio_context specified.  May cancel any outstanding
1159  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1160  *	implemented.  May fail with -EINVAL if the context pointed to
1161  *	is invalid.
1162  */
1163 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1164 {
1165 	struct kioctx *ioctx = lookup_ioctx(ctx);
1166 	if (likely(NULL != ioctx)) {
1167 		kill_ioctx(current->mm, ioctx);
1168 		percpu_ref_put(&ioctx->users);
1169 		return 0;
1170 	}
1171 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1172 	return -EINVAL;
1173 }
1174 
1175 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1176 			    unsigned long, loff_t);
1177 
1178 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1179 				     int rw, char __user *buf,
1180 				     unsigned long *nr_segs,
1181 				     struct iovec **iovec,
1182 				     bool compat)
1183 {
1184 	ssize_t ret;
1185 
1186 	*nr_segs = kiocb->ki_nbytes;
1187 
1188 #ifdef CONFIG_COMPAT
1189 	if (compat)
1190 		ret = compat_rw_copy_check_uvector(rw,
1191 				(struct compat_iovec __user *)buf,
1192 				*nr_segs, 1, *iovec, iovec);
1193 	else
1194 #endif
1195 		ret = rw_copy_check_uvector(rw,
1196 				(struct iovec __user *)buf,
1197 				*nr_segs, 1, *iovec, iovec);
1198 	if (ret < 0)
1199 		return ret;
1200 
1201 	/* ki_nbytes now reflect bytes instead of segs */
1202 	kiocb->ki_nbytes = ret;
1203 	return 0;
1204 }
1205 
1206 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1207 				       int rw, char __user *buf,
1208 				       unsigned long *nr_segs,
1209 				       struct iovec *iovec)
1210 {
1211 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1212 		return -EFAULT;
1213 
1214 	iovec->iov_base = buf;
1215 	iovec->iov_len = kiocb->ki_nbytes;
1216 	*nr_segs = 1;
1217 	return 0;
1218 }
1219 
1220 /*
1221  * aio_setup_iocb:
1222  *	Performs the initial checks and aio retry method
1223  *	setup for the kiocb at the time of io submission.
1224  */
1225 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1226 			    char __user *buf, bool compat)
1227 {
1228 	struct file *file = req->ki_filp;
1229 	ssize_t ret;
1230 	unsigned long nr_segs;
1231 	int rw;
1232 	fmode_t mode;
1233 	aio_rw_op *rw_op;
1234 	struct iovec inline_vec, *iovec = &inline_vec;
1235 
1236 	switch (opcode) {
1237 	case IOCB_CMD_PREAD:
1238 	case IOCB_CMD_PREADV:
1239 		mode	= FMODE_READ;
1240 		rw	= READ;
1241 		rw_op	= file->f_op->aio_read;
1242 		goto rw_common;
1243 
1244 	case IOCB_CMD_PWRITE:
1245 	case IOCB_CMD_PWRITEV:
1246 		mode	= FMODE_WRITE;
1247 		rw	= WRITE;
1248 		rw_op	= file->f_op->aio_write;
1249 		goto rw_common;
1250 rw_common:
1251 		if (unlikely(!(file->f_mode & mode)))
1252 			return -EBADF;
1253 
1254 		if (!rw_op)
1255 			return -EINVAL;
1256 
1257 		ret = (opcode == IOCB_CMD_PREADV ||
1258 		       opcode == IOCB_CMD_PWRITEV)
1259 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1260 						&iovec, compat)
1261 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1262 						  iovec);
1263 		if (ret)
1264 			return ret;
1265 
1266 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1267 		if (ret < 0) {
1268 			if (iovec != &inline_vec)
1269 				kfree(iovec);
1270 			return ret;
1271 		}
1272 
1273 		req->ki_nbytes = ret;
1274 
1275 		/* XXX: move/kill - rw_verify_area()? */
1276 		/* This matches the pread()/pwrite() logic */
1277 		if (req->ki_pos < 0) {
1278 			ret = -EINVAL;
1279 			break;
1280 		}
1281 
1282 		if (rw == WRITE)
1283 			file_start_write(file);
1284 
1285 		ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1286 
1287 		if (rw == WRITE)
1288 			file_end_write(file);
1289 		break;
1290 
1291 	case IOCB_CMD_FDSYNC:
1292 		if (!file->f_op->aio_fsync)
1293 			return -EINVAL;
1294 
1295 		ret = file->f_op->aio_fsync(req, 1);
1296 		break;
1297 
1298 	case IOCB_CMD_FSYNC:
1299 		if (!file->f_op->aio_fsync)
1300 			return -EINVAL;
1301 
1302 		ret = file->f_op->aio_fsync(req, 0);
1303 		break;
1304 
1305 	default:
1306 		pr_debug("EINVAL: no operation provided\n");
1307 		return -EINVAL;
1308 	}
1309 
1310 	if (iovec != &inline_vec)
1311 		kfree(iovec);
1312 
1313 	if (ret != -EIOCBQUEUED) {
1314 		/*
1315 		 * There's no easy way to restart the syscall since other AIO's
1316 		 * may be already running. Just fail this IO with EINTR.
1317 		 */
1318 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1319 			     ret == -ERESTARTNOHAND ||
1320 			     ret == -ERESTART_RESTARTBLOCK))
1321 			ret = -EINTR;
1322 		aio_complete(req, ret, 0);
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1329 			 struct iocb *iocb, bool compat)
1330 {
1331 	struct kiocb *req;
1332 	ssize_t ret;
1333 
1334 	/* enforce forwards compatibility on users */
1335 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1336 		pr_debug("EINVAL: reserve field set\n");
1337 		return -EINVAL;
1338 	}
1339 
1340 	/* prevent overflows */
1341 	if (unlikely(
1342 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1343 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1344 	    ((ssize_t)iocb->aio_nbytes < 0)
1345 	   )) {
1346 		pr_debug("EINVAL: io_submit: overflow check\n");
1347 		return -EINVAL;
1348 	}
1349 
1350 	req = aio_get_req(ctx);
1351 	if (unlikely(!req))
1352 		return -EAGAIN;
1353 
1354 	req->ki_filp = fget(iocb->aio_fildes);
1355 	if (unlikely(!req->ki_filp)) {
1356 		ret = -EBADF;
1357 		goto out_put_req;
1358 	}
1359 
1360 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1361 		/*
1362 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1363 		 * instance of the file* now. The file descriptor must be
1364 		 * an eventfd() fd, and will be signaled for each completed
1365 		 * event using the eventfd_signal() function.
1366 		 */
1367 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1368 		if (IS_ERR(req->ki_eventfd)) {
1369 			ret = PTR_ERR(req->ki_eventfd);
1370 			req->ki_eventfd = NULL;
1371 			goto out_put_req;
1372 		}
1373 	}
1374 
1375 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1376 	if (unlikely(ret)) {
1377 		pr_debug("EFAULT: aio_key\n");
1378 		goto out_put_req;
1379 	}
1380 
1381 	req->ki_obj.user = user_iocb;
1382 	req->ki_user_data = iocb->aio_data;
1383 	req->ki_pos = iocb->aio_offset;
1384 	req->ki_nbytes = iocb->aio_nbytes;
1385 
1386 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1387 			   (char __user *)(unsigned long)iocb->aio_buf,
1388 			   compat);
1389 	if (ret)
1390 		goto out_put_req;
1391 
1392 	return 0;
1393 out_put_req:
1394 	put_reqs_available(ctx, 1);
1395 	percpu_ref_put(&ctx->reqs);
1396 	kiocb_free(req);
1397 	return ret;
1398 }
1399 
1400 long do_io_submit(aio_context_t ctx_id, long nr,
1401 		  struct iocb __user *__user *iocbpp, bool compat)
1402 {
1403 	struct kioctx *ctx;
1404 	long ret = 0;
1405 	int i = 0;
1406 	struct blk_plug plug;
1407 
1408 	if (unlikely(nr < 0))
1409 		return -EINVAL;
1410 
1411 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1412 		nr = LONG_MAX/sizeof(*iocbpp);
1413 
1414 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1415 		return -EFAULT;
1416 
1417 	ctx = lookup_ioctx(ctx_id);
1418 	if (unlikely(!ctx)) {
1419 		pr_debug("EINVAL: invalid context id\n");
1420 		return -EINVAL;
1421 	}
1422 
1423 	blk_start_plug(&plug);
1424 
1425 	/*
1426 	 * AKPM: should this return a partial result if some of the IOs were
1427 	 * successfully submitted?
1428 	 */
1429 	for (i=0; i<nr; i++) {
1430 		struct iocb __user *user_iocb;
1431 		struct iocb tmp;
1432 
1433 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1434 			ret = -EFAULT;
1435 			break;
1436 		}
1437 
1438 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1439 			ret = -EFAULT;
1440 			break;
1441 		}
1442 
1443 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1444 		if (ret)
1445 			break;
1446 	}
1447 	blk_finish_plug(&plug);
1448 
1449 	percpu_ref_put(&ctx->users);
1450 	return i ? i : ret;
1451 }
1452 
1453 /* sys_io_submit:
1454  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1455  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1456  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1457  *	*iocbpp[0] is not properly initialized, if the operation specified
1458  *	is invalid for the file descriptor in the iocb.  May fail with
1459  *	-EFAULT if any of the data structures point to invalid data.  May
1460  *	fail with -EBADF if the file descriptor specified in the first
1461  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1462  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1463  *	fail with -ENOSYS if not implemented.
1464  */
1465 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1466 		struct iocb __user * __user *, iocbpp)
1467 {
1468 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1469 }
1470 
1471 /* lookup_kiocb
1472  *	Finds a given iocb for cancellation.
1473  */
1474 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1475 				  u32 key)
1476 {
1477 	struct list_head *pos;
1478 
1479 	assert_spin_locked(&ctx->ctx_lock);
1480 
1481 	if (key != KIOCB_KEY)
1482 		return NULL;
1483 
1484 	/* TODO: use a hash or array, this sucks. */
1485 	list_for_each(pos, &ctx->active_reqs) {
1486 		struct kiocb *kiocb = list_kiocb(pos);
1487 		if (kiocb->ki_obj.user == iocb)
1488 			return kiocb;
1489 	}
1490 	return NULL;
1491 }
1492 
1493 /* sys_io_cancel:
1494  *	Attempts to cancel an iocb previously passed to io_submit.  If
1495  *	the operation is successfully cancelled, the resulting event is
1496  *	copied into the memory pointed to by result without being placed
1497  *	into the completion queue and 0 is returned.  May fail with
1498  *	-EFAULT if any of the data structures pointed to are invalid.
1499  *	May fail with -EINVAL if aio_context specified by ctx_id is
1500  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1501  *	cancelled.  Will fail with -ENOSYS if not implemented.
1502  */
1503 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1504 		struct io_event __user *, result)
1505 {
1506 	struct kioctx *ctx;
1507 	struct kiocb *kiocb;
1508 	u32 key;
1509 	int ret;
1510 
1511 	ret = get_user(key, &iocb->aio_key);
1512 	if (unlikely(ret))
1513 		return -EFAULT;
1514 
1515 	ctx = lookup_ioctx(ctx_id);
1516 	if (unlikely(!ctx))
1517 		return -EINVAL;
1518 
1519 	spin_lock_irq(&ctx->ctx_lock);
1520 
1521 	kiocb = lookup_kiocb(ctx, iocb, key);
1522 	if (kiocb)
1523 		ret = kiocb_cancel(ctx, kiocb);
1524 	else
1525 		ret = -EINVAL;
1526 
1527 	spin_unlock_irq(&ctx->ctx_lock);
1528 
1529 	if (!ret) {
1530 		/*
1531 		 * The result argument is no longer used - the io_event is
1532 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1533 		 * cancellation is progress:
1534 		 */
1535 		ret = -EINPROGRESS;
1536 	}
1537 
1538 	percpu_ref_put(&ctx->users);
1539 
1540 	return ret;
1541 }
1542 
1543 /* io_getevents:
1544  *	Attempts to read at least min_nr events and up to nr events from
1545  *	the completion queue for the aio_context specified by ctx_id. If
1546  *	it succeeds, the number of read events is returned. May fail with
1547  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1548  *	out of range, if timeout is out of range.  May fail with -EFAULT
1549  *	if any of the memory specified is invalid.  May return 0 or
1550  *	< min_nr if the timeout specified by timeout has elapsed
1551  *	before sufficient events are available, where timeout == NULL
1552  *	specifies an infinite timeout. Note that the timeout pointed to by
1553  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1554  */
1555 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1556 		long, min_nr,
1557 		long, nr,
1558 		struct io_event __user *, events,
1559 		struct timespec __user *, timeout)
1560 {
1561 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1562 	long ret = -EINVAL;
1563 
1564 	if (likely(ioctx)) {
1565 		if (likely(min_nr <= nr && min_nr >= 0))
1566 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1567 		percpu_ref_put(&ioctx->users);
1568 	}
1569 	return ret;
1570 }
1571