xref: /openbmc/linux/fs/aio.c (revision 089a49b6)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/anon_inodes.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;
56 	unsigned	tail;
57 
58 	unsigned	magic;
59 	unsigned	compat_features;
60 	unsigned	incompat_features;
61 	unsigned	header_length;	/* size of aio_ring */
62 
63 
64 	struct io_event		io_events[0];
65 }; /* 128 bytes + ring size */
66 
67 #define AIO_RING_PAGES	8
68 
69 struct kioctx_table {
70 	struct rcu_head	rcu;
71 	unsigned	nr;
72 	struct kioctx	*table[];
73 };
74 
75 struct kioctx_cpu {
76 	unsigned		reqs_available;
77 };
78 
79 struct kioctx {
80 	struct percpu_ref	users;
81 	atomic_t		dead;
82 
83 	unsigned long		user_id;
84 
85 	struct __percpu kioctx_cpu *cpu;
86 
87 	/*
88 	 * For percpu reqs_available, number of slots we move to/from global
89 	 * counter at a time:
90 	 */
91 	unsigned		req_batch;
92 	/*
93 	 * This is what userspace passed to io_setup(), it's not used for
94 	 * anything but counting against the global max_reqs quota.
95 	 *
96 	 * The real limit is nr_events - 1, which will be larger (see
97 	 * aio_setup_ring())
98 	 */
99 	unsigned		max_reqs;
100 
101 	/* Size of ringbuffer, in units of struct io_event */
102 	unsigned		nr_events;
103 
104 	unsigned long		mmap_base;
105 	unsigned long		mmap_size;
106 
107 	struct page		**ring_pages;
108 	long			nr_pages;
109 
110 	struct rcu_head		rcu_head;
111 	struct work_struct	free_work;
112 
113 	struct {
114 		/*
115 		 * This counts the number of available slots in the ringbuffer,
116 		 * so we avoid overflowing it: it's decremented (if positive)
117 		 * when allocating a kiocb and incremented when the resulting
118 		 * io_event is pulled off the ringbuffer.
119 		 *
120 		 * We batch accesses to it with a percpu version.
121 		 */
122 		atomic_t	reqs_available;
123 	} ____cacheline_aligned_in_smp;
124 
125 	struct {
126 		spinlock_t	ctx_lock;
127 		struct list_head active_reqs;	/* used for cancellation */
128 	} ____cacheline_aligned_in_smp;
129 
130 	struct {
131 		struct mutex	ring_lock;
132 		wait_queue_head_t wait;
133 	} ____cacheline_aligned_in_smp;
134 
135 	struct {
136 		unsigned	tail;
137 		spinlock_t	completion_lock;
138 	} ____cacheline_aligned_in_smp;
139 
140 	struct page		*internal_pages[AIO_RING_PAGES];
141 	struct file		*aio_ring_file;
142 
143 	unsigned		id;
144 };
145 
146 /*------ sysctl variables----*/
147 static DEFINE_SPINLOCK(aio_nr_lock);
148 unsigned long aio_nr;		/* current system wide number of aio requests */
149 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
150 /*----end sysctl variables---*/
151 
152 static struct kmem_cache	*kiocb_cachep;
153 static struct kmem_cache	*kioctx_cachep;
154 
155 /* aio_setup
156  *	Creates the slab caches used by the aio routines, panic on
157  *	failure as this is done early during the boot sequence.
158  */
159 static int __init aio_setup(void)
160 {
161 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
162 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
163 
164 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
165 
166 	return 0;
167 }
168 __initcall(aio_setup);
169 
170 static void aio_free_ring(struct kioctx *ctx)
171 {
172 	int i;
173 	struct file *aio_ring_file = ctx->aio_ring_file;
174 
175 	for (i = 0; i < ctx->nr_pages; i++) {
176 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
177 				page_count(ctx->ring_pages[i]));
178 		put_page(ctx->ring_pages[i]);
179 	}
180 
181 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
182 		kfree(ctx->ring_pages);
183 
184 	if (aio_ring_file) {
185 		truncate_setsize(aio_ring_file->f_inode, 0);
186 		fput(aio_ring_file);
187 		ctx->aio_ring_file = NULL;
188 	}
189 }
190 
191 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
192 {
193 	vma->vm_ops = &generic_file_vm_ops;
194 	return 0;
195 }
196 
197 static const struct file_operations aio_ring_fops = {
198 	.mmap = aio_ring_mmap,
199 };
200 
201 static int aio_set_page_dirty(struct page *page)
202 {
203 	return 0;
204 }
205 
206 #if IS_ENABLED(CONFIG_MIGRATION)
207 static int aio_migratepage(struct address_space *mapping, struct page *new,
208 			struct page *old, enum migrate_mode mode)
209 {
210 	struct kioctx *ctx = mapping->private_data;
211 	unsigned long flags;
212 	unsigned idx = old->index;
213 	int rc;
214 
215 	/* Writeback must be complete */
216 	BUG_ON(PageWriteback(old));
217 	put_page(old);
218 
219 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
220 	if (rc != MIGRATEPAGE_SUCCESS) {
221 		get_page(old);
222 		return rc;
223 	}
224 
225 	get_page(new);
226 
227 	spin_lock_irqsave(&ctx->completion_lock, flags);
228 	migrate_page_copy(new, old);
229 	ctx->ring_pages[idx] = new;
230 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
231 
232 	return rc;
233 }
234 #endif
235 
236 static const struct address_space_operations aio_ctx_aops = {
237 	.set_page_dirty = aio_set_page_dirty,
238 #if IS_ENABLED(CONFIG_MIGRATION)
239 	.migratepage	= aio_migratepage,
240 #endif
241 };
242 
243 static int aio_setup_ring(struct kioctx *ctx)
244 {
245 	struct aio_ring *ring;
246 	unsigned nr_events = ctx->max_reqs;
247 	struct mm_struct *mm = current->mm;
248 	unsigned long size, populate;
249 	int nr_pages;
250 	int i;
251 	struct file *file;
252 
253 	/* Compensate for the ring buffer's head/tail overlap entry */
254 	nr_events += 2;	/* 1 is required, 2 for good luck */
255 
256 	size = sizeof(struct aio_ring);
257 	size += sizeof(struct io_event) * nr_events;
258 
259 	nr_pages = PFN_UP(size);
260 	if (nr_pages < 0)
261 		return -EINVAL;
262 
263 	file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
264 	if (IS_ERR(file)) {
265 		ctx->aio_ring_file = NULL;
266 		return -EAGAIN;
267 	}
268 
269 	file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
270 	file->f_inode->i_mapping->private_data = ctx;
271 	file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
272 
273 	for (i = 0; i < nr_pages; i++) {
274 		struct page *page;
275 		page = find_or_create_page(file->f_inode->i_mapping,
276 					   i, GFP_HIGHUSER | __GFP_ZERO);
277 		if (!page)
278 			break;
279 		pr_debug("pid(%d) page[%d]->count=%d\n",
280 			 current->pid, i, page_count(page));
281 		SetPageUptodate(page);
282 		SetPageDirty(page);
283 		unlock_page(page);
284 	}
285 	ctx->aio_ring_file = file;
286 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
287 			/ sizeof(struct io_event);
288 
289 	ctx->ring_pages = ctx->internal_pages;
290 	if (nr_pages > AIO_RING_PAGES) {
291 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
292 					  GFP_KERNEL);
293 		if (!ctx->ring_pages)
294 			return -ENOMEM;
295 	}
296 
297 	ctx->mmap_size = nr_pages * PAGE_SIZE;
298 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
299 
300 	down_write(&mm->mmap_sem);
301 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
302 				       PROT_READ | PROT_WRITE,
303 				       MAP_SHARED | MAP_POPULATE, 0, &populate);
304 	if (IS_ERR((void *)ctx->mmap_base)) {
305 		up_write(&mm->mmap_sem);
306 		ctx->mmap_size = 0;
307 		aio_free_ring(ctx);
308 		return -EAGAIN;
309 	}
310 
311 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
312 
313 	/* We must do this while still holding mmap_sem for write, as we
314 	 * need to be protected against userspace attempting to mremap()
315 	 * or munmap() the ring buffer.
316 	 */
317 	ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
318 				       1, 0, ctx->ring_pages, NULL);
319 
320 	/* Dropping the reference here is safe as the page cache will hold
321 	 * onto the pages for us.  It is also required so that page migration
322 	 * can unmap the pages and get the right reference count.
323 	 */
324 	for (i = 0; i < ctx->nr_pages; i++)
325 		put_page(ctx->ring_pages[i]);
326 
327 	up_write(&mm->mmap_sem);
328 
329 	if (unlikely(ctx->nr_pages != nr_pages)) {
330 		aio_free_ring(ctx);
331 		return -EAGAIN;
332 	}
333 
334 	ctx->user_id = ctx->mmap_base;
335 	ctx->nr_events = nr_events; /* trusted copy */
336 
337 	ring = kmap_atomic(ctx->ring_pages[0]);
338 	ring->nr = nr_events;	/* user copy */
339 	ring->id = ~0U;
340 	ring->head = ring->tail = 0;
341 	ring->magic = AIO_RING_MAGIC;
342 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
343 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
344 	ring->header_length = sizeof(struct aio_ring);
345 	kunmap_atomic(ring);
346 	flush_dcache_page(ctx->ring_pages[0]);
347 
348 	return 0;
349 }
350 
351 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
352 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
353 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
354 
355 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
356 {
357 	struct kioctx *ctx = req->ki_ctx;
358 	unsigned long flags;
359 
360 	spin_lock_irqsave(&ctx->ctx_lock, flags);
361 
362 	if (!req->ki_list.next)
363 		list_add(&req->ki_list, &ctx->active_reqs);
364 
365 	req->ki_cancel = cancel;
366 
367 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
368 }
369 EXPORT_SYMBOL(kiocb_set_cancel_fn);
370 
371 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
372 {
373 	kiocb_cancel_fn *old, *cancel;
374 
375 	/*
376 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
377 	 * actually has a cancel function, hence the cmpxchg()
378 	 */
379 
380 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
381 	do {
382 		if (!cancel || cancel == KIOCB_CANCELLED)
383 			return -EINVAL;
384 
385 		old = cancel;
386 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
387 	} while (cancel != old);
388 
389 	return cancel(kiocb);
390 }
391 
392 static void free_ioctx_rcu(struct rcu_head *head)
393 {
394 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
395 
396 	free_percpu(ctx->cpu);
397 	kmem_cache_free(kioctx_cachep, ctx);
398 }
399 
400 /*
401  * When this function runs, the kioctx has been removed from the "hash table"
402  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
403  * now it's safe to cancel any that need to be.
404  */
405 static void free_ioctx(struct work_struct *work)
406 {
407 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
408 	struct aio_ring *ring;
409 	struct kiocb *req;
410 	unsigned cpu, avail;
411 	DEFINE_WAIT(wait);
412 
413 	spin_lock_irq(&ctx->ctx_lock);
414 
415 	while (!list_empty(&ctx->active_reqs)) {
416 		req = list_first_entry(&ctx->active_reqs,
417 				       struct kiocb, ki_list);
418 
419 		list_del_init(&req->ki_list);
420 		kiocb_cancel(ctx, req);
421 	}
422 
423 	spin_unlock_irq(&ctx->ctx_lock);
424 
425 	for_each_possible_cpu(cpu) {
426 		struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu);
427 
428 		atomic_add(kcpu->reqs_available, &ctx->reqs_available);
429 		kcpu->reqs_available = 0;
430 	}
431 
432 	while (1) {
433 		prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE);
434 
435 		ring = kmap_atomic(ctx->ring_pages[0]);
436 		avail = (ring->head <= ring->tail)
437 			 ? ring->tail - ring->head
438 			 : ctx->nr_events - ring->head + ring->tail;
439 
440 		atomic_add(avail, &ctx->reqs_available);
441 		ring->head = ring->tail;
442 		kunmap_atomic(ring);
443 
444 		if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1)
445 			break;
446 
447 		schedule();
448 	}
449 	finish_wait(&ctx->wait, &wait);
450 
451 	WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1);
452 
453 	aio_free_ring(ctx);
454 
455 	pr_debug("freeing %p\n", ctx);
456 
457 	/*
458 	 * Here the call_rcu() is between the wait_event() for reqs_active to
459 	 * hit 0, and freeing the ioctx.
460 	 *
461 	 * aio_complete() decrements reqs_active, but it has to touch the ioctx
462 	 * after to issue a wakeup so we use rcu.
463 	 */
464 	call_rcu(&ctx->rcu_head, free_ioctx_rcu);
465 }
466 
467 static void free_ioctx_ref(struct percpu_ref *ref)
468 {
469 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
470 
471 	INIT_WORK(&ctx->free_work, free_ioctx);
472 	schedule_work(&ctx->free_work);
473 }
474 
475 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
476 {
477 	unsigned i, new_nr;
478 	struct kioctx_table *table, *old;
479 	struct aio_ring *ring;
480 
481 	spin_lock(&mm->ioctx_lock);
482 	rcu_read_lock();
483 	table = rcu_dereference(mm->ioctx_table);
484 
485 	while (1) {
486 		if (table)
487 			for (i = 0; i < table->nr; i++)
488 				if (!table->table[i]) {
489 					ctx->id = i;
490 					table->table[i] = ctx;
491 					rcu_read_unlock();
492 					spin_unlock(&mm->ioctx_lock);
493 
494 					ring = kmap_atomic(ctx->ring_pages[0]);
495 					ring->id = ctx->id;
496 					kunmap_atomic(ring);
497 					return 0;
498 				}
499 
500 		new_nr = (table ? table->nr : 1) * 4;
501 
502 		rcu_read_unlock();
503 		spin_unlock(&mm->ioctx_lock);
504 
505 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
506 				new_nr, GFP_KERNEL);
507 		if (!table)
508 			return -ENOMEM;
509 
510 		table->nr = new_nr;
511 
512 		spin_lock(&mm->ioctx_lock);
513 		rcu_read_lock();
514 		old = rcu_dereference(mm->ioctx_table);
515 
516 		if (!old) {
517 			rcu_assign_pointer(mm->ioctx_table, table);
518 		} else if (table->nr > old->nr) {
519 			memcpy(table->table, old->table,
520 			       old->nr * sizeof(struct kioctx *));
521 
522 			rcu_assign_pointer(mm->ioctx_table, table);
523 			kfree_rcu(old, rcu);
524 		} else {
525 			kfree(table);
526 			table = old;
527 		}
528 	}
529 }
530 
531 /* ioctx_alloc
532  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
533  */
534 static struct kioctx *ioctx_alloc(unsigned nr_events)
535 {
536 	struct mm_struct *mm = current->mm;
537 	struct kioctx *ctx;
538 	int err = -ENOMEM;
539 
540 	/*
541 	 * We keep track of the number of available ringbuffer slots, to prevent
542 	 * overflow (reqs_available), and we also use percpu counters for this.
543 	 *
544 	 * So since up to half the slots might be on other cpu's percpu counters
545 	 * and unavailable, double nr_events so userspace sees what they
546 	 * expected: additionally, we move req_batch slots to/from percpu
547 	 * counters at a time, so make sure that isn't 0:
548 	 */
549 	nr_events = max(nr_events, num_possible_cpus() * 4);
550 	nr_events *= 2;
551 
552 	/* Prevent overflows */
553 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
554 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
555 		pr_debug("ENOMEM: nr_events too high\n");
556 		return ERR_PTR(-EINVAL);
557 	}
558 
559 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
560 		return ERR_PTR(-EAGAIN);
561 
562 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
563 	if (!ctx)
564 		return ERR_PTR(-ENOMEM);
565 
566 	ctx->max_reqs = nr_events;
567 
568 	if (percpu_ref_init(&ctx->users, free_ioctx_ref))
569 		goto out_freectx;
570 
571 	spin_lock_init(&ctx->ctx_lock);
572 	spin_lock_init(&ctx->completion_lock);
573 	mutex_init(&ctx->ring_lock);
574 	init_waitqueue_head(&ctx->wait);
575 
576 	INIT_LIST_HEAD(&ctx->active_reqs);
577 
578 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
579 	if (!ctx->cpu)
580 		goto out_freeref;
581 
582 	if (aio_setup_ring(ctx) < 0)
583 		goto out_freepcpu;
584 
585 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
586 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
587 	if (ctx->req_batch < 1)
588 		ctx->req_batch = 1;
589 
590 	/* limit the number of system wide aios */
591 	spin_lock(&aio_nr_lock);
592 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
593 	    aio_nr + nr_events < aio_nr) {
594 		spin_unlock(&aio_nr_lock);
595 		goto out_cleanup;
596 	}
597 	aio_nr += ctx->max_reqs;
598 	spin_unlock(&aio_nr_lock);
599 
600 	percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
601 
602 	err = ioctx_add_table(ctx, mm);
603 	if (err)
604 		goto out_cleanup_put;
605 
606 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
607 		 ctx, ctx->user_id, mm, ctx->nr_events);
608 	return ctx;
609 
610 out_cleanup_put:
611 	percpu_ref_put(&ctx->users);
612 out_cleanup:
613 	err = -EAGAIN;
614 	aio_free_ring(ctx);
615 out_freepcpu:
616 	free_percpu(ctx->cpu);
617 out_freeref:
618 	free_percpu(ctx->users.pcpu_count);
619 out_freectx:
620 	if (ctx->aio_ring_file)
621 		fput(ctx->aio_ring_file);
622 	kmem_cache_free(kioctx_cachep, ctx);
623 	pr_debug("error allocating ioctx %d\n", err);
624 	return ERR_PTR(err);
625 }
626 
627 /* kill_ioctx
628  *	Cancels all outstanding aio requests on an aio context.  Used
629  *	when the processes owning a context have all exited to encourage
630  *	the rapid destruction of the kioctx.
631  */
632 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
633 {
634 	if (!atomic_xchg(&ctx->dead, 1)) {
635 		struct kioctx_table *table;
636 
637 		spin_lock(&mm->ioctx_lock);
638 		rcu_read_lock();
639 		table = rcu_dereference(mm->ioctx_table);
640 
641 		WARN_ON(ctx != table->table[ctx->id]);
642 		table->table[ctx->id] = NULL;
643 		rcu_read_unlock();
644 		spin_unlock(&mm->ioctx_lock);
645 
646 		/* percpu_ref_kill() will do the necessary call_rcu() */
647 		wake_up_all(&ctx->wait);
648 
649 		/*
650 		 * It'd be more correct to do this in free_ioctx(), after all
651 		 * the outstanding kiocbs have finished - but by then io_destroy
652 		 * has already returned, so io_setup() could potentially return
653 		 * -EAGAIN with no ioctxs actually in use (as far as userspace
654 		 *  could tell).
655 		 */
656 		spin_lock(&aio_nr_lock);
657 		BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
658 		aio_nr -= ctx->max_reqs;
659 		spin_unlock(&aio_nr_lock);
660 
661 		if (ctx->mmap_size)
662 			vm_munmap(ctx->mmap_base, ctx->mmap_size);
663 
664 		percpu_ref_kill(&ctx->users);
665 	}
666 }
667 
668 /* wait_on_sync_kiocb:
669  *	Waits on the given sync kiocb to complete.
670  */
671 ssize_t wait_on_sync_kiocb(struct kiocb *req)
672 {
673 	while (!req->ki_ctx) {
674 		set_current_state(TASK_UNINTERRUPTIBLE);
675 		if (req->ki_ctx)
676 			break;
677 		io_schedule();
678 	}
679 	__set_current_state(TASK_RUNNING);
680 	return req->ki_user_data;
681 }
682 EXPORT_SYMBOL(wait_on_sync_kiocb);
683 
684 /*
685  * exit_aio: called when the last user of mm goes away.  At this point, there is
686  * no way for any new requests to be submited or any of the io_* syscalls to be
687  * called on the context.
688  *
689  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
690  * them.
691  */
692 void exit_aio(struct mm_struct *mm)
693 {
694 	struct kioctx_table *table;
695 	struct kioctx *ctx;
696 	unsigned i = 0;
697 
698 	while (1) {
699 		rcu_read_lock();
700 		table = rcu_dereference(mm->ioctx_table);
701 
702 		do {
703 			if (!table || i >= table->nr) {
704 				rcu_read_unlock();
705 				rcu_assign_pointer(mm->ioctx_table, NULL);
706 				if (table)
707 					kfree(table);
708 				return;
709 			}
710 
711 			ctx = table->table[i++];
712 		} while (!ctx);
713 
714 		rcu_read_unlock();
715 
716 		/*
717 		 * We don't need to bother with munmap() here -
718 		 * exit_mmap(mm) is coming and it'll unmap everything.
719 		 * Since aio_free_ring() uses non-zero ->mmap_size
720 		 * as indicator that it needs to unmap the area,
721 		 * just set it to 0; aio_free_ring() is the only
722 		 * place that uses ->mmap_size, so it's safe.
723 		 */
724 		ctx->mmap_size = 0;
725 
726 		kill_ioctx(mm, ctx);
727 	}
728 }
729 
730 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
731 {
732 	struct kioctx_cpu *kcpu;
733 
734 	preempt_disable();
735 	kcpu = this_cpu_ptr(ctx->cpu);
736 
737 	kcpu->reqs_available += nr;
738 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
739 		kcpu->reqs_available -= ctx->req_batch;
740 		atomic_add(ctx->req_batch, &ctx->reqs_available);
741 	}
742 
743 	preempt_enable();
744 }
745 
746 static bool get_reqs_available(struct kioctx *ctx)
747 {
748 	struct kioctx_cpu *kcpu;
749 	bool ret = false;
750 
751 	preempt_disable();
752 	kcpu = this_cpu_ptr(ctx->cpu);
753 
754 	if (!kcpu->reqs_available) {
755 		int old, avail = atomic_read(&ctx->reqs_available);
756 
757 		do {
758 			if (avail < ctx->req_batch)
759 				goto out;
760 
761 			old = avail;
762 			avail = atomic_cmpxchg(&ctx->reqs_available,
763 					       avail, avail - ctx->req_batch);
764 		} while (avail != old);
765 
766 		kcpu->reqs_available += ctx->req_batch;
767 	}
768 
769 	ret = true;
770 	kcpu->reqs_available--;
771 out:
772 	preempt_enable();
773 	return ret;
774 }
775 
776 /* aio_get_req
777  *	Allocate a slot for an aio request.
778  * Returns NULL if no requests are free.
779  */
780 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
781 {
782 	struct kiocb *req;
783 
784 	if (!get_reqs_available(ctx))
785 		return NULL;
786 
787 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
788 	if (unlikely(!req))
789 		goto out_put;
790 
791 	req->ki_ctx = ctx;
792 	return req;
793 out_put:
794 	put_reqs_available(ctx, 1);
795 	return NULL;
796 }
797 
798 static void kiocb_free(struct kiocb *req)
799 {
800 	if (req->ki_filp)
801 		fput(req->ki_filp);
802 	if (req->ki_eventfd != NULL)
803 		eventfd_ctx_put(req->ki_eventfd);
804 	kmem_cache_free(kiocb_cachep, req);
805 }
806 
807 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
808 {
809 	struct aio_ring __user *ring  = (void __user *)ctx_id;
810 	struct mm_struct *mm = current->mm;
811 	struct kioctx *ctx, *ret = NULL;
812 	struct kioctx_table *table;
813 	unsigned id;
814 
815 	if (get_user(id, &ring->id))
816 		return NULL;
817 
818 	rcu_read_lock();
819 	table = rcu_dereference(mm->ioctx_table);
820 
821 	if (!table || id >= table->nr)
822 		goto out;
823 
824 	ctx = table->table[id];
825 	if (ctx && ctx->user_id == ctx_id) {
826 		percpu_ref_get(&ctx->users);
827 		ret = ctx;
828 	}
829 out:
830 	rcu_read_unlock();
831 	return ret;
832 }
833 
834 /* aio_complete
835  *	Called when the io request on the given iocb is complete.
836  */
837 void aio_complete(struct kiocb *iocb, long res, long res2)
838 {
839 	struct kioctx	*ctx = iocb->ki_ctx;
840 	struct aio_ring	*ring;
841 	struct io_event	*ev_page, *event;
842 	unsigned long	flags;
843 	unsigned tail, pos;
844 
845 	/*
846 	 * Special case handling for sync iocbs:
847 	 *  - events go directly into the iocb for fast handling
848 	 *  - the sync task with the iocb in its stack holds the single iocb
849 	 *    ref, no other paths have a way to get another ref
850 	 *  - the sync task helpfully left a reference to itself in the iocb
851 	 */
852 	if (is_sync_kiocb(iocb)) {
853 		iocb->ki_user_data = res;
854 		smp_wmb();
855 		iocb->ki_ctx = ERR_PTR(-EXDEV);
856 		wake_up_process(iocb->ki_obj.tsk);
857 		return;
858 	}
859 
860 	/*
861 	 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
862 	 * need to issue a wakeup after incrementing reqs_available.
863 	 */
864 	rcu_read_lock();
865 
866 	if (iocb->ki_list.next) {
867 		unsigned long flags;
868 
869 		spin_lock_irqsave(&ctx->ctx_lock, flags);
870 		list_del(&iocb->ki_list);
871 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
872 	}
873 
874 	/*
875 	 * Add a completion event to the ring buffer. Must be done holding
876 	 * ctx->completion_lock to prevent other code from messing with the tail
877 	 * pointer since we might be called from irq context.
878 	 */
879 	spin_lock_irqsave(&ctx->completion_lock, flags);
880 
881 	tail = ctx->tail;
882 	pos = tail + AIO_EVENTS_OFFSET;
883 
884 	if (++tail >= ctx->nr_events)
885 		tail = 0;
886 
887 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
888 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
889 
890 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
891 	event->data = iocb->ki_user_data;
892 	event->res = res;
893 	event->res2 = res2;
894 
895 	kunmap_atomic(ev_page);
896 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
897 
898 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
899 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
900 		 res, res2);
901 
902 	/* after flagging the request as done, we
903 	 * must never even look at it again
904 	 */
905 	smp_wmb();	/* make event visible before updating tail */
906 
907 	ctx->tail = tail;
908 
909 	ring = kmap_atomic(ctx->ring_pages[0]);
910 	ring->tail = tail;
911 	kunmap_atomic(ring);
912 	flush_dcache_page(ctx->ring_pages[0]);
913 
914 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
915 
916 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
917 
918 	/*
919 	 * Check if the user asked us to deliver the result through an
920 	 * eventfd. The eventfd_signal() function is safe to be called
921 	 * from IRQ context.
922 	 */
923 	if (iocb->ki_eventfd != NULL)
924 		eventfd_signal(iocb->ki_eventfd, 1);
925 
926 	/* everything turned out well, dispose of the aiocb. */
927 	kiocb_free(iocb);
928 
929 	/*
930 	 * We have to order our ring_info tail store above and test
931 	 * of the wait list below outside the wait lock.  This is
932 	 * like in wake_up_bit() where clearing a bit has to be
933 	 * ordered with the unlocked test.
934 	 */
935 	smp_mb();
936 
937 	if (waitqueue_active(&ctx->wait))
938 		wake_up(&ctx->wait);
939 
940 	rcu_read_unlock();
941 }
942 EXPORT_SYMBOL(aio_complete);
943 
944 /* aio_read_events
945  *	Pull an event off of the ioctx's event ring.  Returns the number of
946  *	events fetched
947  */
948 static long aio_read_events_ring(struct kioctx *ctx,
949 				 struct io_event __user *event, long nr)
950 {
951 	struct aio_ring *ring;
952 	unsigned head, tail, pos;
953 	long ret = 0;
954 	int copy_ret;
955 
956 	mutex_lock(&ctx->ring_lock);
957 
958 	ring = kmap_atomic(ctx->ring_pages[0]);
959 	head = ring->head;
960 	tail = ring->tail;
961 	kunmap_atomic(ring);
962 
963 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
964 
965 	if (head == tail)
966 		goto out;
967 
968 	while (ret < nr) {
969 		long avail;
970 		struct io_event *ev;
971 		struct page *page;
972 
973 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
974 		if (head == tail)
975 			break;
976 
977 		avail = min(avail, nr - ret);
978 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
979 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
980 
981 		pos = head + AIO_EVENTS_OFFSET;
982 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
983 		pos %= AIO_EVENTS_PER_PAGE;
984 
985 		ev = kmap(page);
986 		copy_ret = copy_to_user(event + ret, ev + pos,
987 					sizeof(*ev) * avail);
988 		kunmap(page);
989 
990 		if (unlikely(copy_ret)) {
991 			ret = -EFAULT;
992 			goto out;
993 		}
994 
995 		ret += avail;
996 		head += avail;
997 		head %= ctx->nr_events;
998 	}
999 
1000 	ring = kmap_atomic(ctx->ring_pages[0]);
1001 	ring->head = head;
1002 	kunmap_atomic(ring);
1003 	flush_dcache_page(ctx->ring_pages[0]);
1004 
1005 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1006 
1007 	put_reqs_available(ctx, ret);
1008 out:
1009 	mutex_unlock(&ctx->ring_lock);
1010 
1011 	return ret;
1012 }
1013 
1014 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1015 			    struct io_event __user *event, long *i)
1016 {
1017 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1018 
1019 	if (ret > 0)
1020 		*i += ret;
1021 
1022 	if (unlikely(atomic_read(&ctx->dead)))
1023 		ret = -EINVAL;
1024 
1025 	if (!*i)
1026 		*i = ret;
1027 
1028 	return ret < 0 || *i >= min_nr;
1029 }
1030 
1031 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1032 			struct io_event __user *event,
1033 			struct timespec __user *timeout)
1034 {
1035 	ktime_t until = { .tv64 = KTIME_MAX };
1036 	long ret = 0;
1037 
1038 	if (timeout) {
1039 		struct timespec	ts;
1040 
1041 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1042 			return -EFAULT;
1043 
1044 		until = timespec_to_ktime(ts);
1045 	}
1046 
1047 	/*
1048 	 * Note that aio_read_events() is being called as the conditional - i.e.
1049 	 * we're calling it after prepare_to_wait() has set task state to
1050 	 * TASK_INTERRUPTIBLE.
1051 	 *
1052 	 * But aio_read_events() can block, and if it blocks it's going to flip
1053 	 * the task state back to TASK_RUNNING.
1054 	 *
1055 	 * This should be ok, provided it doesn't flip the state back to
1056 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1057 	 * will only happen if the mutex_lock() call blocks, and we then find
1058 	 * the ringbuffer empty. So in practice we should be ok, but it's
1059 	 * something to be aware of when touching this code.
1060 	 */
1061 	wait_event_interruptible_hrtimeout(ctx->wait,
1062 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
1063 
1064 	if (!ret && signal_pending(current))
1065 		ret = -EINTR;
1066 
1067 	return ret;
1068 }
1069 
1070 /* sys_io_setup:
1071  *	Create an aio_context capable of receiving at least nr_events.
1072  *	ctxp must not point to an aio_context that already exists, and
1073  *	must be initialized to 0 prior to the call.  On successful
1074  *	creation of the aio_context, *ctxp is filled in with the resulting
1075  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1076  *	if the specified nr_events exceeds internal limits.  May fail
1077  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1078  *	of available events.  May fail with -ENOMEM if insufficient kernel
1079  *	resources are available.  May fail with -EFAULT if an invalid
1080  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1081  *	implemented.
1082  */
1083 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1084 {
1085 	struct kioctx *ioctx = NULL;
1086 	unsigned long ctx;
1087 	long ret;
1088 
1089 	ret = get_user(ctx, ctxp);
1090 	if (unlikely(ret))
1091 		goto out;
1092 
1093 	ret = -EINVAL;
1094 	if (unlikely(ctx || nr_events == 0)) {
1095 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1096 		         ctx, nr_events);
1097 		goto out;
1098 	}
1099 
1100 	ioctx = ioctx_alloc(nr_events);
1101 	ret = PTR_ERR(ioctx);
1102 	if (!IS_ERR(ioctx)) {
1103 		ret = put_user(ioctx->user_id, ctxp);
1104 		if (ret)
1105 			kill_ioctx(current->mm, ioctx);
1106 		percpu_ref_put(&ioctx->users);
1107 	}
1108 
1109 out:
1110 	return ret;
1111 }
1112 
1113 /* sys_io_destroy:
1114  *	Destroy the aio_context specified.  May cancel any outstanding
1115  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1116  *	implemented.  May fail with -EINVAL if the context pointed to
1117  *	is invalid.
1118  */
1119 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1120 {
1121 	struct kioctx *ioctx = lookup_ioctx(ctx);
1122 	if (likely(NULL != ioctx)) {
1123 		kill_ioctx(current->mm, ioctx);
1124 		percpu_ref_put(&ioctx->users);
1125 		return 0;
1126 	}
1127 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1128 	return -EINVAL;
1129 }
1130 
1131 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1132 			    unsigned long, loff_t);
1133 
1134 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1135 				     int rw, char __user *buf,
1136 				     unsigned long *nr_segs,
1137 				     struct iovec **iovec,
1138 				     bool compat)
1139 {
1140 	ssize_t ret;
1141 
1142 	*nr_segs = kiocb->ki_nbytes;
1143 
1144 #ifdef CONFIG_COMPAT
1145 	if (compat)
1146 		ret = compat_rw_copy_check_uvector(rw,
1147 				(struct compat_iovec __user *)buf,
1148 				*nr_segs, 1, *iovec, iovec);
1149 	else
1150 #endif
1151 		ret = rw_copy_check_uvector(rw,
1152 				(struct iovec __user *)buf,
1153 				*nr_segs, 1, *iovec, iovec);
1154 	if (ret < 0)
1155 		return ret;
1156 
1157 	/* ki_nbytes now reflect bytes instead of segs */
1158 	kiocb->ki_nbytes = ret;
1159 	return 0;
1160 }
1161 
1162 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1163 				       int rw, char __user *buf,
1164 				       unsigned long *nr_segs,
1165 				       struct iovec *iovec)
1166 {
1167 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1168 		return -EFAULT;
1169 
1170 	iovec->iov_base = buf;
1171 	iovec->iov_len = kiocb->ki_nbytes;
1172 	*nr_segs = 1;
1173 	return 0;
1174 }
1175 
1176 /*
1177  * aio_setup_iocb:
1178  *	Performs the initial checks and aio retry method
1179  *	setup for the kiocb at the time of io submission.
1180  */
1181 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1182 			    char __user *buf, bool compat)
1183 {
1184 	struct file *file = req->ki_filp;
1185 	ssize_t ret;
1186 	unsigned long nr_segs;
1187 	int rw;
1188 	fmode_t mode;
1189 	aio_rw_op *rw_op;
1190 	struct iovec inline_vec, *iovec = &inline_vec;
1191 
1192 	switch (opcode) {
1193 	case IOCB_CMD_PREAD:
1194 	case IOCB_CMD_PREADV:
1195 		mode	= FMODE_READ;
1196 		rw	= READ;
1197 		rw_op	= file->f_op->aio_read;
1198 		goto rw_common;
1199 
1200 	case IOCB_CMD_PWRITE:
1201 	case IOCB_CMD_PWRITEV:
1202 		mode	= FMODE_WRITE;
1203 		rw	= WRITE;
1204 		rw_op	= file->f_op->aio_write;
1205 		goto rw_common;
1206 rw_common:
1207 		if (unlikely(!(file->f_mode & mode)))
1208 			return -EBADF;
1209 
1210 		if (!rw_op)
1211 			return -EINVAL;
1212 
1213 		ret = (opcode == IOCB_CMD_PREADV ||
1214 		       opcode == IOCB_CMD_PWRITEV)
1215 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1216 						&iovec, compat)
1217 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1218 						  iovec);
1219 		if (ret)
1220 			return ret;
1221 
1222 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1223 		if (ret < 0) {
1224 			if (iovec != &inline_vec)
1225 				kfree(iovec);
1226 			return ret;
1227 		}
1228 
1229 		req->ki_nbytes = ret;
1230 
1231 		/* XXX: move/kill - rw_verify_area()? */
1232 		/* This matches the pread()/pwrite() logic */
1233 		if (req->ki_pos < 0) {
1234 			ret = -EINVAL;
1235 			break;
1236 		}
1237 
1238 		if (rw == WRITE)
1239 			file_start_write(file);
1240 
1241 		ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1242 
1243 		if (rw == WRITE)
1244 			file_end_write(file);
1245 		break;
1246 
1247 	case IOCB_CMD_FDSYNC:
1248 		if (!file->f_op->aio_fsync)
1249 			return -EINVAL;
1250 
1251 		ret = file->f_op->aio_fsync(req, 1);
1252 		break;
1253 
1254 	case IOCB_CMD_FSYNC:
1255 		if (!file->f_op->aio_fsync)
1256 			return -EINVAL;
1257 
1258 		ret = file->f_op->aio_fsync(req, 0);
1259 		break;
1260 
1261 	default:
1262 		pr_debug("EINVAL: no operation provided\n");
1263 		return -EINVAL;
1264 	}
1265 
1266 	if (iovec != &inline_vec)
1267 		kfree(iovec);
1268 
1269 	if (ret != -EIOCBQUEUED) {
1270 		/*
1271 		 * There's no easy way to restart the syscall since other AIO's
1272 		 * may be already running. Just fail this IO with EINTR.
1273 		 */
1274 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1275 			     ret == -ERESTARTNOHAND ||
1276 			     ret == -ERESTART_RESTARTBLOCK))
1277 			ret = -EINTR;
1278 		aio_complete(req, ret, 0);
1279 	}
1280 
1281 	return 0;
1282 }
1283 
1284 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1285 			 struct iocb *iocb, bool compat)
1286 {
1287 	struct kiocb *req;
1288 	ssize_t ret;
1289 
1290 	/* enforce forwards compatibility on users */
1291 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1292 		pr_debug("EINVAL: reserve field set\n");
1293 		return -EINVAL;
1294 	}
1295 
1296 	/* prevent overflows */
1297 	if (unlikely(
1298 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1299 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1300 	    ((ssize_t)iocb->aio_nbytes < 0)
1301 	   )) {
1302 		pr_debug("EINVAL: io_submit: overflow check\n");
1303 		return -EINVAL;
1304 	}
1305 
1306 	req = aio_get_req(ctx);
1307 	if (unlikely(!req))
1308 		return -EAGAIN;
1309 
1310 	req->ki_filp = fget(iocb->aio_fildes);
1311 	if (unlikely(!req->ki_filp)) {
1312 		ret = -EBADF;
1313 		goto out_put_req;
1314 	}
1315 
1316 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1317 		/*
1318 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1319 		 * instance of the file* now. The file descriptor must be
1320 		 * an eventfd() fd, and will be signaled for each completed
1321 		 * event using the eventfd_signal() function.
1322 		 */
1323 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1324 		if (IS_ERR(req->ki_eventfd)) {
1325 			ret = PTR_ERR(req->ki_eventfd);
1326 			req->ki_eventfd = NULL;
1327 			goto out_put_req;
1328 		}
1329 	}
1330 
1331 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1332 	if (unlikely(ret)) {
1333 		pr_debug("EFAULT: aio_key\n");
1334 		goto out_put_req;
1335 	}
1336 
1337 	req->ki_obj.user = user_iocb;
1338 	req->ki_user_data = iocb->aio_data;
1339 	req->ki_pos = iocb->aio_offset;
1340 	req->ki_nbytes = iocb->aio_nbytes;
1341 
1342 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1343 			   (char __user *)(unsigned long)iocb->aio_buf,
1344 			   compat);
1345 	if (ret)
1346 		goto out_put_req;
1347 
1348 	return 0;
1349 out_put_req:
1350 	put_reqs_available(ctx, 1);
1351 	kiocb_free(req);
1352 	return ret;
1353 }
1354 
1355 long do_io_submit(aio_context_t ctx_id, long nr,
1356 		  struct iocb __user *__user *iocbpp, bool compat)
1357 {
1358 	struct kioctx *ctx;
1359 	long ret = 0;
1360 	int i = 0;
1361 	struct blk_plug plug;
1362 
1363 	if (unlikely(nr < 0))
1364 		return -EINVAL;
1365 
1366 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1367 		nr = LONG_MAX/sizeof(*iocbpp);
1368 
1369 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1370 		return -EFAULT;
1371 
1372 	ctx = lookup_ioctx(ctx_id);
1373 	if (unlikely(!ctx)) {
1374 		pr_debug("EINVAL: invalid context id\n");
1375 		return -EINVAL;
1376 	}
1377 
1378 	blk_start_plug(&plug);
1379 
1380 	/*
1381 	 * AKPM: should this return a partial result if some of the IOs were
1382 	 * successfully submitted?
1383 	 */
1384 	for (i=0; i<nr; i++) {
1385 		struct iocb __user *user_iocb;
1386 		struct iocb tmp;
1387 
1388 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1389 			ret = -EFAULT;
1390 			break;
1391 		}
1392 
1393 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1394 			ret = -EFAULT;
1395 			break;
1396 		}
1397 
1398 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1399 		if (ret)
1400 			break;
1401 	}
1402 	blk_finish_plug(&plug);
1403 
1404 	percpu_ref_put(&ctx->users);
1405 	return i ? i : ret;
1406 }
1407 
1408 /* sys_io_submit:
1409  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1410  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1411  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1412  *	*iocbpp[0] is not properly initialized, if the operation specified
1413  *	is invalid for the file descriptor in the iocb.  May fail with
1414  *	-EFAULT if any of the data structures point to invalid data.  May
1415  *	fail with -EBADF if the file descriptor specified in the first
1416  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1417  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1418  *	fail with -ENOSYS if not implemented.
1419  */
1420 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1421 		struct iocb __user * __user *, iocbpp)
1422 {
1423 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1424 }
1425 
1426 /* lookup_kiocb
1427  *	Finds a given iocb for cancellation.
1428  */
1429 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1430 				  u32 key)
1431 {
1432 	struct list_head *pos;
1433 
1434 	assert_spin_locked(&ctx->ctx_lock);
1435 
1436 	if (key != KIOCB_KEY)
1437 		return NULL;
1438 
1439 	/* TODO: use a hash or array, this sucks. */
1440 	list_for_each(pos, &ctx->active_reqs) {
1441 		struct kiocb *kiocb = list_kiocb(pos);
1442 		if (kiocb->ki_obj.user == iocb)
1443 			return kiocb;
1444 	}
1445 	return NULL;
1446 }
1447 
1448 /* sys_io_cancel:
1449  *	Attempts to cancel an iocb previously passed to io_submit.  If
1450  *	the operation is successfully cancelled, the resulting event is
1451  *	copied into the memory pointed to by result without being placed
1452  *	into the completion queue and 0 is returned.  May fail with
1453  *	-EFAULT if any of the data structures pointed to are invalid.
1454  *	May fail with -EINVAL if aio_context specified by ctx_id is
1455  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1456  *	cancelled.  Will fail with -ENOSYS if not implemented.
1457  */
1458 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1459 		struct io_event __user *, result)
1460 {
1461 	struct kioctx *ctx;
1462 	struct kiocb *kiocb;
1463 	u32 key;
1464 	int ret;
1465 
1466 	ret = get_user(key, &iocb->aio_key);
1467 	if (unlikely(ret))
1468 		return -EFAULT;
1469 
1470 	ctx = lookup_ioctx(ctx_id);
1471 	if (unlikely(!ctx))
1472 		return -EINVAL;
1473 
1474 	spin_lock_irq(&ctx->ctx_lock);
1475 
1476 	kiocb = lookup_kiocb(ctx, iocb, key);
1477 	if (kiocb)
1478 		ret = kiocb_cancel(ctx, kiocb);
1479 	else
1480 		ret = -EINVAL;
1481 
1482 	spin_unlock_irq(&ctx->ctx_lock);
1483 
1484 	if (!ret) {
1485 		/*
1486 		 * The result argument is no longer used - the io_event is
1487 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1488 		 * cancellation is progress:
1489 		 */
1490 		ret = -EINPROGRESS;
1491 	}
1492 
1493 	percpu_ref_put(&ctx->users);
1494 
1495 	return ret;
1496 }
1497 
1498 /* io_getevents:
1499  *	Attempts to read at least min_nr events and up to nr events from
1500  *	the completion queue for the aio_context specified by ctx_id. If
1501  *	it succeeds, the number of read events is returned. May fail with
1502  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1503  *	out of range, if timeout is out of range.  May fail with -EFAULT
1504  *	if any of the memory specified is invalid.  May return 0 or
1505  *	< min_nr if the timeout specified by timeout has elapsed
1506  *	before sufficient events are available, where timeout == NULL
1507  *	specifies an infinite timeout. Note that the timeout pointed to by
1508  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1509  */
1510 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1511 		long, min_nr,
1512 		long, nr,
1513 		struct io_event __user *, events,
1514 		struct timespec __user *, timeout)
1515 {
1516 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1517 	long ret = -EINVAL;
1518 
1519 	if (likely(ioctx)) {
1520 		if (likely(min_nr <= nr && min_nr >= 0))
1521 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1522 		percpu_ref_put(&ioctx->users);
1523 	}
1524 	return ret;
1525 }
1526