xref: /openbmc/linux/fs/aio.c (revision 04c71976)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
34 
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 
39 #if DEBUG > 1
40 #define dprintk		printk
41 #else
42 #define dprintk(x...)	do { ; } while (0)
43 #endif
44 
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr;		/* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50 
51 static struct kmem_cache	*kiocb_cachep;
52 static struct kmem_cache	*kioctx_cachep;
53 
54 static struct workqueue_struct *aio_wq;
55 
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59 
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62 
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65 
66 /* aio_setup
67  *	Creates the slab caches used by the aio routines, panic on
68  *	failure as this is done early during the boot sequence.
69  */
70 static int __init aio_setup(void)
71 {
72 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 	struct aio_ring_info *info = &ctx->ring_info;
85 	long i;
86 
87 	for (i=0; i<info->nr_pages; i++)
88 		put_page(info->ring_pages[i]);
89 
90 	if (info->mmap_size) {
91 		down_write(&ctx->mm->mmap_sem);
92 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 		up_write(&ctx->mm->mmap_sem);
94 	}
95 
96 	if (info->ring_pages && info->ring_pages != info->internal_pages)
97 		kfree(info->ring_pages);
98 	info->ring_pages = NULL;
99 	info->nr = 0;
100 }
101 
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 	struct aio_ring *ring;
105 	struct aio_ring_info *info = &ctx->ring_info;
106 	unsigned nr_events = ctx->max_reqs;
107 	unsigned long size;
108 	int nr_pages;
109 
110 	/* Compensate for the ring buffer's head/tail overlap entry */
111 	nr_events += 2;	/* 1 is required, 2 for good luck */
112 
113 	size = sizeof(struct aio_ring);
114 	size += sizeof(struct io_event) * nr_events;
115 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 
117 	if (nr_pages < 0)
118 		return -EINVAL;
119 
120 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 
122 	info->nr = 0;
123 	info->ring_pages = info->internal_pages;
124 	if (nr_pages > AIO_RING_PAGES) {
125 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 		if (!info->ring_pages)
127 			return -ENOMEM;
128 	}
129 
130 	info->mmap_size = nr_pages * PAGE_SIZE;
131 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 	down_write(&ctx->mm->mmap_sem);
133 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 				  0);
136 	if (IS_ERR((void *)info->mmap_base)) {
137 		up_write(&ctx->mm->mmap_sem);
138 		info->mmap_size = 0;
139 		aio_free_ring(ctx);
140 		return -EAGAIN;
141 	}
142 
143 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 	info->nr_pages = get_user_pages(current, ctx->mm,
145 					info->mmap_base, nr_pages,
146 					1, 0, info->ring_pages, NULL);
147 	up_write(&ctx->mm->mmap_sem);
148 
149 	if (unlikely(info->nr_pages != nr_pages)) {
150 		aio_free_ring(ctx);
151 		return -EAGAIN;
152 	}
153 
154 	ctx->user_id = info->mmap_base;
155 
156 	info->nr = nr_events;		/* trusted copy */
157 
158 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 	ring->nr = nr_events;	/* user copy */
160 	ring->id = ctx->user_id;
161 	ring->head = ring->tail = 0;
162 	ring->magic = AIO_RING_MAGIC;
163 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 	ring->header_length = sizeof(struct aio_ring);
166 	kunmap_atomic(ring, KM_USER0);
167 
168 	return 0;
169 }
170 
171 
172 /* aio_ring_event: returns a pointer to the event at the given index from
173  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174  */
175 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178 
179 #define aio_ring_event(info, nr, km) ({					\
180 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
181 	struct io_event *__event;					\
182 	__event = kmap_atomic(						\
183 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 	__event += pos % AIO_EVENTS_PER_PAGE;				\
185 	__event;							\
186 })
187 
188 #define put_aio_ring_event(event, km) do {	\
189 	struct io_event *__event = (event);	\
190 	(void)__event;				\
191 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193 
194 /* ioctx_alloc
195  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
196  */
197 static struct kioctx *ioctx_alloc(unsigned nr_events)
198 {
199 	struct mm_struct *mm;
200 	struct kioctx *ctx;
201 
202 	/* Prevent overflows */
203 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
204 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
205 		pr_debug("ENOMEM: nr_events too high\n");
206 		return ERR_PTR(-EINVAL);
207 	}
208 
209 	if ((unsigned long)nr_events > aio_max_nr)
210 		return ERR_PTR(-EAGAIN);
211 
212 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
213 	if (!ctx)
214 		return ERR_PTR(-ENOMEM);
215 
216 	ctx->max_reqs = nr_events;
217 	mm = ctx->mm = current->mm;
218 	atomic_inc(&mm->mm_count);
219 
220 	atomic_set(&ctx->users, 1);
221 	spin_lock_init(&ctx->ctx_lock);
222 	spin_lock_init(&ctx->ring_info.ring_lock);
223 	init_waitqueue_head(&ctx->wait);
224 
225 	INIT_LIST_HEAD(&ctx->active_reqs);
226 	INIT_LIST_HEAD(&ctx->run_list);
227 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
228 
229 	if (aio_setup_ring(ctx) < 0)
230 		goto out_freectx;
231 
232 	/* limit the number of system wide aios */
233 	spin_lock(&aio_nr_lock);
234 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
235 	    aio_nr + ctx->max_reqs < aio_nr)
236 		ctx->max_reqs = 0;
237 	else
238 		aio_nr += ctx->max_reqs;
239 	spin_unlock(&aio_nr_lock);
240 	if (ctx->max_reqs == 0)
241 		goto out_cleanup;
242 
243 	/* now link into global list.  kludge.  FIXME */
244 	write_lock(&mm->ioctx_list_lock);
245 	ctx->next = mm->ioctx_list;
246 	mm->ioctx_list = ctx;
247 	write_unlock(&mm->ioctx_list_lock);
248 
249 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
250 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
251 	return ctx;
252 
253 out_cleanup:
254 	__put_ioctx(ctx);
255 	return ERR_PTR(-EAGAIN);
256 
257 out_freectx:
258 	mmdrop(mm);
259 	kmem_cache_free(kioctx_cachep, ctx);
260 	ctx = ERR_PTR(-ENOMEM);
261 
262 	dprintk("aio: error allocating ioctx %p\n", ctx);
263 	return ctx;
264 }
265 
266 /* aio_cancel_all
267  *	Cancels all outstanding aio requests on an aio context.  Used
268  *	when the processes owning a context have all exited to encourage
269  *	the rapid destruction of the kioctx.
270  */
271 static void aio_cancel_all(struct kioctx *ctx)
272 {
273 	int (*cancel)(struct kiocb *, struct io_event *);
274 	struct io_event res;
275 	spin_lock_irq(&ctx->ctx_lock);
276 	ctx->dead = 1;
277 	while (!list_empty(&ctx->active_reqs)) {
278 		struct list_head *pos = ctx->active_reqs.next;
279 		struct kiocb *iocb = list_kiocb(pos);
280 		list_del_init(&iocb->ki_list);
281 		cancel = iocb->ki_cancel;
282 		kiocbSetCancelled(iocb);
283 		if (cancel) {
284 			iocb->ki_users++;
285 			spin_unlock_irq(&ctx->ctx_lock);
286 			cancel(iocb, &res);
287 			spin_lock_irq(&ctx->ctx_lock);
288 		}
289 	}
290 	spin_unlock_irq(&ctx->ctx_lock);
291 }
292 
293 static void wait_for_all_aios(struct kioctx *ctx)
294 {
295 	struct task_struct *tsk = current;
296 	DECLARE_WAITQUEUE(wait, tsk);
297 
298 	spin_lock_irq(&ctx->ctx_lock);
299 	if (!ctx->reqs_active)
300 		goto out;
301 
302 	add_wait_queue(&ctx->wait, &wait);
303 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
304 	while (ctx->reqs_active) {
305 		spin_unlock_irq(&ctx->ctx_lock);
306 		schedule();
307 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
308 		spin_lock_irq(&ctx->ctx_lock);
309 	}
310 	__set_task_state(tsk, TASK_RUNNING);
311 	remove_wait_queue(&ctx->wait, &wait);
312 
313 out:
314 	spin_unlock_irq(&ctx->ctx_lock);
315 }
316 
317 /* wait_on_sync_kiocb:
318  *	Waits on the given sync kiocb to complete.
319  */
320 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
321 {
322 	while (iocb->ki_users) {
323 		set_current_state(TASK_UNINTERRUPTIBLE);
324 		if (!iocb->ki_users)
325 			break;
326 		schedule();
327 	}
328 	__set_current_state(TASK_RUNNING);
329 	return iocb->ki_user_data;
330 }
331 
332 /* exit_aio: called when the last user of mm goes away.  At this point,
333  * there is no way for any new requests to be submited or any of the
334  * io_* syscalls to be called on the context.  However, there may be
335  * outstanding requests which hold references to the context; as they
336  * go away, they will call put_ioctx and release any pinned memory
337  * associated with the request (held via struct page * references).
338  */
339 void fastcall exit_aio(struct mm_struct *mm)
340 {
341 	struct kioctx *ctx = mm->ioctx_list;
342 	mm->ioctx_list = NULL;
343 	while (ctx) {
344 		struct kioctx *next = ctx->next;
345 		ctx->next = NULL;
346 		aio_cancel_all(ctx);
347 
348 		wait_for_all_aios(ctx);
349 		/*
350 		 * Ensure we don't leave the ctx on the aio_wq
351 		 */
352 		cancel_work_sync(&ctx->wq.work);
353 
354 		if (1 != atomic_read(&ctx->users))
355 			printk(KERN_DEBUG
356 				"exit_aio:ioctx still alive: %d %d %d\n",
357 				atomic_read(&ctx->users), ctx->dead,
358 				ctx->reqs_active);
359 		put_ioctx(ctx);
360 		ctx = next;
361 	}
362 }
363 
364 /* __put_ioctx
365  *	Called when the last user of an aio context has gone away,
366  *	and the struct needs to be freed.
367  */
368 void fastcall __put_ioctx(struct kioctx *ctx)
369 {
370 	unsigned nr_events = ctx->max_reqs;
371 
372 	BUG_ON(ctx->reqs_active);
373 
374 	cancel_delayed_work(&ctx->wq);
375 	cancel_work_sync(&ctx->wq.work);
376 	aio_free_ring(ctx);
377 	mmdrop(ctx->mm);
378 	ctx->mm = NULL;
379 	pr_debug("__put_ioctx: freeing %p\n", ctx);
380 	kmem_cache_free(kioctx_cachep, ctx);
381 
382 	if (nr_events) {
383 		spin_lock(&aio_nr_lock);
384 		BUG_ON(aio_nr - nr_events > aio_nr);
385 		aio_nr -= nr_events;
386 		spin_unlock(&aio_nr_lock);
387 	}
388 }
389 
390 /* aio_get_req
391  *	Allocate a slot for an aio request.  Increments the users count
392  * of the kioctx so that the kioctx stays around until all requests are
393  * complete.  Returns NULL if no requests are free.
394  *
395  * Returns with kiocb->users set to 2.  The io submit code path holds
396  * an extra reference while submitting the i/o.
397  * This prevents races between the aio code path referencing the
398  * req (after submitting it) and aio_complete() freeing the req.
399  */
400 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
401 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
402 {
403 	struct kiocb *req = NULL;
404 	struct aio_ring *ring;
405 	int okay = 0;
406 
407 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
408 	if (unlikely(!req))
409 		return NULL;
410 
411 	req->ki_flags = 0;
412 	req->ki_users = 2;
413 	req->ki_key = 0;
414 	req->ki_ctx = ctx;
415 	req->ki_cancel = NULL;
416 	req->ki_retry = NULL;
417 	req->ki_dtor = NULL;
418 	req->private = NULL;
419 	req->ki_iovec = NULL;
420 	INIT_LIST_HEAD(&req->ki_run_list);
421 	req->ki_eventfd = ERR_PTR(-EINVAL);
422 
423 	/* Check if the completion queue has enough free space to
424 	 * accept an event from this io.
425 	 */
426 	spin_lock_irq(&ctx->ctx_lock);
427 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
428 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
429 		list_add(&req->ki_list, &ctx->active_reqs);
430 		ctx->reqs_active++;
431 		okay = 1;
432 	}
433 	kunmap_atomic(ring, KM_USER0);
434 	spin_unlock_irq(&ctx->ctx_lock);
435 
436 	if (!okay) {
437 		kmem_cache_free(kiocb_cachep, req);
438 		req = NULL;
439 	}
440 
441 	return req;
442 }
443 
444 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
445 {
446 	struct kiocb *req;
447 	/* Handle a potential starvation case -- should be exceedingly rare as
448 	 * requests will be stuck on fput_head only if the aio_fput_routine is
449 	 * delayed and the requests were the last user of the struct file.
450 	 */
451 	req = __aio_get_req(ctx);
452 	if (unlikely(NULL == req)) {
453 		aio_fput_routine(NULL);
454 		req = __aio_get_req(ctx);
455 	}
456 	return req;
457 }
458 
459 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
460 {
461 	assert_spin_locked(&ctx->ctx_lock);
462 
463 	if (!IS_ERR(req->ki_eventfd))
464 		fput(req->ki_eventfd);
465 	if (req->ki_dtor)
466 		req->ki_dtor(req);
467 	if (req->ki_iovec != &req->ki_inline_vec)
468 		kfree(req->ki_iovec);
469 	kmem_cache_free(kiocb_cachep, req);
470 	ctx->reqs_active--;
471 
472 	if (unlikely(!ctx->reqs_active && ctx->dead))
473 		wake_up(&ctx->wait);
474 }
475 
476 static void aio_fput_routine(struct work_struct *data)
477 {
478 	spin_lock_irq(&fput_lock);
479 	while (likely(!list_empty(&fput_head))) {
480 		struct kiocb *req = list_kiocb(fput_head.next);
481 		struct kioctx *ctx = req->ki_ctx;
482 
483 		list_del(&req->ki_list);
484 		spin_unlock_irq(&fput_lock);
485 
486 		/* Complete the fput */
487 		__fput(req->ki_filp);
488 
489 		/* Link the iocb into the context's free list */
490 		spin_lock_irq(&ctx->ctx_lock);
491 		really_put_req(ctx, req);
492 		spin_unlock_irq(&ctx->ctx_lock);
493 
494 		put_ioctx(ctx);
495 		spin_lock_irq(&fput_lock);
496 	}
497 	spin_unlock_irq(&fput_lock);
498 }
499 
500 /* __aio_put_req
501  *	Returns true if this put was the last user of the request.
502  */
503 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
504 {
505 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
506 		req, atomic_read(&req->ki_filp->f_count));
507 
508 	assert_spin_locked(&ctx->ctx_lock);
509 
510 	req->ki_users --;
511 	BUG_ON(req->ki_users < 0);
512 	if (likely(req->ki_users))
513 		return 0;
514 	list_del(&req->ki_list);		/* remove from active_reqs */
515 	req->ki_cancel = NULL;
516 	req->ki_retry = NULL;
517 
518 	/* Must be done under the lock to serialise against cancellation.
519 	 * Call this aio_fput as it duplicates fput via the fput_work.
520 	 */
521 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
522 		get_ioctx(ctx);
523 		spin_lock(&fput_lock);
524 		list_add(&req->ki_list, &fput_head);
525 		spin_unlock(&fput_lock);
526 		queue_work(aio_wq, &fput_work);
527 	} else
528 		really_put_req(ctx, req);
529 	return 1;
530 }
531 
532 /* aio_put_req
533  *	Returns true if this put was the last user of the kiocb,
534  *	false if the request is still in use.
535  */
536 int fastcall aio_put_req(struct kiocb *req)
537 {
538 	struct kioctx *ctx = req->ki_ctx;
539 	int ret;
540 	spin_lock_irq(&ctx->ctx_lock);
541 	ret = __aio_put_req(ctx, req);
542 	spin_unlock_irq(&ctx->ctx_lock);
543 	return ret;
544 }
545 
546 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
547  *	FIXME: this is O(n) and is only suitable for development.
548  */
549 struct kioctx *lookup_ioctx(unsigned long ctx_id)
550 {
551 	struct kioctx *ioctx;
552 	struct mm_struct *mm;
553 
554 	mm = current->mm;
555 	read_lock(&mm->ioctx_list_lock);
556 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
557 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
558 			get_ioctx(ioctx);
559 			break;
560 		}
561 	read_unlock(&mm->ioctx_list_lock);
562 
563 	return ioctx;
564 }
565 
566 /*
567  * use_mm
568  *	Makes the calling kernel thread take on the specified
569  *	mm context.
570  *	Called by the retry thread execute retries within the
571  *	iocb issuer's mm context, so that copy_from/to_user
572  *	operations work seamlessly for aio.
573  *	(Note: this routine is intended to be called only
574  *	from a kernel thread context)
575  */
576 static void use_mm(struct mm_struct *mm)
577 {
578 	struct mm_struct *active_mm;
579 	struct task_struct *tsk = current;
580 
581 	task_lock(tsk);
582 	tsk->flags |= PF_BORROWED_MM;
583 	active_mm = tsk->active_mm;
584 	atomic_inc(&mm->mm_count);
585 	tsk->mm = mm;
586 	tsk->active_mm = mm;
587 	/*
588 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
589 	 * it won't work. Update it accordingly if you change it here
590 	 */
591 	switch_mm(active_mm, mm, tsk);
592 	task_unlock(tsk);
593 
594 	mmdrop(active_mm);
595 }
596 
597 /*
598  * unuse_mm
599  *	Reverses the effect of use_mm, i.e. releases the
600  *	specified mm context which was earlier taken on
601  *	by the calling kernel thread
602  *	(Note: this routine is intended to be called only
603  *	from a kernel thread context)
604  */
605 static void unuse_mm(struct mm_struct *mm)
606 {
607 	struct task_struct *tsk = current;
608 
609 	task_lock(tsk);
610 	tsk->flags &= ~PF_BORROWED_MM;
611 	tsk->mm = NULL;
612 	/* active_mm is still 'mm' */
613 	enter_lazy_tlb(mm, tsk);
614 	task_unlock(tsk);
615 }
616 
617 /*
618  * Queue up a kiocb to be retried. Assumes that the kiocb
619  * has already been marked as kicked, and places it on
620  * the retry run list for the corresponding ioctx, if it
621  * isn't already queued. Returns 1 if it actually queued
622  * the kiocb (to tell the caller to activate the work
623  * queue to process it), or 0, if it found that it was
624  * already queued.
625  */
626 static inline int __queue_kicked_iocb(struct kiocb *iocb)
627 {
628 	struct kioctx *ctx = iocb->ki_ctx;
629 
630 	assert_spin_locked(&ctx->ctx_lock);
631 
632 	if (list_empty(&iocb->ki_run_list)) {
633 		list_add_tail(&iocb->ki_run_list,
634 			&ctx->run_list);
635 		return 1;
636 	}
637 	return 0;
638 }
639 
640 /* aio_run_iocb
641  *	This is the core aio execution routine. It is
642  *	invoked both for initial i/o submission and
643  *	subsequent retries via the aio_kick_handler.
644  *	Expects to be invoked with iocb->ki_ctx->lock
645  *	already held. The lock is released and reacquired
646  *	as needed during processing.
647  *
648  * Calls the iocb retry method (already setup for the
649  * iocb on initial submission) for operation specific
650  * handling, but takes care of most of common retry
651  * execution details for a given iocb. The retry method
652  * needs to be non-blocking as far as possible, to avoid
653  * holding up other iocbs waiting to be serviced by the
654  * retry kernel thread.
655  *
656  * The trickier parts in this code have to do with
657  * ensuring that only one retry instance is in progress
658  * for a given iocb at any time. Providing that guarantee
659  * simplifies the coding of individual aio operations as
660  * it avoids various potential races.
661  */
662 static ssize_t aio_run_iocb(struct kiocb *iocb)
663 {
664 	struct kioctx	*ctx = iocb->ki_ctx;
665 	ssize_t (*retry)(struct kiocb *);
666 	ssize_t ret;
667 
668 	if (!(retry = iocb->ki_retry)) {
669 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
670 		return 0;
671 	}
672 
673 	/*
674 	 * We don't want the next retry iteration for this
675 	 * operation to start until this one has returned and
676 	 * updated the iocb state. However, wait_queue functions
677 	 * can trigger a kick_iocb from interrupt context in the
678 	 * meantime, indicating that data is available for the next
679 	 * iteration. We want to remember that and enable the
680 	 * next retry iteration _after_ we are through with
681 	 * this one.
682 	 *
683 	 * So, in order to be able to register a "kick", but
684 	 * prevent it from being queued now, we clear the kick
685 	 * flag, but make the kick code *think* that the iocb is
686 	 * still on the run list until we are actually done.
687 	 * When we are done with this iteration, we check if
688 	 * the iocb was kicked in the meantime and if so, queue
689 	 * it up afresh.
690 	 */
691 
692 	kiocbClearKicked(iocb);
693 
694 	/*
695 	 * This is so that aio_complete knows it doesn't need to
696 	 * pull the iocb off the run list (We can't just call
697 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
698 	 * queue this on the run list yet)
699 	 */
700 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
701 	spin_unlock_irq(&ctx->ctx_lock);
702 
703 	/* Quit retrying if the i/o has been cancelled */
704 	if (kiocbIsCancelled(iocb)) {
705 		ret = -EINTR;
706 		aio_complete(iocb, ret, 0);
707 		/* must not access the iocb after this */
708 		goto out;
709 	}
710 
711 	/*
712 	 * Now we are all set to call the retry method in async
713 	 * context. By setting this thread's io_wait context
714 	 * to point to the wait queue entry inside the currently
715 	 * running iocb for the duration of the retry, we ensure
716 	 * that async notification wakeups are queued by the
717 	 * operation instead of blocking waits, and when notified,
718 	 * cause the iocb to be kicked for continuation (through
719 	 * the aio_wake_function callback).
720 	 */
721 	BUG_ON(current->io_wait != NULL);
722 	current->io_wait = &iocb->ki_wait;
723 	ret = retry(iocb);
724 	current->io_wait = NULL;
725 
726 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
727 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
728 		aio_complete(iocb, ret, 0);
729 	}
730 out:
731 	spin_lock_irq(&ctx->ctx_lock);
732 
733 	if (-EIOCBRETRY == ret) {
734 		/*
735 		 * OK, now that we are done with this iteration
736 		 * and know that there is more left to go,
737 		 * this is where we let go so that a subsequent
738 		 * "kick" can start the next iteration
739 		 */
740 
741 		/* will make __queue_kicked_iocb succeed from here on */
742 		INIT_LIST_HEAD(&iocb->ki_run_list);
743 		/* we must queue the next iteration ourselves, if it
744 		 * has already been kicked */
745 		if (kiocbIsKicked(iocb)) {
746 			__queue_kicked_iocb(iocb);
747 
748 			/*
749 			 * __queue_kicked_iocb will always return 1 here, because
750 			 * iocb->ki_run_list is empty at this point so it should
751 			 * be safe to unconditionally queue the context into the
752 			 * work queue.
753 			 */
754 			aio_queue_work(ctx);
755 		}
756 	}
757 	return ret;
758 }
759 
760 /*
761  * __aio_run_iocbs:
762  * 	Process all pending retries queued on the ioctx
763  * 	run list.
764  * Assumes it is operating within the aio issuer's mm
765  * context.
766  */
767 static int __aio_run_iocbs(struct kioctx *ctx)
768 {
769 	struct kiocb *iocb;
770 	struct list_head run_list;
771 
772 	assert_spin_locked(&ctx->ctx_lock);
773 
774 	list_replace_init(&ctx->run_list, &run_list);
775 	while (!list_empty(&run_list)) {
776 		iocb = list_entry(run_list.next, struct kiocb,
777 			ki_run_list);
778 		list_del(&iocb->ki_run_list);
779 		/*
780 		 * Hold an extra reference while retrying i/o.
781 		 */
782 		iocb->ki_users++;       /* grab extra reference */
783 		aio_run_iocb(iocb);
784 		__aio_put_req(ctx, iocb);
785  	}
786 	if (!list_empty(&ctx->run_list))
787 		return 1;
788 	return 0;
789 }
790 
791 static void aio_queue_work(struct kioctx * ctx)
792 {
793 	unsigned long timeout;
794 	/*
795 	 * if someone is waiting, get the work started right
796 	 * away, otherwise, use a longer delay
797 	 */
798 	smp_mb();
799 	if (waitqueue_active(&ctx->wait))
800 		timeout = 1;
801 	else
802 		timeout = HZ/10;
803 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
804 }
805 
806 
807 /*
808  * aio_run_iocbs:
809  * 	Process all pending retries queued on the ioctx
810  * 	run list.
811  * Assumes it is operating within the aio issuer's mm
812  * context.
813  */
814 static inline void aio_run_iocbs(struct kioctx *ctx)
815 {
816 	int requeue;
817 
818 	spin_lock_irq(&ctx->ctx_lock);
819 
820 	requeue = __aio_run_iocbs(ctx);
821 	spin_unlock_irq(&ctx->ctx_lock);
822 	if (requeue)
823 		aio_queue_work(ctx);
824 }
825 
826 /*
827  * just like aio_run_iocbs, but keeps running them until
828  * the list stays empty
829  */
830 static inline void aio_run_all_iocbs(struct kioctx *ctx)
831 {
832 	spin_lock_irq(&ctx->ctx_lock);
833 	while (__aio_run_iocbs(ctx))
834 		;
835 	spin_unlock_irq(&ctx->ctx_lock);
836 }
837 
838 /*
839  * aio_kick_handler:
840  * 	Work queue handler triggered to process pending
841  * 	retries on an ioctx. Takes on the aio issuer's
842  *	mm context before running the iocbs, so that
843  *	copy_xxx_user operates on the issuer's address
844  *      space.
845  * Run on aiod's context.
846  */
847 static void aio_kick_handler(struct work_struct *work)
848 {
849 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
850 	mm_segment_t oldfs = get_fs();
851 	struct mm_struct *mm;
852 	int requeue;
853 
854 	set_fs(USER_DS);
855 	use_mm(ctx->mm);
856 	spin_lock_irq(&ctx->ctx_lock);
857 	requeue =__aio_run_iocbs(ctx);
858 	mm = ctx->mm;
859 	spin_unlock_irq(&ctx->ctx_lock);
860  	unuse_mm(mm);
861 	set_fs(oldfs);
862 	/*
863 	 * we're in a worker thread already, don't use queue_delayed_work,
864 	 */
865 	if (requeue)
866 		queue_delayed_work(aio_wq, &ctx->wq, 0);
867 }
868 
869 
870 /*
871  * Called by kick_iocb to queue the kiocb for retry
872  * and if required activate the aio work queue to process
873  * it
874  */
875 static void try_queue_kicked_iocb(struct kiocb *iocb)
876 {
877  	struct kioctx	*ctx = iocb->ki_ctx;
878 	unsigned long flags;
879 	int run = 0;
880 
881 	/* We're supposed to be the only path putting the iocb back on the run
882 	 * list.  If we find that the iocb is *back* on a wait queue already
883 	 * than retry has happened before we could queue the iocb.  This also
884 	 * means that the retry could have completed and freed our iocb, no
885 	 * good. */
886 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
887 
888 	spin_lock_irqsave(&ctx->ctx_lock, flags);
889 	/* set this inside the lock so that we can't race with aio_run_iocb()
890 	 * testing it and putting the iocb on the run list under the lock */
891 	if (!kiocbTryKick(iocb))
892 		run = __queue_kicked_iocb(iocb);
893 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
894 	if (run)
895 		aio_queue_work(ctx);
896 }
897 
898 /*
899  * kick_iocb:
900  *      Called typically from a wait queue callback context
901  *      (aio_wake_function) to trigger a retry of the iocb.
902  *      The retry is usually executed by aio workqueue
903  *      threads (See aio_kick_handler).
904  */
905 void fastcall kick_iocb(struct kiocb *iocb)
906 {
907 	/* sync iocbs are easy: they can only ever be executing from a
908 	 * single context. */
909 	if (is_sync_kiocb(iocb)) {
910 		kiocbSetKicked(iocb);
911 	        wake_up_process(iocb->ki_obj.tsk);
912 		return;
913 	}
914 
915 	try_queue_kicked_iocb(iocb);
916 }
917 EXPORT_SYMBOL(kick_iocb);
918 
919 /* aio_complete
920  *	Called when the io request on the given iocb is complete.
921  *	Returns true if this is the last user of the request.  The
922  *	only other user of the request can be the cancellation code.
923  */
924 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
925 {
926 	struct kioctx	*ctx = iocb->ki_ctx;
927 	struct aio_ring_info	*info;
928 	struct aio_ring	*ring;
929 	struct io_event	*event;
930 	unsigned long	flags;
931 	unsigned long	tail;
932 	int		ret;
933 
934 	/*
935 	 * Special case handling for sync iocbs:
936 	 *  - events go directly into the iocb for fast handling
937 	 *  - the sync task with the iocb in its stack holds the single iocb
938 	 *    ref, no other paths have a way to get another ref
939 	 *  - the sync task helpfully left a reference to itself in the iocb
940 	 */
941 	if (is_sync_kiocb(iocb)) {
942 		BUG_ON(iocb->ki_users != 1);
943 		iocb->ki_user_data = res;
944 		iocb->ki_users = 0;
945 		wake_up_process(iocb->ki_obj.tsk);
946 		return 1;
947 	}
948 
949 	/*
950 	 * Check if the user asked us to deliver the result through an
951 	 * eventfd. The eventfd_signal() function is safe to be called
952 	 * from IRQ context.
953 	 */
954 	if (!IS_ERR(iocb->ki_eventfd))
955 		eventfd_signal(iocb->ki_eventfd, 1);
956 
957 	info = &ctx->ring_info;
958 
959 	/* add a completion event to the ring buffer.
960 	 * must be done holding ctx->ctx_lock to prevent
961 	 * other code from messing with the tail
962 	 * pointer since we might be called from irq
963 	 * context.
964 	 */
965 	spin_lock_irqsave(&ctx->ctx_lock, flags);
966 
967 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
968 		list_del_init(&iocb->ki_run_list);
969 
970 	/*
971 	 * cancelled requests don't get events, userland was given one
972 	 * when the event got cancelled.
973 	 */
974 	if (kiocbIsCancelled(iocb))
975 		goto put_rq;
976 
977 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
978 
979 	tail = info->tail;
980 	event = aio_ring_event(info, tail, KM_IRQ0);
981 	if (++tail >= info->nr)
982 		tail = 0;
983 
984 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
985 	event->data = iocb->ki_user_data;
986 	event->res = res;
987 	event->res2 = res2;
988 
989 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
990 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
991 		res, res2);
992 
993 	/* after flagging the request as done, we
994 	 * must never even look at it again
995 	 */
996 	smp_wmb();	/* make event visible before updating tail */
997 
998 	info->tail = tail;
999 	ring->tail = tail;
1000 
1001 	put_aio_ring_event(event, KM_IRQ0);
1002 	kunmap_atomic(ring, KM_IRQ1);
1003 
1004 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1005 put_rq:
1006 	/* everything turned out well, dispose of the aiocb. */
1007 	ret = __aio_put_req(ctx, iocb);
1008 
1009 	if (waitqueue_active(&ctx->wait))
1010 		wake_up(&ctx->wait);
1011 
1012 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1013 	return ret;
1014 }
1015 
1016 /* aio_read_evt
1017  *	Pull an event off of the ioctx's event ring.  Returns the number of
1018  *	events fetched (0 or 1 ;-)
1019  *	FIXME: make this use cmpxchg.
1020  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1021  */
1022 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1023 {
1024 	struct aio_ring_info *info = &ioctx->ring_info;
1025 	struct aio_ring *ring;
1026 	unsigned long head;
1027 	int ret = 0;
1028 
1029 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1030 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1031 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1032 		 (unsigned long)ring->nr);
1033 
1034 	if (ring->head == ring->tail)
1035 		goto out;
1036 
1037 	spin_lock(&info->ring_lock);
1038 
1039 	head = ring->head % info->nr;
1040 	if (head != ring->tail) {
1041 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1042 		*ent = *evp;
1043 		head = (head + 1) % info->nr;
1044 		smp_mb(); /* finish reading the event before updatng the head */
1045 		ring->head = head;
1046 		ret = 1;
1047 		put_aio_ring_event(evp, KM_USER1);
1048 	}
1049 	spin_unlock(&info->ring_lock);
1050 
1051 out:
1052 	kunmap_atomic(ring, KM_USER0);
1053 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1054 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1055 	return ret;
1056 }
1057 
1058 struct aio_timeout {
1059 	struct timer_list	timer;
1060 	int			timed_out;
1061 	struct task_struct	*p;
1062 };
1063 
1064 static void timeout_func(unsigned long data)
1065 {
1066 	struct aio_timeout *to = (struct aio_timeout *)data;
1067 
1068 	to->timed_out = 1;
1069 	wake_up_process(to->p);
1070 }
1071 
1072 static inline void init_timeout(struct aio_timeout *to)
1073 {
1074 	init_timer(&to->timer);
1075 	to->timer.data = (unsigned long)to;
1076 	to->timer.function = timeout_func;
1077 	to->timed_out = 0;
1078 	to->p = current;
1079 }
1080 
1081 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1082 			       const struct timespec *ts)
1083 {
1084 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1085 	if (time_after(to->timer.expires, jiffies))
1086 		add_timer(&to->timer);
1087 	else
1088 		to->timed_out = 1;
1089 }
1090 
1091 static inline void clear_timeout(struct aio_timeout *to)
1092 {
1093 	del_singleshot_timer_sync(&to->timer);
1094 }
1095 
1096 static int read_events(struct kioctx *ctx,
1097 			long min_nr, long nr,
1098 			struct io_event __user *event,
1099 			struct timespec __user *timeout)
1100 {
1101 	long			start_jiffies = jiffies;
1102 	struct task_struct	*tsk = current;
1103 	DECLARE_WAITQUEUE(wait, tsk);
1104 	int			ret;
1105 	int			i = 0;
1106 	struct io_event		ent;
1107 	struct aio_timeout	to;
1108 	int			retry = 0;
1109 
1110 	/* needed to zero any padding within an entry (there shouldn't be
1111 	 * any, but C is fun!
1112 	 */
1113 	memset(&ent, 0, sizeof(ent));
1114 retry:
1115 	ret = 0;
1116 	while (likely(i < nr)) {
1117 		ret = aio_read_evt(ctx, &ent);
1118 		if (unlikely(ret <= 0))
1119 			break;
1120 
1121 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1122 			ent.data, ent.obj, ent.res, ent.res2);
1123 
1124 		/* Could we split the check in two? */
1125 		ret = -EFAULT;
1126 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1127 			dprintk("aio: lost an event due to EFAULT.\n");
1128 			break;
1129 		}
1130 		ret = 0;
1131 
1132 		/* Good, event copied to userland, update counts. */
1133 		event ++;
1134 		i ++;
1135 	}
1136 
1137 	if (min_nr <= i)
1138 		return i;
1139 	if (ret)
1140 		return ret;
1141 
1142 	/* End fast path */
1143 
1144 	/* racey check, but it gets redone */
1145 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1146 		retry = 1;
1147 		aio_run_all_iocbs(ctx);
1148 		goto retry;
1149 	}
1150 
1151 	init_timeout(&to);
1152 	if (timeout) {
1153 		struct timespec	ts;
1154 		ret = -EFAULT;
1155 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1156 			goto out;
1157 
1158 		set_timeout(start_jiffies, &to, &ts);
1159 	}
1160 
1161 	while (likely(i < nr)) {
1162 		add_wait_queue_exclusive(&ctx->wait, &wait);
1163 		do {
1164 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1165 			ret = aio_read_evt(ctx, &ent);
1166 			if (ret)
1167 				break;
1168 			if (min_nr <= i)
1169 				break;
1170 			ret = 0;
1171 			if (to.timed_out)	/* Only check after read evt */
1172 				break;
1173 			schedule();
1174 			if (signal_pending(tsk)) {
1175 				ret = -EINTR;
1176 				break;
1177 			}
1178 			/*ret = aio_read_evt(ctx, &ent);*/
1179 		} while (1) ;
1180 
1181 		set_task_state(tsk, TASK_RUNNING);
1182 		remove_wait_queue(&ctx->wait, &wait);
1183 
1184 		if (unlikely(ret <= 0))
1185 			break;
1186 
1187 		ret = -EFAULT;
1188 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1189 			dprintk("aio: lost an event due to EFAULT.\n");
1190 			break;
1191 		}
1192 
1193 		/* Good, event copied to userland, update counts. */
1194 		event ++;
1195 		i ++;
1196 	}
1197 
1198 	if (timeout)
1199 		clear_timeout(&to);
1200 out:
1201 	return i ? i : ret;
1202 }
1203 
1204 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1205  * against races with itself via ->dead.
1206  */
1207 static void io_destroy(struct kioctx *ioctx)
1208 {
1209 	struct mm_struct *mm = current->mm;
1210 	struct kioctx **tmp;
1211 	int was_dead;
1212 
1213 	/* delete the entry from the list is someone else hasn't already */
1214 	write_lock(&mm->ioctx_list_lock);
1215 	was_dead = ioctx->dead;
1216 	ioctx->dead = 1;
1217 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1218 	     tmp = &(*tmp)->next)
1219 		;
1220 	if (*tmp)
1221 		*tmp = ioctx->next;
1222 	write_unlock(&mm->ioctx_list_lock);
1223 
1224 	dprintk("aio_release(%p)\n", ioctx);
1225 	if (likely(!was_dead))
1226 		put_ioctx(ioctx);	/* twice for the list */
1227 
1228 	aio_cancel_all(ioctx);
1229 	wait_for_all_aios(ioctx);
1230 	put_ioctx(ioctx);	/* once for the lookup */
1231 }
1232 
1233 /* sys_io_setup:
1234  *	Create an aio_context capable of receiving at least nr_events.
1235  *	ctxp must not point to an aio_context that already exists, and
1236  *	must be initialized to 0 prior to the call.  On successful
1237  *	creation of the aio_context, *ctxp is filled in with the resulting
1238  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1239  *	if the specified nr_events exceeds internal limits.  May fail
1240  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1241  *	of available events.  May fail with -ENOMEM if insufficient kernel
1242  *	resources are available.  May fail with -EFAULT if an invalid
1243  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1244  *	implemented.
1245  */
1246 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1247 {
1248 	struct kioctx *ioctx = NULL;
1249 	unsigned long ctx;
1250 	long ret;
1251 
1252 	ret = get_user(ctx, ctxp);
1253 	if (unlikely(ret))
1254 		goto out;
1255 
1256 	ret = -EINVAL;
1257 	if (unlikely(ctx || nr_events == 0)) {
1258 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1259 		         ctx, nr_events);
1260 		goto out;
1261 	}
1262 
1263 	ioctx = ioctx_alloc(nr_events);
1264 	ret = PTR_ERR(ioctx);
1265 	if (!IS_ERR(ioctx)) {
1266 		ret = put_user(ioctx->user_id, ctxp);
1267 		if (!ret)
1268 			return 0;
1269 
1270 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1271 		io_destroy(ioctx);
1272 	}
1273 
1274 out:
1275 	return ret;
1276 }
1277 
1278 /* sys_io_destroy:
1279  *	Destroy the aio_context specified.  May cancel any outstanding
1280  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1281  *	implemented.  May fail with -EFAULT if the context pointed to
1282  *	is invalid.
1283  */
1284 asmlinkage long sys_io_destroy(aio_context_t ctx)
1285 {
1286 	struct kioctx *ioctx = lookup_ioctx(ctx);
1287 	if (likely(NULL != ioctx)) {
1288 		io_destroy(ioctx);
1289 		return 0;
1290 	}
1291 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1292 	return -EINVAL;
1293 }
1294 
1295 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1296 {
1297 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1298 
1299 	BUG_ON(ret <= 0);
1300 
1301 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1302 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1303 		iov->iov_base += this;
1304 		iov->iov_len -= this;
1305 		iocb->ki_left -= this;
1306 		ret -= this;
1307 		if (iov->iov_len == 0) {
1308 			iocb->ki_cur_seg++;
1309 			iov++;
1310 		}
1311 	}
1312 
1313 	/* the caller should not have done more io than what fit in
1314 	 * the remaining iovecs */
1315 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1316 }
1317 
1318 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1319 {
1320 	struct file *file = iocb->ki_filp;
1321 	struct address_space *mapping = file->f_mapping;
1322 	struct inode *inode = mapping->host;
1323 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1324 			 unsigned long, loff_t);
1325 	ssize_t ret = 0;
1326 	unsigned short opcode;
1327 
1328 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1329 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1330 		rw_op = file->f_op->aio_read;
1331 		opcode = IOCB_CMD_PREADV;
1332 	} else {
1333 		rw_op = file->f_op->aio_write;
1334 		opcode = IOCB_CMD_PWRITEV;
1335 	}
1336 
1337 	do {
1338 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1339 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1340 			    iocb->ki_pos);
1341 		if (ret > 0)
1342 			aio_advance_iovec(iocb, ret);
1343 
1344 	/* retry all partial writes.  retry partial reads as long as its a
1345 	 * regular file. */
1346 	} while (ret > 0 && iocb->ki_left > 0 &&
1347 		 (opcode == IOCB_CMD_PWRITEV ||
1348 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1349 
1350 	/* This means we must have transferred all that we could */
1351 	/* No need to retry anymore */
1352 	if ((ret == 0) || (iocb->ki_left == 0))
1353 		ret = iocb->ki_nbytes - iocb->ki_left;
1354 
1355 	return ret;
1356 }
1357 
1358 static ssize_t aio_fdsync(struct kiocb *iocb)
1359 {
1360 	struct file *file = iocb->ki_filp;
1361 	ssize_t ret = -EINVAL;
1362 
1363 	if (file->f_op->aio_fsync)
1364 		ret = file->f_op->aio_fsync(iocb, 1);
1365 	return ret;
1366 }
1367 
1368 static ssize_t aio_fsync(struct kiocb *iocb)
1369 {
1370 	struct file *file = iocb->ki_filp;
1371 	ssize_t ret = -EINVAL;
1372 
1373 	if (file->f_op->aio_fsync)
1374 		ret = file->f_op->aio_fsync(iocb, 0);
1375 	return ret;
1376 }
1377 
1378 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1379 {
1380 	ssize_t ret;
1381 
1382 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1383 				    kiocb->ki_nbytes, 1,
1384 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1385 	if (ret < 0)
1386 		goto out;
1387 
1388 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1389 	kiocb->ki_cur_seg = 0;
1390 	/* ki_nbytes/left now reflect bytes instead of segs */
1391 	kiocb->ki_nbytes = ret;
1392 	kiocb->ki_left = ret;
1393 
1394 	ret = 0;
1395 out:
1396 	return ret;
1397 }
1398 
1399 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1400 {
1401 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1402 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1403 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1404 	kiocb->ki_nr_segs = 1;
1405 	kiocb->ki_cur_seg = 0;
1406 	return 0;
1407 }
1408 
1409 /*
1410  * aio_setup_iocb:
1411  *	Performs the initial checks and aio retry method
1412  *	setup for the kiocb at the time of io submission.
1413  */
1414 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1415 {
1416 	struct file *file = kiocb->ki_filp;
1417 	ssize_t ret = 0;
1418 
1419 	switch (kiocb->ki_opcode) {
1420 	case IOCB_CMD_PREAD:
1421 		ret = -EBADF;
1422 		if (unlikely(!(file->f_mode & FMODE_READ)))
1423 			break;
1424 		ret = -EFAULT;
1425 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1426 			kiocb->ki_left)))
1427 			break;
1428 		ret = security_file_permission(file, MAY_READ);
1429 		if (unlikely(ret))
1430 			break;
1431 		ret = aio_setup_single_vector(kiocb);
1432 		if (ret)
1433 			break;
1434 		ret = -EINVAL;
1435 		if (file->f_op->aio_read)
1436 			kiocb->ki_retry = aio_rw_vect_retry;
1437 		break;
1438 	case IOCB_CMD_PWRITE:
1439 		ret = -EBADF;
1440 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1441 			break;
1442 		ret = -EFAULT;
1443 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1444 			kiocb->ki_left)))
1445 			break;
1446 		ret = security_file_permission(file, MAY_WRITE);
1447 		if (unlikely(ret))
1448 			break;
1449 		ret = aio_setup_single_vector(kiocb);
1450 		if (ret)
1451 			break;
1452 		ret = -EINVAL;
1453 		if (file->f_op->aio_write)
1454 			kiocb->ki_retry = aio_rw_vect_retry;
1455 		break;
1456 	case IOCB_CMD_PREADV:
1457 		ret = -EBADF;
1458 		if (unlikely(!(file->f_mode & FMODE_READ)))
1459 			break;
1460 		ret = security_file_permission(file, MAY_READ);
1461 		if (unlikely(ret))
1462 			break;
1463 		ret = aio_setup_vectored_rw(READ, kiocb);
1464 		if (ret)
1465 			break;
1466 		ret = -EINVAL;
1467 		if (file->f_op->aio_read)
1468 			kiocb->ki_retry = aio_rw_vect_retry;
1469 		break;
1470 	case IOCB_CMD_PWRITEV:
1471 		ret = -EBADF;
1472 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1473 			break;
1474 		ret = security_file_permission(file, MAY_WRITE);
1475 		if (unlikely(ret))
1476 			break;
1477 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1478 		if (ret)
1479 			break;
1480 		ret = -EINVAL;
1481 		if (file->f_op->aio_write)
1482 			kiocb->ki_retry = aio_rw_vect_retry;
1483 		break;
1484 	case IOCB_CMD_FDSYNC:
1485 		ret = -EINVAL;
1486 		if (file->f_op->aio_fsync)
1487 			kiocb->ki_retry = aio_fdsync;
1488 		break;
1489 	case IOCB_CMD_FSYNC:
1490 		ret = -EINVAL;
1491 		if (file->f_op->aio_fsync)
1492 			kiocb->ki_retry = aio_fsync;
1493 		break;
1494 	default:
1495 		dprintk("EINVAL: io_submit: no operation provided\n");
1496 		ret = -EINVAL;
1497 	}
1498 
1499 	if (!kiocb->ki_retry)
1500 		return ret;
1501 
1502 	return 0;
1503 }
1504 
1505 /*
1506  * aio_wake_function:
1507  * 	wait queue callback function for aio notification,
1508  * 	Simply triggers a retry of the operation via kick_iocb.
1509  *
1510  * 	This callback is specified in the wait queue entry in
1511  *	a kiocb	(current->io_wait points to this wait queue
1512  *	entry when an aio operation executes; it is used
1513  * 	instead of a synchronous wait when an i/o blocking
1514  *	condition is encountered during aio).
1515  *
1516  * Note:
1517  * This routine is executed with the wait queue lock held.
1518  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1519  * the ioctx lock inside the wait queue lock. This is safe
1520  * because this callback isn't used for wait queues which
1521  * are nested inside ioctx lock (i.e. ctx->wait)
1522  */
1523 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1524 			     int sync, void *key)
1525 {
1526 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1527 
1528 	list_del_init(&wait->task_list);
1529 	kick_iocb(iocb);
1530 	return 1;
1531 }
1532 
1533 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1534 			 struct iocb *iocb)
1535 {
1536 	struct kiocb *req;
1537 	struct file *file;
1538 	ssize_t ret;
1539 
1540 	/* enforce forwards compatibility on users */
1541 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1542 		pr_debug("EINVAL: io_submit: reserve field set\n");
1543 		return -EINVAL;
1544 	}
1545 
1546 	/* prevent overflows */
1547 	if (unlikely(
1548 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1549 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1550 	    ((ssize_t)iocb->aio_nbytes < 0)
1551 	   )) {
1552 		pr_debug("EINVAL: io_submit: overflow check\n");
1553 		return -EINVAL;
1554 	}
1555 
1556 	file = fget(iocb->aio_fildes);
1557 	if (unlikely(!file))
1558 		return -EBADF;
1559 
1560 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1561 	if (unlikely(!req)) {
1562 		fput(file);
1563 		return -EAGAIN;
1564 	}
1565 	req->ki_filp = file;
1566 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1567 		/*
1568 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1569 		 * instance of the file* now. The file descriptor must be
1570 		 * an eventfd() fd, and will be signaled for each completed
1571 		 * event using the eventfd_signal() function.
1572 		 */
1573 		req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1574 		if (unlikely(IS_ERR(req->ki_eventfd))) {
1575 			ret = PTR_ERR(req->ki_eventfd);
1576 			goto out_put_req;
1577 		}
1578 	}
1579 
1580 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1581 	if (unlikely(ret)) {
1582 		dprintk("EFAULT: aio_key\n");
1583 		goto out_put_req;
1584 	}
1585 
1586 	req->ki_obj.user = user_iocb;
1587 	req->ki_user_data = iocb->aio_data;
1588 	req->ki_pos = iocb->aio_offset;
1589 
1590 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1591 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1592 	req->ki_opcode = iocb->aio_lio_opcode;
1593 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1594 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1595 
1596 	ret = aio_setup_iocb(req);
1597 
1598 	if (ret)
1599 		goto out_put_req;
1600 
1601 	spin_lock_irq(&ctx->ctx_lock);
1602 	aio_run_iocb(req);
1603 	if (!list_empty(&ctx->run_list)) {
1604 		/* drain the run list */
1605 		while (__aio_run_iocbs(ctx))
1606 			;
1607 	}
1608 	spin_unlock_irq(&ctx->ctx_lock);
1609 	aio_put_req(req);	/* drop extra ref to req */
1610 	return 0;
1611 
1612 out_put_req:
1613 	aio_put_req(req);	/* drop extra ref to req */
1614 	aio_put_req(req);	/* drop i/o ref to req */
1615 	return ret;
1616 }
1617 
1618 /* sys_io_submit:
1619  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1620  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1621  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1622  *	*iocbpp[0] is not properly initialized, if the operation specified
1623  *	is invalid for the file descriptor in the iocb.  May fail with
1624  *	-EFAULT if any of the data structures point to invalid data.  May
1625  *	fail with -EBADF if the file descriptor specified in the first
1626  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1627  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1628  *	fail with -ENOSYS if not implemented.
1629  */
1630 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1631 			      struct iocb __user * __user *iocbpp)
1632 {
1633 	struct kioctx *ctx;
1634 	long ret = 0;
1635 	int i;
1636 
1637 	if (unlikely(nr < 0))
1638 		return -EINVAL;
1639 
1640 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1641 		return -EFAULT;
1642 
1643 	ctx = lookup_ioctx(ctx_id);
1644 	if (unlikely(!ctx)) {
1645 		pr_debug("EINVAL: io_submit: invalid context id\n");
1646 		return -EINVAL;
1647 	}
1648 
1649 	/*
1650 	 * AKPM: should this return a partial result if some of the IOs were
1651 	 * successfully submitted?
1652 	 */
1653 	for (i=0; i<nr; i++) {
1654 		struct iocb __user *user_iocb;
1655 		struct iocb tmp;
1656 
1657 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1658 			ret = -EFAULT;
1659 			break;
1660 		}
1661 
1662 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1663 			ret = -EFAULT;
1664 			break;
1665 		}
1666 
1667 		ret = io_submit_one(ctx, user_iocb, &tmp);
1668 		if (ret)
1669 			break;
1670 	}
1671 
1672 	put_ioctx(ctx);
1673 	return i ? i : ret;
1674 }
1675 
1676 /* lookup_kiocb
1677  *	Finds a given iocb for cancellation.
1678  */
1679 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1680 				  u32 key)
1681 {
1682 	struct list_head *pos;
1683 
1684 	assert_spin_locked(&ctx->ctx_lock);
1685 
1686 	/* TODO: use a hash or array, this sucks. */
1687 	list_for_each(pos, &ctx->active_reqs) {
1688 		struct kiocb *kiocb = list_kiocb(pos);
1689 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1690 			return kiocb;
1691 	}
1692 	return NULL;
1693 }
1694 
1695 /* sys_io_cancel:
1696  *	Attempts to cancel an iocb previously passed to io_submit.  If
1697  *	the operation is successfully cancelled, the resulting event is
1698  *	copied into the memory pointed to by result without being placed
1699  *	into the completion queue and 0 is returned.  May fail with
1700  *	-EFAULT if any of the data structures pointed to are invalid.
1701  *	May fail with -EINVAL if aio_context specified by ctx_id is
1702  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1703  *	cancelled.  Will fail with -ENOSYS if not implemented.
1704  */
1705 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1706 			      struct io_event __user *result)
1707 {
1708 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1709 	struct kioctx *ctx;
1710 	struct kiocb *kiocb;
1711 	u32 key;
1712 	int ret;
1713 
1714 	ret = get_user(key, &iocb->aio_key);
1715 	if (unlikely(ret))
1716 		return -EFAULT;
1717 
1718 	ctx = lookup_ioctx(ctx_id);
1719 	if (unlikely(!ctx))
1720 		return -EINVAL;
1721 
1722 	spin_lock_irq(&ctx->ctx_lock);
1723 	ret = -EAGAIN;
1724 	kiocb = lookup_kiocb(ctx, iocb, key);
1725 	if (kiocb && kiocb->ki_cancel) {
1726 		cancel = kiocb->ki_cancel;
1727 		kiocb->ki_users ++;
1728 		kiocbSetCancelled(kiocb);
1729 	} else
1730 		cancel = NULL;
1731 	spin_unlock_irq(&ctx->ctx_lock);
1732 
1733 	if (NULL != cancel) {
1734 		struct io_event tmp;
1735 		pr_debug("calling cancel\n");
1736 		memset(&tmp, 0, sizeof(tmp));
1737 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1738 		tmp.data = kiocb->ki_user_data;
1739 		ret = cancel(kiocb, &tmp);
1740 		if (!ret) {
1741 			/* Cancellation succeeded -- copy the result
1742 			 * into the user's buffer.
1743 			 */
1744 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1745 				ret = -EFAULT;
1746 		}
1747 	} else
1748 		ret = -EINVAL;
1749 
1750 	put_ioctx(ctx);
1751 
1752 	return ret;
1753 }
1754 
1755 /* io_getevents:
1756  *	Attempts to read at least min_nr events and up to nr events from
1757  *	the completion queue for the aio_context specified by ctx_id.  May
1758  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1759  *	if nr is out of range, if when is out of range.  May fail with
1760  *	-EFAULT if any of the memory specified to is invalid.  May return
1761  *	0 or < min_nr if no events are available and the timeout specified
1762  *	by when	has elapsed, where when == NULL specifies an infinite
1763  *	timeout.  Note that the timeout pointed to by when is relative and
1764  *	will be updated if not NULL and the operation blocks.  Will fail
1765  *	with -ENOSYS if not implemented.
1766  */
1767 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1768 				 long min_nr,
1769 				 long nr,
1770 				 struct io_event __user *events,
1771 				 struct timespec __user *timeout)
1772 {
1773 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1774 	long ret = -EINVAL;
1775 
1776 	if (likely(ioctx)) {
1777 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1778 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1779 		put_ioctx(ioctx);
1780 	}
1781 
1782 	return ret;
1783 }
1784 
1785 __initcall(aio_setup);
1786 
1787 EXPORT_SYMBOL(aio_complete);
1788 EXPORT_SYMBOL(aio_put_req);
1789 EXPORT_SYMBOL(wait_on_sync_kiocb);
1790