xref: /openbmc/linux/fs/aio.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45 
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49 
50 #include "internal.h"
51 
52 #define KIOCB_KEY		0
53 
54 #define AIO_RING_MAGIC			0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES	1
56 #define AIO_RING_INCOMPAT_FEATURES	0
57 struct aio_ring {
58 	unsigned	id;	/* kernel internal index number */
59 	unsigned	nr;	/* number of io_events */
60 	unsigned	head;	/* Written to by userland or under ring_lock
61 				 * mutex by aio_read_events_ring(). */
62 	unsigned	tail;
63 
64 	unsigned	magic;
65 	unsigned	compat_features;
66 	unsigned	incompat_features;
67 	unsigned	header_length;	/* size of aio_ring */
68 
69 
70 	struct io_event		io_events[0];
71 }; /* 128 bytes + ring size */
72 
73 /*
74  * Plugging is meant to work with larger batches of IOs. If we don't
75  * have more than the below, then don't bother setting up a plug.
76  */
77 #define AIO_PLUG_THRESHOLD	2
78 
79 #define AIO_RING_PAGES	8
80 
81 struct kioctx_table {
82 	struct rcu_head		rcu;
83 	unsigned		nr;
84 	struct kioctx __rcu	*table[];
85 };
86 
87 struct kioctx_cpu {
88 	unsigned		reqs_available;
89 };
90 
91 struct ctx_rq_wait {
92 	struct completion comp;
93 	atomic_t count;
94 };
95 
96 struct kioctx {
97 	struct percpu_ref	users;
98 	atomic_t		dead;
99 
100 	struct percpu_ref	reqs;
101 
102 	unsigned long		user_id;
103 
104 	struct __percpu kioctx_cpu *cpu;
105 
106 	/*
107 	 * For percpu reqs_available, number of slots we move to/from global
108 	 * counter at a time:
109 	 */
110 	unsigned		req_batch;
111 	/*
112 	 * This is what userspace passed to io_setup(), it's not used for
113 	 * anything but counting against the global max_reqs quota.
114 	 *
115 	 * The real limit is nr_events - 1, which will be larger (see
116 	 * aio_setup_ring())
117 	 */
118 	unsigned		max_reqs;
119 
120 	/* Size of ringbuffer, in units of struct io_event */
121 	unsigned		nr_events;
122 
123 	unsigned long		mmap_base;
124 	unsigned long		mmap_size;
125 
126 	struct page		**ring_pages;
127 	long			nr_pages;
128 
129 	struct rcu_work		free_rwork;	/* see free_ioctx() */
130 
131 	/*
132 	 * signals when all in-flight requests are done
133 	 */
134 	struct ctx_rq_wait	*rq_wait;
135 
136 	struct {
137 		/*
138 		 * This counts the number of available slots in the ringbuffer,
139 		 * so we avoid overflowing it: it's decremented (if positive)
140 		 * when allocating a kiocb and incremented when the resulting
141 		 * io_event is pulled off the ringbuffer.
142 		 *
143 		 * We batch accesses to it with a percpu version.
144 		 */
145 		atomic_t	reqs_available;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct {
149 		spinlock_t	ctx_lock;
150 		struct list_head active_reqs;	/* used for cancellation */
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct {
154 		struct mutex	ring_lock;
155 		wait_queue_head_t wait;
156 	} ____cacheline_aligned_in_smp;
157 
158 	struct {
159 		unsigned	tail;
160 		unsigned	completed_events;
161 		spinlock_t	completion_lock;
162 	} ____cacheline_aligned_in_smp;
163 
164 	struct page		*internal_pages[AIO_RING_PAGES];
165 	struct file		*aio_ring_file;
166 
167 	unsigned		id;
168 };
169 
170 /*
171  * First field must be the file pointer in all the
172  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173  */
174 struct fsync_iocb {
175 	struct file		*file;
176 	struct work_struct	work;
177 	bool			datasync;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			woken;
185 	bool			cancelled;
186 	struct wait_queue_entry	wait;
187 	struct work_struct	work;
188 };
189 
190 /*
191  * NOTE! Each of the iocb union members has the file pointer
192  * as the first entry in their struct definition. So you can
193  * access the file pointer through any of the sub-structs,
194  * or directly as just 'ki_filp' in this struct.
195  */
196 struct aio_kiocb {
197 	union {
198 		struct file		*ki_filp;
199 		struct kiocb		rw;
200 		struct fsync_iocb	fsync;
201 		struct poll_iocb	poll;
202 	};
203 
204 	struct kioctx		*ki_ctx;
205 	kiocb_cancel_fn		*ki_cancel;
206 
207 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
208 	__u64			ki_user_data;	/* user's data for completion */
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 unsigned long aio_nr;		/* current system wide number of aio requests */
224 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 
227 static struct kmem_cache	*kiocb_cachep;
228 static struct kmem_cache	*kioctx_cachep;
229 
230 static struct vfsmount *aio_mnt;
231 
232 static const struct file_operations aio_ring_fops;
233 static const struct address_space_operations aio_ctx_aops;
234 
235 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236 {
237 	struct file *file;
238 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
239 	if (IS_ERR(inode))
240 		return ERR_CAST(inode);
241 
242 	inode->i_mapping->a_ops = &aio_ctx_aops;
243 	inode->i_mapping->private_data = ctx;
244 	inode->i_size = PAGE_SIZE * nr_pages;
245 
246 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 				O_RDWR, &aio_ring_fops);
248 	if (IS_ERR(file))
249 		iput(inode);
250 	return file;
251 }
252 
253 static struct dentry *aio_mount(struct file_system_type *fs_type,
254 				int flags, const char *dev_name, void *data)
255 {
256 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
257 					   AIO_RING_MAGIC);
258 
259 	if (!IS_ERR(root))
260 		root->d_sb->s_iflags |= SB_I_NOEXEC;
261 	return root;
262 }
263 
264 /* aio_setup
265  *	Creates the slab caches used by the aio routines, panic on
266  *	failure as this is done early during the boot sequence.
267  */
268 static int __init aio_setup(void)
269 {
270 	static struct file_system_type aio_fs = {
271 		.name		= "aio",
272 		.mount		= aio_mount,
273 		.kill_sb	= kill_anon_super,
274 	};
275 	aio_mnt = kern_mount(&aio_fs);
276 	if (IS_ERR(aio_mnt))
277 		panic("Failed to create aio fs mount.");
278 
279 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
280 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
281 	return 0;
282 }
283 __initcall(aio_setup);
284 
285 static void put_aio_ring_file(struct kioctx *ctx)
286 {
287 	struct file *aio_ring_file = ctx->aio_ring_file;
288 	struct address_space *i_mapping;
289 
290 	if (aio_ring_file) {
291 		truncate_setsize(file_inode(aio_ring_file), 0);
292 
293 		/* Prevent further access to the kioctx from migratepages */
294 		i_mapping = aio_ring_file->f_mapping;
295 		spin_lock(&i_mapping->private_lock);
296 		i_mapping->private_data = NULL;
297 		ctx->aio_ring_file = NULL;
298 		spin_unlock(&i_mapping->private_lock);
299 
300 		fput(aio_ring_file);
301 	}
302 }
303 
304 static void aio_free_ring(struct kioctx *ctx)
305 {
306 	int i;
307 
308 	/* Disconnect the kiotx from the ring file.  This prevents future
309 	 * accesses to the kioctx from page migration.
310 	 */
311 	put_aio_ring_file(ctx);
312 
313 	for (i = 0; i < ctx->nr_pages; i++) {
314 		struct page *page;
315 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
316 				page_count(ctx->ring_pages[i]));
317 		page = ctx->ring_pages[i];
318 		if (!page)
319 			continue;
320 		ctx->ring_pages[i] = NULL;
321 		put_page(page);
322 	}
323 
324 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
325 		kfree(ctx->ring_pages);
326 		ctx->ring_pages = NULL;
327 	}
328 }
329 
330 static int aio_ring_mremap(struct vm_area_struct *vma)
331 {
332 	struct file *file = vma->vm_file;
333 	struct mm_struct *mm = vma->vm_mm;
334 	struct kioctx_table *table;
335 	int i, res = -EINVAL;
336 
337 	spin_lock(&mm->ioctx_lock);
338 	rcu_read_lock();
339 	table = rcu_dereference(mm->ioctx_table);
340 	for (i = 0; i < table->nr; i++) {
341 		struct kioctx *ctx;
342 
343 		ctx = rcu_dereference(table->table[i]);
344 		if (ctx && ctx->aio_ring_file == file) {
345 			if (!atomic_read(&ctx->dead)) {
346 				ctx->user_id = ctx->mmap_base = vma->vm_start;
347 				res = 0;
348 			}
349 			break;
350 		}
351 	}
352 
353 	rcu_read_unlock();
354 	spin_unlock(&mm->ioctx_lock);
355 	return res;
356 }
357 
358 static const struct vm_operations_struct aio_ring_vm_ops = {
359 	.mremap		= aio_ring_mremap,
360 #if IS_ENABLED(CONFIG_MMU)
361 	.fault		= filemap_fault,
362 	.map_pages	= filemap_map_pages,
363 	.page_mkwrite	= filemap_page_mkwrite,
364 #endif
365 };
366 
367 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
368 {
369 	vma->vm_flags |= VM_DONTEXPAND;
370 	vma->vm_ops = &aio_ring_vm_ops;
371 	return 0;
372 }
373 
374 static const struct file_operations aio_ring_fops = {
375 	.mmap = aio_ring_mmap,
376 };
377 
378 #if IS_ENABLED(CONFIG_MIGRATION)
379 static int aio_migratepage(struct address_space *mapping, struct page *new,
380 			struct page *old, enum migrate_mode mode)
381 {
382 	struct kioctx *ctx;
383 	unsigned long flags;
384 	pgoff_t idx;
385 	int rc;
386 
387 	/*
388 	 * We cannot support the _NO_COPY case here, because copy needs to
389 	 * happen under the ctx->completion_lock. That does not work with the
390 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
391 	 */
392 	if (mode == MIGRATE_SYNC_NO_COPY)
393 		return -EINVAL;
394 
395 	rc = 0;
396 
397 	/* mapping->private_lock here protects against the kioctx teardown.  */
398 	spin_lock(&mapping->private_lock);
399 	ctx = mapping->private_data;
400 	if (!ctx) {
401 		rc = -EINVAL;
402 		goto out;
403 	}
404 
405 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
406 	 * to the ring's head, and prevents page migration from mucking in
407 	 * a partially initialized kiotx.
408 	 */
409 	if (!mutex_trylock(&ctx->ring_lock)) {
410 		rc = -EAGAIN;
411 		goto out;
412 	}
413 
414 	idx = old->index;
415 	if (idx < (pgoff_t)ctx->nr_pages) {
416 		/* Make sure the old page hasn't already been changed */
417 		if (ctx->ring_pages[idx] != old)
418 			rc = -EAGAIN;
419 	} else
420 		rc = -EINVAL;
421 
422 	if (rc != 0)
423 		goto out_unlock;
424 
425 	/* Writeback must be complete */
426 	BUG_ON(PageWriteback(old));
427 	get_page(new);
428 
429 	rc = migrate_page_move_mapping(mapping, new, old, mode, 1);
430 	if (rc != MIGRATEPAGE_SUCCESS) {
431 		put_page(new);
432 		goto out_unlock;
433 	}
434 
435 	/* Take completion_lock to prevent other writes to the ring buffer
436 	 * while the old page is copied to the new.  This prevents new
437 	 * events from being lost.
438 	 */
439 	spin_lock_irqsave(&ctx->completion_lock, flags);
440 	migrate_page_copy(new, old);
441 	BUG_ON(ctx->ring_pages[idx] != old);
442 	ctx->ring_pages[idx] = new;
443 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
444 
445 	/* The old page is no longer accessible. */
446 	put_page(old);
447 
448 out_unlock:
449 	mutex_unlock(&ctx->ring_lock);
450 out:
451 	spin_unlock(&mapping->private_lock);
452 	return rc;
453 }
454 #endif
455 
456 static const struct address_space_operations aio_ctx_aops = {
457 	.set_page_dirty = __set_page_dirty_no_writeback,
458 #if IS_ENABLED(CONFIG_MIGRATION)
459 	.migratepage	= aio_migratepage,
460 #endif
461 };
462 
463 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
464 {
465 	struct aio_ring *ring;
466 	struct mm_struct *mm = current->mm;
467 	unsigned long size, unused;
468 	int nr_pages;
469 	int i;
470 	struct file *file;
471 
472 	/* Compensate for the ring buffer's head/tail overlap entry */
473 	nr_events += 2;	/* 1 is required, 2 for good luck */
474 
475 	size = sizeof(struct aio_ring);
476 	size += sizeof(struct io_event) * nr_events;
477 
478 	nr_pages = PFN_UP(size);
479 	if (nr_pages < 0)
480 		return -EINVAL;
481 
482 	file = aio_private_file(ctx, nr_pages);
483 	if (IS_ERR(file)) {
484 		ctx->aio_ring_file = NULL;
485 		return -ENOMEM;
486 	}
487 
488 	ctx->aio_ring_file = file;
489 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
490 			/ sizeof(struct io_event);
491 
492 	ctx->ring_pages = ctx->internal_pages;
493 	if (nr_pages > AIO_RING_PAGES) {
494 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
495 					  GFP_KERNEL);
496 		if (!ctx->ring_pages) {
497 			put_aio_ring_file(ctx);
498 			return -ENOMEM;
499 		}
500 	}
501 
502 	for (i = 0; i < nr_pages; i++) {
503 		struct page *page;
504 		page = find_or_create_page(file->f_mapping,
505 					   i, GFP_HIGHUSER | __GFP_ZERO);
506 		if (!page)
507 			break;
508 		pr_debug("pid(%d) page[%d]->count=%d\n",
509 			 current->pid, i, page_count(page));
510 		SetPageUptodate(page);
511 		unlock_page(page);
512 
513 		ctx->ring_pages[i] = page;
514 	}
515 	ctx->nr_pages = i;
516 
517 	if (unlikely(i != nr_pages)) {
518 		aio_free_ring(ctx);
519 		return -ENOMEM;
520 	}
521 
522 	ctx->mmap_size = nr_pages * PAGE_SIZE;
523 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
524 
525 	if (down_write_killable(&mm->mmap_sem)) {
526 		ctx->mmap_size = 0;
527 		aio_free_ring(ctx);
528 		return -EINTR;
529 	}
530 
531 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
532 				       PROT_READ | PROT_WRITE,
533 				       MAP_SHARED, 0, &unused, NULL);
534 	up_write(&mm->mmap_sem);
535 	if (IS_ERR((void *)ctx->mmap_base)) {
536 		ctx->mmap_size = 0;
537 		aio_free_ring(ctx);
538 		return -ENOMEM;
539 	}
540 
541 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
542 
543 	ctx->user_id = ctx->mmap_base;
544 	ctx->nr_events = nr_events; /* trusted copy */
545 
546 	ring = kmap_atomic(ctx->ring_pages[0]);
547 	ring->nr = nr_events;	/* user copy */
548 	ring->id = ~0U;
549 	ring->head = ring->tail = 0;
550 	ring->magic = AIO_RING_MAGIC;
551 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
552 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
553 	ring->header_length = sizeof(struct aio_ring);
554 	kunmap_atomic(ring);
555 	flush_dcache_page(ctx->ring_pages[0]);
556 
557 	return 0;
558 }
559 
560 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
561 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
562 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
563 
564 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
565 {
566 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
567 	struct kioctx *ctx = req->ki_ctx;
568 	unsigned long flags;
569 
570 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
571 		return;
572 
573 	spin_lock_irqsave(&ctx->ctx_lock, flags);
574 	list_add_tail(&req->ki_list, &ctx->active_reqs);
575 	req->ki_cancel = cancel;
576 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
577 }
578 EXPORT_SYMBOL(kiocb_set_cancel_fn);
579 
580 /*
581  * free_ioctx() should be RCU delayed to synchronize against the RCU
582  * protected lookup_ioctx() and also needs process context to call
583  * aio_free_ring().  Use rcu_work.
584  */
585 static void free_ioctx(struct work_struct *work)
586 {
587 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
588 					  free_rwork);
589 	pr_debug("freeing %p\n", ctx);
590 
591 	aio_free_ring(ctx);
592 	free_percpu(ctx->cpu);
593 	percpu_ref_exit(&ctx->reqs);
594 	percpu_ref_exit(&ctx->users);
595 	kmem_cache_free(kioctx_cachep, ctx);
596 }
597 
598 static void free_ioctx_reqs(struct percpu_ref *ref)
599 {
600 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
601 
602 	/* At this point we know that there are no any in-flight requests */
603 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
604 		complete(&ctx->rq_wait->comp);
605 
606 	/* Synchronize against RCU protected table->table[] dereferences */
607 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
608 	queue_rcu_work(system_wq, &ctx->free_rwork);
609 }
610 
611 /*
612  * When this function runs, the kioctx has been removed from the "hash table"
613  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
614  * now it's safe to cancel any that need to be.
615  */
616 static void free_ioctx_users(struct percpu_ref *ref)
617 {
618 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
619 	struct aio_kiocb *req;
620 
621 	spin_lock_irq(&ctx->ctx_lock);
622 
623 	while (!list_empty(&ctx->active_reqs)) {
624 		req = list_first_entry(&ctx->active_reqs,
625 				       struct aio_kiocb, ki_list);
626 		req->ki_cancel(&req->rw);
627 		list_del_init(&req->ki_list);
628 	}
629 
630 	spin_unlock_irq(&ctx->ctx_lock);
631 
632 	percpu_ref_kill(&ctx->reqs);
633 	percpu_ref_put(&ctx->reqs);
634 }
635 
636 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
637 {
638 	unsigned i, new_nr;
639 	struct kioctx_table *table, *old;
640 	struct aio_ring *ring;
641 
642 	spin_lock(&mm->ioctx_lock);
643 	table = rcu_dereference_raw(mm->ioctx_table);
644 
645 	while (1) {
646 		if (table)
647 			for (i = 0; i < table->nr; i++)
648 				if (!rcu_access_pointer(table->table[i])) {
649 					ctx->id = i;
650 					rcu_assign_pointer(table->table[i], ctx);
651 					spin_unlock(&mm->ioctx_lock);
652 
653 					/* While kioctx setup is in progress,
654 					 * we are protected from page migration
655 					 * changes ring_pages by ->ring_lock.
656 					 */
657 					ring = kmap_atomic(ctx->ring_pages[0]);
658 					ring->id = ctx->id;
659 					kunmap_atomic(ring);
660 					return 0;
661 				}
662 
663 		new_nr = (table ? table->nr : 1) * 4;
664 		spin_unlock(&mm->ioctx_lock);
665 
666 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
667 				new_nr, GFP_KERNEL);
668 		if (!table)
669 			return -ENOMEM;
670 
671 		table->nr = new_nr;
672 
673 		spin_lock(&mm->ioctx_lock);
674 		old = rcu_dereference_raw(mm->ioctx_table);
675 
676 		if (!old) {
677 			rcu_assign_pointer(mm->ioctx_table, table);
678 		} else if (table->nr > old->nr) {
679 			memcpy(table->table, old->table,
680 			       old->nr * sizeof(struct kioctx *));
681 
682 			rcu_assign_pointer(mm->ioctx_table, table);
683 			kfree_rcu(old, rcu);
684 		} else {
685 			kfree(table);
686 			table = old;
687 		}
688 	}
689 }
690 
691 static void aio_nr_sub(unsigned nr)
692 {
693 	spin_lock(&aio_nr_lock);
694 	if (WARN_ON(aio_nr - nr > aio_nr))
695 		aio_nr = 0;
696 	else
697 		aio_nr -= nr;
698 	spin_unlock(&aio_nr_lock);
699 }
700 
701 /* ioctx_alloc
702  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
703  */
704 static struct kioctx *ioctx_alloc(unsigned nr_events)
705 {
706 	struct mm_struct *mm = current->mm;
707 	struct kioctx *ctx;
708 	int err = -ENOMEM;
709 
710 	/*
711 	 * Store the original nr_events -- what userspace passed to io_setup(),
712 	 * for counting against the global limit -- before it changes.
713 	 */
714 	unsigned int max_reqs = nr_events;
715 
716 	/*
717 	 * We keep track of the number of available ringbuffer slots, to prevent
718 	 * overflow (reqs_available), and we also use percpu counters for this.
719 	 *
720 	 * So since up to half the slots might be on other cpu's percpu counters
721 	 * and unavailable, double nr_events so userspace sees what they
722 	 * expected: additionally, we move req_batch slots to/from percpu
723 	 * counters at a time, so make sure that isn't 0:
724 	 */
725 	nr_events = max(nr_events, num_possible_cpus() * 4);
726 	nr_events *= 2;
727 
728 	/* Prevent overflows */
729 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
730 		pr_debug("ENOMEM: nr_events too high\n");
731 		return ERR_PTR(-EINVAL);
732 	}
733 
734 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
735 		return ERR_PTR(-EAGAIN);
736 
737 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
738 	if (!ctx)
739 		return ERR_PTR(-ENOMEM);
740 
741 	ctx->max_reqs = max_reqs;
742 
743 	spin_lock_init(&ctx->ctx_lock);
744 	spin_lock_init(&ctx->completion_lock);
745 	mutex_init(&ctx->ring_lock);
746 	/* Protect against page migration throughout kiotx setup by keeping
747 	 * the ring_lock mutex held until setup is complete. */
748 	mutex_lock(&ctx->ring_lock);
749 	init_waitqueue_head(&ctx->wait);
750 
751 	INIT_LIST_HEAD(&ctx->active_reqs);
752 
753 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
754 		goto err;
755 
756 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
757 		goto err;
758 
759 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
760 	if (!ctx->cpu)
761 		goto err;
762 
763 	err = aio_setup_ring(ctx, nr_events);
764 	if (err < 0)
765 		goto err;
766 
767 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
768 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
769 	if (ctx->req_batch < 1)
770 		ctx->req_batch = 1;
771 
772 	/* limit the number of system wide aios */
773 	spin_lock(&aio_nr_lock);
774 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
775 	    aio_nr + ctx->max_reqs < aio_nr) {
776 		spin_unlock(&aio_nr_lock);
777 		err = -EAGAIN;
778 		goto err_ctx;
779 	}
780 	aio_nr += ctx->max_reqs;
781 	spin_unlock(&aio_nr_lock);
782 
783 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
784 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
785 
786 	err = ioctx_add_table(ctx, mm);
787 	if (err)
788 		goto err_cleanup;
789 
790 	/* Release the ring_lock mutex now that all setup is complete. */
791 	mutex_unlock(&ctx->ring_lock);
792 
793 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
794 		 ctx, ctx->user_id, mm, ctx->nr_events);
795 	return ctx;
796 
797 err_cleanup:
798 	aio_nr_sub(ctx->max_reqs);
799 err_ctx:
800 	atomic_set(&ctx->dead, 1);
801 	if (ctx->mmap_size)
802 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
803 	aio_free_ring(ctx);
804 err:
805 	mutex_unlock(&ctx->ring_lock);
806 	free_percpu(ctx->cpu);
807 	percpu_ref_exit(&ctx->reqs);
808 	percpu_ref_exit(&ctx->users);
809 	kmem_cache_free(kioctx_cachep, ctx);
810 	pr_debug("error allocating ioctx %d\n", err);
811 	return ERR_PTR(err);
812 }
813 
814 /* kill_ioctx
815  *	Cancels all outstanding aio requests on an aio context.  Used
816  *	when the processes owning a context have all exited to encourage
817  *	the rapid destruction of the kioctx.
818  */
819 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
820 		      struct ctx_rq_wait *wait)
821 {
822 	struct kioctx_table *table;
823 
824 	spin_lock(&mm->ioctx_lock);
825 	if (atomic_xchg(&ctx->dead, 1)) {
826 		spin_unlock(&mm->ioctx_lock);
827 		return -EINVAL;
828 	}
829 
830 	table = rcu_dereference_raw(mm->ioctx_table);
831 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
832 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
833 	spin_unlock(&mm->ioctx_lock);
834 
835 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
836 	wake_up_all(&ctx->wait);
837 
838 	/*
839 	 * It'd be more correct to do this in free_ioctx(), after all
840 	 * the outstanding kiocbs have finished - but by then io_destroy
841 	 * has already returned, so io_setup() could potentially return
842 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
843 	 *  could tell).
844 	 */
845 	aio_nr_sub(ctx->max_reqs);
846 
847 	if (ctx->mmap_size)
848 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
849 
850 	ctx->rq_wait = wait;
851 	percpu_ref_kill(&ctx->users);
852 	return 0;
853 }
854 
855 /*
856  * exit_aio: called when the last user of mm goes away.  At this point, there is
857  * no way for any new requests to be submited or any of the io_* syscalls to be
858  * called on the context.
859  *
860  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
861  * them.
862  */
863 void exit_aio(struct mm_struct *mm)
864 {
865 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
866 	struct ctx_rq_wait wait;
867 	int i, skipped;
868 
869 	if (!table)
870 		return;
871 
872 	atomic_set(&wait.count, table->nr);
873 	init_completion(&wait.comp);
874 
875 	skipped = 0;
876 	for (i = 0; i < table->nr; ++i) {
877 		struct kioctx *ctx =
878 			rcu_dereference_protected(table->table[i], true);
879 
880 		if (!ctx) {
881 			skipped++;
882 			continue;
883 		}
884 
885 		/*
886 		 * We don't need to bother with munmap() here - exit_mmap(mm)
887 		 * is coming and it'll unmap everything. And we simply can't,
888 		 * this is not necessarily our ->mm.
889 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
890 		 * that it needs to unmap the area, just set it to 0.
891 		 */
892 		ctx->mmap_size = 0;
893 		kill_ioctx(mm, ctx, &wait);
894 	}
895 
896 	if (!atomic_sub_and_test(skipped, &wait.count)) {
897 		/* Wait until all IO for the context are done. */
898 		wait_for_completion(&wait.comp);
899 	}
900 
901 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
902 	kfree(table);
903 }
904 
905 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
906 {
907 	struct kioctx_cpu *kcpu;
908 	unsigned long flags;
909 
910 	local_irq_save(flags);
911 	kcpu = this_cpu_ptr(ctx->cpu);
912 	kcpu->reqs_available += nr;
913 
914 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
915 		kcpu->reqs_available -= ctx->req_batch;
916 		atomic_add(ctx->req_batch, &ctx->reqs_available);
917 	}
918 
919 	local_irq_restore(flags);
920 }
921 
922 static bool __get_reqs_available(struct kioctx *ctx)
923 {
924 	struct kioctx_cpu *kcpu;
925 	bool ret = false;
926 	unsigned long flags;
927 
928 	local_irq_save(flags);
929 	kcpu = this_cpu_ptr(ctx->cpu);
930 	if (!kcpu->reqs_available) {
931 		int old, avail = atomic_read(&ctx->reqs_available);
932 
933 		do {
934 			if (avail < ctx->req_batch)
935 				goto out;
936 
937 			old = avail;
938 			avail = atomic_cmpxchg(&ctx->reqs_available,
939 					       avail, avail - ctx->req_batch);
940 		} while (avail != old);
941 
942 		kcpu->reqs_available += ctx->req_batch;
943 	}
944 
945 	ret = true;
946 	kcpu->reqs_available--;
947 out:
948 	local_irq_restore(flags);
949 	return ret;
950 }
951 
952 /* refill_reqs_available
953  *	Updates the reqs_available reference counts used for tracking the
954  *	number of free slots in the completion ring.  This can be called
955  *	from aio_complete() (to optimistically update reqs_available) or
956  *	from aio_get_req() (the we're out of events case).  It must be
957  *	called holding ctx->completion_lock.
958  */
959 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
960                                   unsigned tail)
961 {
962 	unsigned events_in_ring, completed;
963 
964 	/* Clamp head since userland can write to it. */
965 	head %= ctx->nr_events;
966 	if (head <= tail)
967 		events_in_ring = tail - head;
968 	else
969 		events_in_ring = ctx->nr_events - (head - tail);
970 
971 	completed = ctx->completed_events;
972 	if (events_in_ring < completed)
973 		completed -= events_in_ring;
974 	else
975 		completed = 0;
976 
977 	if (!completed)
978 		return;
979 
980 	ctx->completed_events -= completed;
981 	put_reqs_available(ctx, completed);
982 }
983 
984 /* user_refill_reqs_available
985  *	Called to refill reqs_available when aio_get_req() encounters an
986  *	out of space in the completion ring.
987  */
988 static void user_refill_reqs_available(struct kioctx *ctx)
989 {
990 	spin_lock_irq(&ctx->completion_lock);
991 	if (ctx->completed_events) {
992 		struct aio_ring *ring;
993 		unsigned head;
994 
995 		/* Access of ring->head may race with aio_read_events_ring()
996 		 * here, but that's okay since whether we read the old version
997 		 * or the new version, and either will be valid.  The important
998 		 * part is that head cannot pass tail since we prevent
999 		 * aio_complete() from updating tail by holding
1000 		 * ctx->completion_lock.  Even if head is invalid, the check
1001 		 * against ctx->completed_events below will make sure we do the
1002 		 * safe/right thing.
1003 		 */
1004 		ring = kmap_atomic(ctx->ring_pages[0]);
1005 		head = ring->head;
1006 		kunmap_atomic(ring);
1007 
1008 		refill_reqs_available(ctx, head, ctx->tail);
1009 	}
1010 
1011 	spin_unlock_irq(&ctx->completion_lock);
1012 }
1013 
1014 static bool get_reqs_available(struct kioctx *ctx)
1015 {
1016 	if (__get_reqs_available(ctx))
1017 		return true;
1018 	user_refill_reqs_available(ctx);
1019 	return __get_reqs_available(ctx);
1020 }
1021 
1022 /* aio_get_req
1023  *	Allocate a slot for an aio request.
1024  * Returns NULL if no requests are free.
1025  */
1026 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027 {
1028 	struct aio_kiocb *req;
1029 
1030 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1031 	if (unlikely(!req))
1032 		return NULL;
1033 
1034 	percpu_ref_get(&ctx->reqs);
1035 	req->ki_ctx = ctx;
1036 	INIT_LIST_HEAD(&req->ki_list);
1037 	refcount_set(&req->ki_refcnt, 0);
1038 	req->ki_eventfd = NULL;
1039 	return req;
1040 }
1041 
1042 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1043 {
1044 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1045 	struct mm_struct *mm = current->mm;
1046 	struct kioctx *ctx, *ret = NULL;
1047 	struct kioctx_table *table;
1048 	unsigned id;
1049 
1050 	if (get_user(id, &ring->id))
1051 		return NULL;
1052 
1053 	rcu_read_lock();
1054 	table = rcu_dereference(mm->ioctx_table);
1055 
1056 	if (!table || id >= table->nr)
1057 		goto out;
1058 
1059 	id = array_index_nospec(id, table->nr);
1060 	ctx = rcu_dereference(table->table[id]);
1061 	if (ctx && ctx->user_id == ctx_id) {
1062 		if (percpu_ref_tryget_live(&ctx->users))
1063 			ret = ctx;
1064 	}
1065 out:
1066 	rcu_read_unlock();
1067 	return ret;
1068 }
1069 
1070 static inline void iocb_put(struct aio_kiocb *iocb)
1071 {
1072 	if (refcount_read(&iocb->ki_refcnt) == 0 ||
1073 	    refcount_dec_and_test(&iocb->ki_refcnt)) {
1074 		if (iocb->ki_filp)
1075 			fput(iocb->ki_filp);
1076 		percpu_ref_put(&iocb->ki_ctx->reqs);
1077 		kmem_cache_free(kiocb_cachep, iocb);
1078 	}
1079 }
1080 
1081 static void aio_fill_event(struct io_event *ev, struct aio_kiocb *iocb,
1082 			   long res, long res2)
1083 {
1084 	ev->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1085 	ev->data = iocb->ki_user_data;
1086 	ev->res = res;
1087 	ev->res2 = res2;
1088 }
1089 
1090 /* aio_complete
1091  *	Called when the io request on the given iocb is complete.
1092  */
1093 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1094 {
1095 	struct kioctx	*ctx = iocb->ki_ctx;
1096 	struct aio_ring	*ring;
1097 	struct io_event	*ev_page, *event;
1098 	unsigned tail, pos, head;
1099 	unsigned long	flags;
1100 
1101 	/*
1102 	 * Add a completion event to the ring buffer. Must be done holding
1103 	 * ctx->completion_lock to prevent other code from messing with the tail
1104 	 * pointer since we might be called from irq context.
1105 	 */
1106 	spin_lock_irqsave(&ctx->completion_lock, flags);
1107 
1108 	tail = ctx->tail;
1109 	pos = tail + AIO_EVENTS_OFFSET;
1110 
1111 	if (++tail >= ctx->nr_events)
1112 		tail = 0;
1113 
1114 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1115 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1116 
1117 	aio_fill_event(event, iocb, res, res2);
1118 
1119 	kunmap_atomic(ev_page);
1120 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1121 
1122 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1123 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1124 		 res, res2);
1125 
1126 	/* after flagging the request as done, we
1127 	 * must never even look at it again
1128 	 */
1129 	smp_wmb();	/* make event visible before updating tail */
1130 
1131 	ctx->tail = tail;
1132 
1133 	ring = kmap_atomic(ctx->ring_pages[0]);
1134 	head = ring->head;
1135 	ring->tail = tail;
1136 	kunmap_atomic(ring);
1137 	flush_dcache_page(ctx->ring_pages[0]);
1138 
1139 	ctx->completed_events++;
1140 	if (ctx->completed_events > 1)
1141 		refill_reqs_available(ctx, head, tail);
1142 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1143 
1144 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1145 
1146 	/*
1147 	 * Check if the user asked us to deliver the result through an
1148 	 * eventfd. The eventfd_signal() function is safe to be called
1149 	 * from IRQ context.
1150 	 */
1151 	if (iocb->ki_eventfd) {
1152 		eventfd_signal(iocb->ki_eventfd, 1);
1153 		eventfd_ctx_put(iocb->ki_eventfd);
1154 	}
1155 
1156 	/*
1157 	 * We have to order our ring_info tail store above and test
1158 	 * of the wait list below outside the wait lock.  This is
1159 	 * like in wake_up_bit() where clearing a bit has to be
1160 	 * ordered with the unlocked test.
1161 	 */
1162 	smp_mb();
1163 
1164 	if (waitqueue_active(&ctx->wait))
1165 		wake_up(&ctx->wait);
1166 	iocb_put(iocb);
1167 }
1168 
1169 /* aio_read_events_ring
1170  *	Pull an event off of the ioctx's event ring.  Returns the number of
1171  *	events fetched
1172  */
1173 static long aio_read_events_ring(struct kioctx *ctx,
1174 				 struct io_event __user *event, long nr)
1175 {
1176 	struct aio_ring *ring;
1177 	unsigned head, tail, pos;
1178 	long ret = 0;
1179 	int copy_ret;
1180 
1181 	/*
1182 	 * The mutex can block and wake us up and that will cause
1183 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1184 	 * and repeat. This should be rare enough that it doesn't cause
1185 	 * peformance issues. See the comment in read_events() for more detail.
1186 	 */
1187 	sched_annotate_sleep();
1188 	mutex_lock(&ctx->ring_lock);
1189 
1190 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1191 	ring = kmap_atomic(ctx->ring_pages[0]);
1192 	head = ring->head;
1193 	tail = ring->tail;
1194 	kunmap_atomic(ring);
1195 
1196 	/*
1197 	 * Ensure that once we've read the current tail pointer, that
1198 	 * we also see the events that were stored up to the tail.
1199 	 */
1200 	smp_rmb();
1201 
1202 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1203 
1204 	if (head == tail)
1205 		goto out;
1206 
1207 	head %= ctx->nr_events;
1208 	tail %= ctx->nr_events;
1209 
1210 	while (ret < nr) {
1211 		long avail;
1212 		struct io_event *ev;
1213 		struct page *page;
1214 
1215 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1216 		if (head == tail)
1217 			break;
1218 
1219 		pos = head + AIO_EVENTS_OFFSET;
1220 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1221 		pos %= AIO_EVENTS_PER_PAGE;
1222 
1223 		avail = min(avail, nr - ret);
1224 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1225 
1226 		ev = kmap(page);
1227 		copy_ret = copy_to_user(event + ret, ev + pos,
1228 					sizeof(*ev) * avail);
1229 		kunmap(page);
1230 
1231 		if (unlikely(copy_ret)) {
1232 			ret = -EFAULT;
1233 			goto out;
1234 		}
1235 
1236 		ret += avail;
1237 		head += avail;
1238 		head %= ctx->nr_events;
1239 	}
1240 
1241 	ring = kmap_atomic(ctx->ring_pages[0]);
1242 	ring->head = head;
1243 	kunmap_atomic(ring);
1244 	flush_dcache_page(ctx->ring_pages[0]);
1245 
1246 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1247 out:
1248 	mutex_unlock(&ctx->ring_lock);
1249 
1250 	return ret;
1251 }
1252 
1253 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254 			    struct io_event __user *event, long *i)
1255 {
1256 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1257 
1258 	if (ret > 0)
1259 		*i += ret;
1260 
1261 	if (unlikely(atomic_read(&ctx->dead)))
1262 		ret = -EINVAL;
1263 
1264 	if (!*i)
1265 		*i = ret;
1266 
1267 	return ret < 0 || *i >= min_nr;
1268 }
1269 
1270 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1271 			struct io_event __user *event,
1272 			ktime_t until)
1273 {
1274 	long ret = 0;
1275 
1276 	/*
1277 	 * Note that aio_read_events() is being called as the conditional - i.e.
1278 	 * we're calling it after prepare_to_wait() has set task state to
1279 	 * TASK_INTERRUPTIBLE.
1280 	 *
1281 	 * But aio_read_events() can block, and if it blocks it's going to flip
1282 	 * the task state back to TASK_RUNNING.
1283 	 *
1284 	 * This should be ok, provided it doesn't flip the state back to
1285 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286 	 * will only happen if the mutex_lock() call blocks, and we then find
1287 	 * the ringbuffer empty. So in practice we should be ok, but it's
1288 	 * something to be aware of when touching this code.
1289 	 */
1290 	if (until == 0)
1291 		aio_read_events(ctx, min_nr, nr, event, &ret);
1292 	else
1293 		wait_event_interruptible_hrtimeout(ctx->wait,
1294 				aio_read_events(ctx, min_nr, nr, event, &ret),
1295 				until);
1296 	return ret;
1297 }
1298 
1299 /* sys_io_setup:
1300  *	Create an aio_context capable of receiving at least nr_events.
1301  *	ctxp must not point to an aio_context that already exists, and
1302  *	must be initialized to 0 prior to the call.  On successful
1303  *	creation of the aio_context, *ctxp is filled in with the resulting
1304  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1305  *	if the specified nr_events exceeds internal limits.  May fail
1306  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1307  *	of available events.  May fail with -ENOMEM if insufficient kernel
1308  *	resources are available.  May fail with -EFAULT if an invalid
1309  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1310  *	implemented.
1311  */
1312 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1313 {
1314 	struct kioctx *ioctx = NULL;
1315 	unsigned long ctx;
1316 	long ret;
1317 
1318 	ret = get_user(ctx, ctxp);
1319 	if (unlikely(ret))
1320 		goto out;
1321 
1322 	ret = -EINVAL;
1323 	if (unlikely(ctx || nr_events == 0)) {
1324 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1325 		         ctx, nr_events);
1326 		goto out;
1327 	}
1328 
1329 	ioctx = ioctx_alloc(nr_events);
1330 	ret = PTR_ERR(ioctx);
1331 	if (!IS_ERR(ioctx)) {
1332 		ret = put_user(ioctx->user_id, ctxp);
1333 		if (ret)
1334 			kill_ioctx(current->mm, ioctx, NULL);
1335 		percpu_ref_put(&ioctx->users);
1336 	}
1337 
1338 out:
1339 	return ret;
1340 }
1341 
1342 #ifdef CONFIG_COMPAT
1343 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1344 {
1345 	struct kioctx *ioctx = NULL;
1346 	unsigned long ctx;
1347 	long ret;
1348 
1349 	ret = get_user(ctx, ctx32p);
1350 	if (unlikely(ret))
1351 		goto out;
1352 
1353 	ret = -EINVAL;
1354 	if (unlikely(ctx || nr_events == 0)) {
1355 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1356 		         ctx, nr_events);
1357 		goto out;
1358 	}
1359 
1360 	ioctx = ioctx_alloc(nr_events);
1361 	ret = PTR_ERR(ioctx);
1362 	if (!IS_ERR(ioctx)) {
1363 		/* truncating is ok because it's a user address */
1364 		ret = put_user((u32)ioctx->user_id, ctx32p);
1365 		if (ret)
1366 			kill_ioctx(current->mm, ioctx, NULL);
1367 		percpu_ref_put(&ioctx->users);
1368 	}
1369 
1370 out:
1371 	return ret;
1372 }
1373 #endif
1374 
1375 /* sys_io_destroy:
1376  *	Destroy the aio_context specified.  May cancel any outstanding
1377  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1378  *	implemented.  May fail with -EINVAL if the context pointed to
1379  *	is invalid.
1380  */
1381 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1382 {
1383 	struct kioctx *ioctx = lookup_ioctx(ctx);
1384 	if (likely(NULL != ioctx)) {
1385 		struct ctx_rq_wait wait;
1386 		int ret;
1387 
1388 		init_completion(&wait.comp);
1389 		atomic_set(&wait.count, 1);
1390 
1391 		/* Pass requests_done to kill_ioctx() where it can be set
1392 		 * in a thread-safe way. If we try to set it here then we have
1393 		 * a race condition if two io_destroy() called simultaneously.
1394 		 */
1395 		ret = kill_ioctx(current->mm, ioctx, &wait);
1396 		percpu_ref_put(&ioctx->users);
1397 
1398 		/* Wait until all IO for the context are done. Otherwise kernel
1399 		 * keep using user-space buffers even if user thinks the context
1400 		 * is destroyed.
1401 		 */
1402 		if (!ret)
1403 			wait_for_completion(&wait.comp);
1404 
1405 		return ret;
1406 	}
1407 	pr_debug("EINVAL: invalid context id\n");
1408 	return -EINVAL;
1409 }
1410 
1411 static void aio_remove_iocb(struct aio_kiocb *iocb)
1412 {
1413 	struct kioctx *ctx = iocb->ki_ctx;
1414 	unsigned long flags;
1415 
1416 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1417 	list_del(&iocb->ki_list);
1418 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1419 }
1420 
1421 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1422 {
1423 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1424 
1425 	if (!list_empty_careful(&iocb->ki_list))
1426 		aio_remove_iocb(iocb);
1427 
1428 	if (kiocb->ki_flags & IOCB_WRITE) {
1429 		struct inode *inode = file_inode(kiocb->ki_filp);
1430 
1431 		/*
1432 		 * Tell lockdep we inherited freeze protection from submission
1433 		 * thread.
1434 		 */
1435 		if (S_ISREG(inode->i_mode))
1436 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1437 		file_end_write(kiocb->ki_filp);
1438 	}
1439 
1440 	aio_complete(iocb, res, res2);
1441 }
1442 
1443 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1444 {
1445 	int ret;
1446 
1447 	req->ki_complete = aio_complete_rw;
1448 	req->private = NULL;
1449 	req->ki_pos = iocb->aio_offset;
1450 	req->ki_flags = iocb_flags(req->ki_filp);
1451 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1452 		req->ki_flags |= IOCB_EVENTFD;
1453 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1454 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1455 		/*
1456 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1457 		 * aio_reqprio is interpreted as an I/O scheduling
1458 		 * class and priority.
1459 		 */
1460 		ret = ioprio_check_cap(iocb->aio_reqprio);
1461 		if (ret) {
1462 			pr_debug("aio ioprio check cap error: %d\n", ret);
1463 			return ret;
1464 		}
1465 
1466 		req->ki_ioprio = iocb->aio_reqprio;
1467 	} else
1468 		req->ki_ioprio = get_current_ioprio();
1469 
1470 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1471 	if (unlikely(ret))
1472 		return ret;
1473 
1474 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1475 	return 0;
1476 }
1477 
1478 static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec,
1479 		bool vectored, bool compat, struct iov_iter *iter)
1480 {
1481 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1482 	size_t len = iocb->aio_nbytes;
1483 
1484 	if (!vectored) {
1485 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1486 		*iovec = NULL;
1487 		return ret;
1488 	}
1489 #ifdef CONFIG_COMPAT
1490 	if (compat)
1491 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1492 				iter);
1493 #endif
1494 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1495 }
1496 
1497 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1498 {
1499 	switch (ret) {
1500 	case -EIOCBQUEUED:
1501 		break;
1502 	case -ERESTARTSYS:
1503 	case -ERESTARTNOINTR:
1504 	case -ERESTARTNOHAND:
1505 	case -ERESTART_RESTARTBLOCK:
1506 		/*
1507 		 * There's no easy way to restart the syscall since other AIO's
1508 		 * may be already running. Just fail this IO with EINTR.
1509 		 */
1510 		ret = -EINTR;
1511 		/*FALLTHRU*/
1512 	default:
1513 		req->ki_complete(req, ret, 0);
1514 	}
1515 }
1516 
1517 static ssize_t aio_read(struct kiocb *req, const struct iocb *iocb,
1518 			bool vectored, bool compat)
1519 {
1520 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1521 	struct iov_iter iter;
1522 	struct file *file;
1523 	ssize_t ret;
1524 
1525 	ret = aio_prep_rw(req, iocb);
1526 	if (ret)
1527 		return ret;
1528 	file = req->ki_filp;
1529 	if (unlikely(!(file->f_mode & FMODE_READ)))
1530 		return -EBADF;
1531 	ret = -EINVAL;
1532 	if (unlikely(!file->f_op->read_iter))
1533 		return -EINVAL;
1534 
1535 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1536 	if (ret)
1537 		return ret;
1538 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1539 	if (!ret)
1540 		aio_rw_done(req, call_read_iter(file, req, &iter));
1541 	kfree(iovec);
1542 	return ret;
1543 }
1544 
1545 static ssize_t aio_write(struct kiocb *req, const struct iocb *iocb,
1546 			 bool vectored, bool compat)
1547 {
1548 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1549 	struct iov_iter iter;
1550 	struct file *file;
1551 	ssize_t ret;
1552 
1553 	ret = aio_prep_rw(req, iocb);
1554 	if (ret)
1555 		return ret;
1556 	file = req->ki_filp;
1557 
1558 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1559 		return -EBADF;
1560 	if (unlikely(!file->f_op->write_iter))
1561 		return -EINVAL;
1562 
1563 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1564 	if (ret)
1565 		return ret;
1566 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1567 	if (!ret) {
1568 		/*
1569 		 * Open-code file_start_write here to grab freeze protection,
1570 		 * which will be released by another thread in
1571 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1572 		 * released so that it doesn't complain about the held lock when
1573 		 * we return to userspace.
1574 		 */
1575 		if (S_ISREG(file_inode(file)->i_mode)) {
1576 			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1577 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1578 		}
1579 		req->ki_flags |= IOCB_WRITE;
1580 		aio_rw_done(req, call_write_iter(file, req, &iter));
1581 	}
1582 	kfree(iovec);
1583 	return ret;
1584 }
1585 
1586 static void aio_fsync_work(struct work_struct *work)
1587 {
1588 	struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1589 	int ret;
1590 
1591 	ret = vfs_fsync(req->file, req->datasync);
1592 	aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1593 }
1594 
1595 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1596 		     bool datasync)
1597 {
1598 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1599 			iocb->aio_rw_flags))
1600 		return -EINVAL;
1601 
1602 	if (unlikely(!req->file->f_op->fsync))
1603 		return -EINVAL;
1604 
1605 	req->datasync = datasync;
1606 	INIT_WORK(&req->work, aio_fsync_work);
1607 	schedule_work(&req->work);
1608 	return 0;
1609 }
1610 
1611 static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1612 {
1613 	aio_complete(iocb, mangle_poll(mask), 0);
1614 }
1615 
1616 static void aio_poll_complete_work(struct work_struct *work)
1617 {
1618 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1619 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1620 	struct poll_table_struct pt = { ._key = req->events };
1621 	struct kioctx *ctx = iocb->ki_ctx;
1622 	__poll_t mask = 0;
1623 
1624 	if (!READ_ONCE(req->cancelled))
1625 		mask = vfs_poll(req->file, &pt) & req->events;
1626 
1627 	/*
1628 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1629 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1630 	 * synchronize with them.  In the cancellation case the list_del_init
1631 	 * itself is not actually needed, but harmless so we keep it in to
1632 	 * avoid further branches in the fast path.
1633 	 */
1634 	spin_lock_irq(&ctx->ctx_lock);
1635 	if (!mask && !READ_ONCE(req->cancelled)) {
1636 		add_wait_queue(req->head, &req->wait);
1637 		spin_unlock_irq(&ctx->ctx_lock);
1638 		return;
1639 	}
1640 	list_del_init(&iocb->ki_list);
1641 	spin_unlock_irq(&ctx->ctx_lock);
1642 
1643 	aio_poll_complete(iocb, mask);
1644 }
1645 
1646 /* assumes we are called with irqs disabled */
1647 static int aio_poll_cancel(struct kiocb *iocb)
1648 {
1649 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1650 	struct poll_iocb *req = &aiocb->poll;
1651 
1652 	spin_lock(&req->head->lock);
1653 	WRITE_ONCE(req->cancelled, true);
1654 	if (!list_empty(&req->wait.entry)) {
1655 		list_del_init(&req->wait.entry);
1656 		schedule_work(&aiocb->poll.work);
1657 	}
1658 	spin_unlock(&req->head->lock);
1659 
1660 	return 0;
1661 }
1662 
1663 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1664 		void *key)
1665 {
1666 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1667 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1668 	__poll_t mask = key_to_poll(key);
1669 	unsigned long flags;
1670 
1671 	req->woken = true;
1672 
1673 	/* for instances that support it check for an event match first: */
1674 	if (mask) {
1675 		if (!(mask & req->events))
1676 			return 0;
1677 
1678 		/*
1679 		 * Try to complete the iocb inline if we can. Use
1680 		 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1681 		 * call this function with IRQs disabled and because IRQs
1682 		 * have to be disabled before ctx_lock is obtained.
1683 		 */
1684 		if (spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1685 			list_del(&iocb->ki_list);
1686 			spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
1687 
1688 			list_del_init(&req->wait.entry);
1689 			aio_poll_complete(iocb, mask);
1690 			return 1;
1691 		}
1692 	}
1693 
1694 	list_del_init(&req->wait.entry);
1695 	schedule_work(&req->work);
1696 	return 1;
1697 }
1698 
1699 struct aio_poll_table {
1700 	struct poll_table_struct	pt;
1701 	struct aio_kiocb		*iocb;
1702 	int				error;
1703 };
1704 
1705 static void
1706 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1707 		struct poll_table_struct *p)
1708 {
1709 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1710 
1711 	/* multiple wait queues per file are not supported */
1712 	if (unlikely(pt->iocb->poll.head)) {
1713 		pt->error = -EINVAL;
1714 		return;
1715 	}
1716 
1717 	pt->error = 0;
1718 	pt->iocb->poll.head = head;
1719 	add_wait_queue(head, &pt->iocb->poll.wait);
1720 }
1721 
1722 static ssize_t aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1723 {
1724 	struct kioctx *ctx = aiocb->ki_ctx;
1725 	struct poll_iocb *req = &aiocb->poll;
1726 	struct aio_poll_table apt;
1727 	__poll_t mask;
1728 
1729 	/* reject any unknown events outside the normal event mask. */
1730 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1731 		return -EINVAL;
1732 	/* reject fields that are not defined for poll */
1733 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1734 		return -EINVAL;
1735 
1736 	INIT_WORK(&req->work, aio_poll_complete_work);
1737 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1738 
1739 	req->head = NULL;
1740 	req->woken = false;
1741 	req->cancelled = false;
1742 
1743 	apt.pt._qproc = aio_poll_queue_proc;
1744 	apt.pt._key = req->events;
1745 	apt.iocb = aiocb;
1746 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1747 
1748 	/* initialized the list so that we can do list_empty checks */
1749 	INIT_LIST_HEAD(&req->wait.entry);
1750 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1751 
1752 	/* one for removal from waitqueue, one for this function */
1753 	refcount_set(&aiocb->ki_refcnt, 2);
1754 
1755 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1756 	if (unlikely(!req->head)) {
1757 		/* we did not manage to set up a waitqueue, done */
1758 		goto out;
1759 	}
1760 
1761 	spin_lock_irq(&ctx->ctx_lock);
1762 	spin_lock(&req->head->lock);
1763 	if (req->woken) {
1764 		/* wake_up context handles the rest */
1765 		mask = 0;
1766 		apt.error = 0;
1767 	} else if (mask || apt.error) {
1768 		/* if we get an error or a mask we are done */
1769 		WARN_ON_ONCE(list_empty(&req->wait.entry));
1770 		list_del_init(&req->wait.entry);
1771 	} else {
1772 		/* actually waiting for an event */
1773 		list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1774 		aiocb->ki_cancel = aio_poll_cancel;
1775 	}
1776 	spin_unlock(&req->head->lock);
1777 	spin_unlock_irq(&ctx->ctx_lock);
1778 
1779 out:
1780 	if (unlikely(apt.error))
1781 		return apt.error;
1782 
1783 	if (mask)
1784 		aio_poll_complete(aiocb, mask);
1785 	iocb_put(aiocb);
1786 	return 0;
1787 }
1788 
1789 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1790 			   struct iocb __user *user_iocb, bool compat)
1791 {
1792 	struct aio_kiocb *req;
1793 	ssize_t ret;
1794 
1795 	/* enforce forwards compatibility on users */
1796 	if (unlikely(iocb->aio_reserved2)) {
1797 		pr_debug("EINVAL: reserve field set\n");
1798 		return -EINVAL;
1799 	}
1800 
1801 	/* prevent overflows */
1802 	if (unlikely(
1803 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1804 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1805 	    ((ssize_t)iocb->aio_nbytes < 0)
1806 	   )) {
1807 		pr_debug("EINVAL: overflow check\n");
1808 		return -EINVAL;
1809 	}
1810 
1811 	if (!get_reqs_available(ctx))
1812 		return -EAGAIN;
1813 
1814 	ret = -EAGAIN;
1815 	req = aio_get_req(ctx);
1816 	if (unlikely(!req))
1817 		goto out_put_reqs_available;
1818 
1819 	req->ki_filp = fget(iocb->aio_fildes);
1820 	ret = -EBADF;
1821 	if (unlikely(!req->ki_filp))
1822 		goto out_put_req;
1823 
1824 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1825 		/*
1826 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1827 		 * instance of the file* now. The file descriptor must be
1828 		 * an eventfd() fd, and will be signaled for each completed
1829 		 * event using the eventfd_signal() function.
1830 		 */
1831 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1832 		if (IS_ERR(req->ki_eventfd)) {
1833 			ret = PTR_ERR(req->ki_eventfd);
1834 			req->ki_eventfd = NULL;
1835 			goto out_put_req;
1836 		}
1837 	}
1838 
1839 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1840 	if (unlikely(ret)) {
1841 		pr_debug("EFAULT: aio_key\n");
1842 		goto out_put_req;
1843 	}
1844 
1845 	req->ki_user_iocb = user_iocb;
1846 	req->ki_user_data = iocb->aio_data;
1847 
1848 	switch (iocb->aio_lio_opcode) {
1849 	case IOCB_CMD_PREAD:
1850 		ret = aio_read(&req->rw, iocb, false, compat);
1851 		break;
1852 	case IOCB_CMD_PWRITE:
1853 		ret = aio_write(&req->rw, iocb, false, compat);
1854 		break;
1855 	case IOCB_CMD_PREADV:
1856 		ret = aio_read(&req->rw, iocb, true, compat);
1857 		break;
1858 	case IOCB_CMD_PWRITEV:
1859 		ret = aio_write(&req->rw, iocb, true, compat);
1860 		break;
1861 	case IOCB_CMD_FSYNC:
1862 		ret = aio_fsync(&req->fsync, iocb, false);
1863 		break;
1864 	case IOCB_CMD_FDSYNC:
1865 		ret = aio_fsync(&req->fsync, iocb, true);
1866 		break;
1867 	case IOCB_CMD_POLL:
1868 		ret = aio_poll(req, iocb);
1869 		break;
1870 	default:
1871 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1872 		ret = -EINVAL;
1873 		break;
1874 	}
1875 
1876 	/*
1877 	 * If ret is 0, we'd either done aio_complete() ourselves or have
1878 	 * arranged for that to be done asynchronously.  Anything non-zero
1879 	 * means that we need to destroy req ourselves.
1880 	 */
1881 	if (ret)
1882 		goto out_put_req;
1883 	return 0;
1884 out_put_req:
1885 	if (req->ki_eventfd)
1886 		eventfd_ctx_put(req->ki_eventfd);
1887 	iocb_put(req);
1888 out_put_reqs_available:
1889 	put_reqs_available(ctx, 1);
1890 	return ret;
1891 }
1892 
1893 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1894 			 bool compat)
1895 {
1896 	struct iocb iocb;
1897 
1898 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1899 		return -EFAULT;
1900 
1901 	return __io_submit_one(ctx, &iocb, user_iocb, compat);
1902 }
1903 
1904 /* sys_io_submit:
1905  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1906  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1907  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1908  *	*iocbpp[0] is not properly initialized, if the operation specified
1909  *	is invalid for the file descriptor in the iocb.  May fail with
1910  *	-EFAULT if any of the data structures point to invalid data.  May
1911  *	fail with -EBADF if the file descriptor specified in the first
1912  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1913  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1914  *	fail with -ENOSYS if not implemented.
1915  */
1916 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1917 		struct iocb __user * __user *, iocbpp)
1918 {
1919 	struct kioctx *ctx;
1920 	long ret = 0;
1921 	int i = 0;
1922 	struct blk_plug plug;
1923 
1924 	if (unlikely(nr < 0))
1925 		return -EINVAL;
1926 
1927 	ctx = lookup_ioctx(ctx_id);
1928 	if (unlikely(!ctx)) {
1929 		pr_debug("EINVAL: invalid context id\n");
1930 		return -EINVAL;
1931 	}
1932 
1933 	if (nr > ctx->nr_events)
1934 		nr = ctx->nr_events;
1935 
1936 	if (nr > AIO_PLUG_THRESHOLD)
1937 		blk_start_plug(&plug);
1938 	for (i = 0; i < nr; i++) {
1939 		struct iocb __user *user_iocb;
1940 
1941 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1942 			ret = -EFAULT;
1943 			break;
1944 		}
1945 
1946 		ret = io_submit_one(ctx, user_iocb, false);
1947 		if (ret)
1948 			break;
1949 	}
1950 	if (nr > AIO_PLUG_THRESHOLD)
1951 		blk_finish_plug(&plug);
1952 
1953 	percpu_ref_put(&ctx->users);
1954 	return i ? i : ret;
1955 }
1956 
1957 #ifdef CONFIG_COMPAT
1958 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1959 		       int, nr, compat_uptr_t __user *, iocbpp)
1960 {
1961 	struct kioctx *ctx;
1962 	long ret = 0;
1963 	int i = 0;
1964 	struct blk_plug plug;
1965 
1966 	if (unlikely(nr < 0))
1967 		return -EINVAL;
1968 
1969 	ctx = lookup_ioctx(ctx_id);
1970 	if (unlikely(!ctx)) {
1971 		pr_debug("EINVAL: invalid context id\n");
1972 		return -EINVAL;
1973 	}
1974 
1975 	if (nr > ctx->nr_events)
1976 		nr = ctx->nr_events;
1977 
1978 	if (nr > AIO_PLUG_THRESHOLD)
1979 		blk_start_plug(&plug);
1980 	for (i = 0; i < nr; i++) {
1981 		compat_uptr_t user_iocb;
1982 
1983 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1984 			ret = -EFAULT;
1985 			break;
1986 		}
1987 
1988 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1989 		if (ret)
1990 			break;
1991 	}
1992 	if (nr > AIO_PLUG_THRESHOLD)
1993 		blk_finish_plug(&plug);
1994 
1995 	percpu_ref_put(&ctx->users);
1996 	return i ? i : ret;
1997 }
1998 #endif
1999 
2000 /* lookup_kiocb
2001  *	Finds a given iocb for cancellation.
2002  */
2003 static struct aio_kiocb *
2004 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
2005 {
2006 	struct aio_kiocb *kiocb;
2007 
2008 	assert_spin_locked(&ctx->ctx_lock);
2009 
2010 	/* TODO: use a hash or array, this sucks. */
2011 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2012 		if (kiocb->ki_user_iocb == iocb)
2013 			return kiocb;
2014 	}
2015 	return NULL;
2016 }
2017 
2018 /* sys_io_cancel:
2019  *	Attempts to cancel an iocb previously passed to io_submit.  If
2020  *	the operation is successfully cancelled, the resulting event is
2021  *	copied into the memory pointed to by result without being placed
2022  *	into the completion queue and 0 is returned.  May fail with
2023  *	-EFAULT if any of the data structures pointed to are invalid.
2024  *	May fail with -EINVAL if aio_context specified by ctx_id is
2025  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2026  *	cancelled.  Will fail with -ENOSYS if not implemented.
2027  */
2028 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2029 		struct io_event __user *, result)
2030 {
2031 	struct kioctx *ctx;
2032 	struct aio_kiocb *kiocb;
2033 	int ret = -EINVAL;
2034 	u32 key;
2035 
2036 	if (unlikely(get_user(key, &iocb->aio_key)))
2037 		return -EFAULT;
2038 	if (unlikely(key != KIOCB_KEY))
2039 		return -EINVAL;
2040 
2041 	ctx = lookup_ioctx(ctx_id);
2042 	if (unlikely(!ctx))
2043 		return -EINVAL;
2044 
2045 	spin_lock_irq(&ctx->ctx_lock);
2046 	kiocb = lookup_kiocb(ctx, iocb);
2047 	if (kiocb) {
2048 		ret = kiocb->ki_cancel(&kiocb->rw);
2049 		list_del_init(&kiocb->ki_list);
2050 	}
2051 	spin_unlock_irq(&ctx->ctx_lock);
2052 
2053 	if (!ret) {
2054 		/*
2055 		 * The result argument is no longer used - the io_event is
2056 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2057 		 * cancellation is progress:
2058 		 */
2059 		ret = -EINPROGRESS;
2060 	}
2061 
2062 	percpu_ref_put(&ctx->users);
2063 
2064 	return ret;
2065 }
2066 
2067 static long do_io_getevents(aio_context_t ctx_id,
2068 		long min_nr,
2069 		long nr,
2070 		struct io_event __user *events,
2071 		struct timespec64 *ts)
2072 {
2073 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2074 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2075 	long ret = -EINVAL;
2076 
2077 	if (likely(ioctx)) {
2078 		if (likely(min_nr <= nr && min_nr >= 0))
2079 			ret = read_events(ioctx, min_nr, nr, events, until);
2080 		percpu_ref_put(&ioctx->users);
2081 	}
2082 
2083 	return ret;
2084 }
2085 
2086 /* io_getevents:
2087  *	Attempts to read at least min_nr events and up to nr events from
2088  *	the completion queue for the aio_context specified by ctx_id. If
2089  *	it succeeds, the number of read events is returned. May fail with
2090  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2091  *	out of range, if timeout is out of range.  May fail with -EFAULT
2092  *	if any of the memory specified is invalid.  May return 0 or
2093  *	< min_nr if the timeout specified by timeout has elapsed
2094  *	before sufficient events are available, where timeout == NULL
2095  *	specifies an infinite timeout. Note that the timeout pointed to by
2096  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2097  */
2098 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2099 
2100 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2101 		long, min_nr,
2102 		long, nr,
2103 		struct io_event __user *, events,
2104 		struct __kernel_timespec __user *, timeout)
2105 {
2106 	struct timespec64	ts;
2107 	int			ret;
2108 
2109 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2110 		return -EFAULT;
2111 
2112 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2113 	if (!ret && signal_pending(current))
2114 		ret = -EINTR;
2115 	return ret;
2116 }
2117 
2118 #endif
2119 
2120 struct __aio_sigset {
2121 	const sigset_t __user	*sigmask;
2122 	size_t		sigsetsize;
2123 };
2124 
2125 SYSCALL_DEFINE6(io_pgetevents,
2126 		aio_context_t, ctx_id,
2127 		long, min_nr,
2128 		long, nr,
2129 		struct io_event __user *, events,
2130 		struct __kernel_timespec __user *, timeout,
2131 		const struct __aio_sigset __user *, usig)
2132 {
2133 	struct __aio_sigset	ksig = { NULL, };
2134 	sigset_t		ksigmask, sigsaved;
2135 	struct timespec64	ts;
2136 	int ret;
2137 
2138 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2139 		return -EFAULT;
2140 
2141 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2142 		return -EFAULT;
2143 
2144 	ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2145 	if (ret)
2146 		return ret;
2147 
2148 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2149 	restore_user_sigmask(ksig.sigmask, &sigsaved);
2150 	if (signal_pending(current) && !ret)
2151 		ret = -ERESTARTNOHAND;
2152 
2153 	return ret;
2154 }
2155 
2156 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2157 
2158 SYSCALL_DEFINE6(io_pgetevents_time32,
2159 		aio_context_t, ctx_id,
2160 		long, min_nr,
2161 		long, nr,
2162 		struct io_event __user *, events,
2163 		struct old_timespec32 __user *, timeout,
2164 		const struct __aio_sigset __user *, usig)
2165 {
2166 	struct __aio_sigset	ksig = { NULL, };
2167 	sigset_t		ksigmask, sigsaved;
2168 	struct timespec64	ts;
2169 	int ret;
2170 
2171 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2172 		return -EFAULT;
2173 
2174 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2175 		return -EFAULT;
2176 
2177 
2178 	ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2179 	if (ret)
2180 		return ret;
2181 
2182 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2183 	restore_user_sigmask(ksig.sigmask, &sigsaved);
2184 	if (signal_pending(current) && !ret)
2185 		ret = -ERESTARTNOHAND;
2186 
2187 	return ret;
2188 }
2189 
2190 #endif
2191 
2192 #if defined(CONFIG_COMPAT_32BIT_TIME)
2193 
2194 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2195 		__s32, min_nr,
2196 		__s32, nr,
2197 		struct io_event __user *, events,
2198 		struct old_timespec32 __user *, timeout)
2199 {
2200 	struct timespec64 t;
2201 	int ret;
2202 
2203 	if (timeout && get_old_timespec32(&t, timeout))
2204 		return -EFAULT;
2205 
2206 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2207 	if (!ret && signal_pending(current))
2208 		ret = -EINTR;
2209 	return ret;
2210 }
2211 
2212 #endif
2213 
2214 #ifdef CONFIG_COMPAT
2215 
2216 struct __compat_aio_sigset {
2217 	compat_sigset_t __user	*sigmask;
2218 	compat_size_t		sigsetsize;
2219 };
2220 
2221 #if defined(CONFIG_COMPAT_32BIT_TIME)
2222 
2223 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2224 		compat_aio_context_t, ctx_id,
2225 		compat_long_t, min_nr,
2226 		compat_long_t, nr,
2227 		struct io_event __user *, events,
2228 		struct old_timespec32 __user *, timeout,
2229 		const struct __compat_aio_sigset __user *, usig)
2230 {
2231 	struct __compat_aio_sigset ksig = { NULL, };
2232 	sigset_t ksigmask, sigsaved;
2233 	struct timespec64 t;
2234 	int ret;
2235 
2236 	if (timeout && get_old_timespec32(&t, timeout))
2237 		return -EFAULT;
2238 
2239 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2240 		return -EFAULT;
2241 
2242 	ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2243 	if (ret)
2244 		return ret;
2245 
2246 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2247 	restore_user_sigmask(ksig.sigmask, &sigsaved);
2248 	if (signal_pending(current) && !ret)
2249 		ret = -ERESTARTNOHAND;
2250 
2251 	return ret;
2252 }
2253 
2254 #endif
2255 
2256 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2257 		compat_aio_context_t, ctx_id,
2258 		compat_long_t, min_nr,
2259 		compat_long_t, nr,
2260 		struct io_event __user *, events,
2261 		struct __kernel_timespec __user *, timeout,
2262 		const struct __compat_aio_sigset __user *, usig)
2263 {
2264 	struct __compat_aio_sigset ksig = { NULL, };
2265 	sigset_t ksigmask, sigsaved;
2266 	struct timespec64 t;
2267 	int ret;
2268 
2269 	if (timeout && get_timespec64(&t, timeout))
2270 		return -EFAULT;
2271 
2272 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2273 		return -EFAULT;
2274 
2275 	ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2276 	if (ret)
2277 		return ret;
2278 
2279 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2280 	restore_user_sigmask(ksig.sigmask, &sigsaved);
2281 	if (signal_pending(current) && !ret)
2282 		ret = -ERESTARTNOHAND;
2283 
2284 	return ret;
2285 }
2286 #endif
2287