xref: /openbmc/linux/fs/afs/write.c (revision f792e3ac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21 	_enter("");
22 	return __set_page_dirty_nobuffers(page);
23 }
24 
25 /*
26  * partly or wholly fill a page that's under preparation for writing
27  */
28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29 			 loff_t pos, unsigned int len, struct page *page)
30 {
31 	struct afs_read *req;
32 	size_t p;
33 	void *data;
34 	int ret;
35 
36 	_enter(",,%llu", (unsigned long long)pos);
37 
38 	if (pos >= vnode->vfs_inode.i_size) {
39 		p = pos & ~PAGE_MASK;
40 		ASSERTCMP(p + len, <=, PAGE_SIZE);
41 		data = kmap(page);
42 		memset(data + p, 0, len);
43 		kunmap(page);
44 		return 0;
45 	}
46 
47 	req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48 	if (!req)
49 		return -ENOMEM;
50 
51 	refcount_set(&req->usage, 1);
52 	req->pos = pos;
53 	req->len = len;
54 	req->nr_pages = 1;
55 	req->pages = req->array;
56 	req->pages[0] = page;
57 	get_page(page);
58 
59 	ret = afs_fetch_data(vnode, key, req);
60 	afs_put_read(req);
61 	if (ret < 0) {
62 		if (ret == -ENOENT) {
63 			_debug("got NOENT from server"
64 			       " - marking file deleted and stale");
65 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
66 			ret = -ESTALE;
67 		}
68 	}
69 
70 	_leave(" = %d", ret);
71 	return ret;
72 }
73 
74 /*
75  * prepare to perform part of a write to a page
76  */
77 int afs_write_begin(struct file *file, struct address_space *mapping,
78 		    loff_t pos, unsigned len, unsigned flags,
79 		    struct page **_page, void **fsdata)
80 {
81 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82 	struct page *page;
83 	struct key *key = afs_file_key(file);
84 	unsigned long priv;
85 	unsigned f, from = pos & (PAGE_SIZE - 1);
86 	unsigned t, to = from + len;
87 	pgoff_t index = pos >> PAGE_SHIFT;
88 	int ret;
89 
90 	_enter("{%llx:%llu},{%lx},%u,%u",
91 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
92 
93 	/* We want to store information about how much of a page is altered in
94 	 * page->private.
95 	 */
96 	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
97 
98 	page = grab_cache_page_write_begin(mapping, index, flags);
99 	if (!page)
100 		return -ENOMEM;
101 
102 	if (!PageUptodate(page) && len != PAGE_SIZE) {
103 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
104 		if (ret < 0) {
105 			unlock_page(page);
106 			put_page(page);
107 			_leave(" = %d [prep]", ret);
108 			return ret;
109 		}
110 		SetPageUptodate(page);
111 	}
112 
113 try_again:
114 	/* See if this page is already partially written in a way that we can
115 	 * merge the new write with.
116 	 */
117 	t = f = 0;
118 	if (PagePrivate(page)) {
119 		priv = page_private(page);
120 		f = priv & AFS_PRIV_MAX;
121 		t = priv >> AFS_PRIV_SHIFT;
122 		ASSERTCMP(f, <=, t);
123 	}
124 
125 	if (f != t) {
126 		if (PageWriteback(page)) {
127 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
128 					     page->index, priv);
129 			goto flush_conflicting_write;
130 		}
131 		/* If the file is being filled locally, allow inter-write
132 		 * spaces to be merged into writes.  If it's not, only write
133 		 * back what the user gives us.
134 		 */
135 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
136 		    (to < f || from > t))
137 			goto flush_conflicting_write;
138 	}
139 
140 	*_page = page;
141 	_leave(" = 0");
142 	return 0;
143 
144 	/* The previous write and this write aren't adjacent or overlapping, so
145 	 * flush the page out.
146 	 */
147 flush_conflicting_write:
148 	_debug("flush conflict");
149 	ret = write_one_page(page);
150 	if (ret < 0)
151 		goto error;
152 
153 	ret = lock_page_killable(page);
154 	if (ret < 0)
155 		goto error;
156 	goto try_again;
157 
158 error:
159 	put_page(page);
160 	_leave(" = %d", ret);
161 	return ret;
162 }
163 
164 /*
165  * finalise part of a write to a page
166  */
167 int afs_write_end(struct file *file, struct address_space *mapping,
168 		  loff_t pos, unsigned len, unsigned copied,
169 		  struct page *page, void *fsdata)
170 {
171 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
172 	struct key *key = afs_file_key(file);
173 	unsigned long priv;
174 	unsigned int f, from = pos & (PAGE_SIZE - 1);
175 	unsigned int t, to = from + copied;
176 	loff_t i_size, maybe_i_size;
177 	int ret;
178 
179 	_enter("{%llx:%llu},{%lx}",
180 	       vnode->fid.vid, vnode->fid.vnode, page->index);
181 
182 	maybe_i_size = pos + copied;
183 
184 	i_size = i_size_read(&vnode->vfs_inode);
185 	if (maybe_i_size > i_size) {
186 		write_seqlock(&vnode->cb_lock);
187 		i_size = i_size_read(&vnode->vfs_inode);
188 		if (maybe_i_size > i_size)
189 			i_size_write(&vnode->vfs_inode, maybe_i_size);
190 		write_sequnlock(&vnode->cb_lock);
191 	}
192 
193 	if (!PageUptodate(page)) {
194 		if (copied < len) {
195 			/* Try and load any missing data from the server.  The
196 			 * unmarshalling routine will take care of clearing any
197 			 * bits that are beyond the EOF.
198 			 */
199 			ret = afs_fill_page(vnode, key, pos + copied,
200 					    len - copied, page);
201 			if (ret < 0)
202 				goto out;
203 		}
204 		SetPageUptodate(page);
205 	}
206 
207 	if (PagePrivate(page)) {
208 		priv = page_private(page);
209 		f = priv & AFS_PRIV_MAX;
210 		t = priv >> AFS_PRIV_SHIFT;
211 		if (from < f)
212 			f = from;
213 		if (to > t)
214 			t = to;
215 		priv = (unsigned long)t << AFS_PRIV_SHIFT;
216 		priv |= f;
217 		set_page_private(page, priv);
218 		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"),
219 				     page->index, priv);
220 	} else {
221 		f = from;
222 		t = to;
223 		priv = (unsigned long)t << AFS_PRIV_SHIFT;
224 		priv |= f;
225 		attach_page_private(page, (void *)priv);
226 		trace_afs_page_dirty(vnode, tracepoint_string("dirty"),
227 				     page->index, priv);
228 	}
229 
230 	set_page_dirty(page);
231 	if (PageDirty(page))
232 		_debug("dirtied");
233 	ret = copied;
234 
235 out:
236 	unlock_page(page);
237 	put_page(page);
238 	return ret;
239 }
240 
241 /*
242  * kill all the pages in the given range
243  */
244 static void afs_kill_pages(struct address_space *mapping,
245 			   pgoff_t first, pgoff_t last)
246 {
247 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
248 	struct pagevec pv;
249 	unsigned count, loop;
250 
251 	_enter("{%llx:%llu},%lx-%lx",
252 	       vnode->fid.vid, vnode->fid.vnode, first, last);
253 
254 	pagevec_init(&pv);
255 
256 	do {
257 		_debug("kill %lx-%lx", first, last);
258 
259 		count = last - first + 1;
260 		if (count > PAGEVEC_SIZE)
261 			count = PAGEVEC_SIZE;
262 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
263 		ASSERTCMP(pv.nr, ==, count);
264 
265 		for (loop = 0; loop < count; loop++) {
266 			struct page *page = pv.pages[loop];
267 			ClearPageUptodate(page);
268 			SetPageError(page);
269 			end_page_writeback(page);
270 			if (page->index >= first)
271 				first = page->index + 1;
272 			lock_page(page);
273 			generic_error_remove_page(mapping, page);
274 			unlock_page(page);
275 		}
276 
277 		__pagevec_release(&pv);
278 	} while (first <= last);
279 
280 	_leave("");
281 }
282 
283 /*
284  * Redirty all the pages in a given range.
285  */
286 static void afs_redirty_pages(struct writeback_control *wbc,
287 			      struct address_space *mapping,
288 			      pgoff_t first, pgoff_t last)
289 {
290 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
291 	struct pagevec pv;
292 	unsigned count, loop;
293 
294 	_enter("{%llx:%llu},%lx-%lx",
295 	       vnode->fid.vid, vnode->fid.vnode, first, last);
296 
297 	pagevec_init(&pv);
298 
299 	do {
300 		_debug("redirty %lx-%lx", first, last);
301 
302 		count = last - first + 1;
303 		if (count > PAGEVEC_SIZE)
304 			count = PAGEVEC_SIZE;
305 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
306 		ASSERTCMP(pv.nr, ==, count);
307 
308 		for (loop = 0; loop < count; loop++) {
309 			struct page *page = pv.pages[loop];
310 
311 			redirty_page_for_writepage(wbc, page);
312 			end_page_writeback(page);
313 			if (page->index >= first)
314 				first = page->index + 1;
315 		}
316 
317 		__pagevec_release(&pv);
318 	} while (first <= last);
319 
320 	_leave("");
321 }
322 
323 /*
324  * completion of write to server
325  */
326 static void afs_pages_written_back(struct afs_vnode *vnode,
327 				   pgoff_t first, pgoff_t last)
328 {
329 	struct pagevec pv;
330 	unsigned long priv;
331 	unsigned count, loop;
332 
333 	_enter("{%llx:%llu},{%lx-%lx}",
334 	       vnode->fid.vid, vnode->fid.vnode, first, last);
335 
336 	pagevec_init(&pv);
337 
338 	do {
339 		_debug("done %lx-%lx", first, last);
340 
341 		count = last - first + 1;
342 		if (count > PAGEVEC_SIZE)
343 			count = PAGEVEC_SIZE;
344 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
345 					      first, count, pv.pages);
346 		ASSERTCMP(pv.nr, ==, count);
347 
348 		for (loop = 0; loop < count; loop++) {
349 			priv = (unsigned long)detach_page_private(pv.pages[loop]);
350 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
351 					     pv.pages[loop]->index, priv);
352 			end_page_writeback(pv.pages[loop]);
353 		}
354 		first += count;
355 		__pagevec_release(&pv);
356 	} while (first <= last);
357 
358 	afs_prune_wb_keys(vnode);
359 	_leave("");
360 }
361 
362 /*
363  * Find a key to use for the writeback.  We cached the keys used to author the
364  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
365  * and we need to start from there if it's set.
366  */
367 static int afs_get_writeback_key(struct afs_vnode *vnode,
368 				 struct afs_wb_key **_wbk)
369 {
370 	struct afs_wb_key *wbk = NULL;
371 	struct list_head *p;
372 	int ret = -ENOKEY, ret2;
373 
374 	spin_lock(&vnode->wb_lock);
375 	if (*_wbk)
376 		p = (*_wbk)->vnode_link.next;
377 	else
378 		p = vnode->wb_keys.next;
379 
380 	while (p != &vnode->wb_keys) {
381 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
382 		_debug("wbk %u", key_serial(wbk->key));
383 		ret2 = key_validate(wbk->key);
384 		if (ret2 == 0) {
385 			refcount_inc(&wbk->usage);
386 			_debug("USE WB KEY %u", key_serial(wbk->key));
387 			break;
388 		}
389 
390 		wbk = NULL;
391 		if (ret == -ENOKEY)
392 			ret = ret2;
393 		p = p->next;
394 	}
395 
396 	spin_unlock(&vnode->wb_lock);
397 	if (*_wbk)
398 		afs_put_wb_key(*_wbk);
399 	*_wbk = wbk;
400 	return 0;
401 }
402 
403 static void afs_store_data_success(struct afs_operation *op)
404 {
405 	struct afs_vnode *vnode = op->file[0].vnode;
406 
407 	op->ctime = op->file[0].scb.status.mtime_client;
408 	afs_vnode_commit_status(op, &op->file[0]);
409 	if (op->error == 0) {
410 		if (!op->store.laundering)
411 			afs_pages_written_back(vnode, op->store.first, op->store.last);
412 		afs_stat_v(vnode, n_stores);
413 		atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
414 				(op->store.first * PAGE_SIZE + op->store.first_offset),
415 				&afs_v2net(vnode)->n_store_bytes);
416 	}
417 }
418 
419 static const struct afs_operation_ops afs_store_data_operation = {
420 	.issue_afs_rpc	= afs_fs_store_data,
421 	.issue_yfs_rpc	= yfs_fs_store_data,
422 	.success	= afs_store_data_success,
423 };
424 
425 /*
426  * write to a file
427  */
428 static int afs_store_data(struct address_space *mapping,
429 			  pgoff_t first, pgoff_t last,
430 			  unsigned offset, unsigned to, bool laundering)
431 {
432 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
433 	struct afs_operation *op;
434 	struct afs_wb_key *wbk = NULL;
435 	int ret;
436 
437 	_enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
438 	       vnode->volume->name,
439 	       vnode->fid.vid,
440 	       vnode->fid.vnode,
441 	       vnode->fid.unique,
442 	       first, last, offset, to);
443 
444 	ret = afs_get_writeback_key(vnode, &wbk);
445 	if (ret) {
446 		_leave(" = %d [no keys]", ret);
447 		return ret;
448 	}
449 
450 	op = afs_alloc_operation(wbk->key, vnode->volume);
451 	if (IS_ERR(op)) {
452 		afs_put_wb_key(wbk);
453 		return -ENOMEM;
454 	}
455 
456 	afs_op_set_vnode(op, 0, vnode);
457 	op->file[0].dv_delta = 1;
458 	op->store.mapping = mapping;
459 	op->store.first = first;
460 	op->store.last = last;
461 	op->store.first_offset = offset;
462 	op->store.last_to = to;
463 	op->store.laundering = laundering;
464 	op->mtime = vnode->vfs_inode.i_mtime;
465 	op->flags |= AFS_OPERATION_UNINTR;
466 	op->ops = &afs_store_data_operation;
467 
468 try_next_key:
469 	afs_begin_vnode_operation(op);
470 	afs_wait_for_operation(op);
471 
472 	switch (op->error) {
473 	case -EACCES:
474 	case -EPERM:
475 	case -ENOKEY:
476 	case -EKEYEXPIRED:
477 	case -EKEYREJECTED:
478 	case -EKEYREVOKED:
479 		_debug("next");
480 
481 		ret = afs_get_writeback_key(vnode, &wbk);
482 		if (ret == 0) {
483 			key_put(op->key);
484 			op->key = key_get(wbk->key);
485 			goto try_next_key;
486 		}
487 		break;
488 	}
489 
490 	afs_put_wb_key(wbk);
491 	_leave(" = %d", op->error);
492 	return afs_put_operation(op);
493 }
494 
495 /*
496  * Synchronously write back the locked page and any subsequent non-locked dirty
497  * pages.
498  */
499 static int afs_write_back_from_locked_page(struct address_space *mapping,
500 					   struct writeback_control *wbc,
501 					   struct page *primary_page,
502 					   pgoff_t final_page)
503 {
504 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
505 	struct page *pages[8], *page;
506 	unsigned long count, priv;
507 	unsigned n, offset, to, f, t;
508 	pgoff_t start, first, last;
509 	loff_t i_size, end;
510 	int loop, ret;
511 
512 	_enter(",%lx", primary_page->index);
513 
514 	count = 1;
515 	if (test_set_page_writeback(primary_page))
516 		BUG();
517 
518 	/* Find all consecutive lockable dirty pages that have contiguous
519 	 * written regions, stopping when we find a page that is not
520 	 * immediately lockable, is not dirty or is missing, or we reach the
521 	 * end of the range.
522 	 */
523 	start = primary_page->index;
524 	priv = page_private(primary_page);
525 	offset = priv & AFS_PRIV_MAX;
526 	to = priv >> AFS_PRIV_SHIFT;
527 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
528 			     primary_page->index, priv);
529 
530 	WARN_ON(offset == to);
531 	if (offset == to)
532 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
533 				     primary_page->index, priv);
534 
535 	if (start >= final_page ||
536 	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
537 		goto no_more;
538 
539 	start++;
540 	do {
541 		_debug("more %lx [%lx]", start, count);
542 		n = final_page - start + 1;
543 		if (n > ARRAY_SIZE(pages))
544 			n = ARRAY_SIZE(pages);
545 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
546 		_debug("fgpc %u", n);
547 		if (n == 0)
548 			goto no_more;
549 		if (pages[0]->index != start) {
550 			do {
551 				put_page(pages[--n]);
552 			} while (n > 0);
553 			goto no_more;
554 		}
555 
556 		for (loop = 0; loop < n; loop++) {
557 			page = pages[loop];
558 			if (to != PAGE_SIZE &&
559 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
560 				break;
561 			if (page->index > final_page)
562 				break;
563 			if (!trylock_page(page))
564 				break;
565 			if (!PageDirty(page) || PageWriteback(page)) {
566 				unlock_page(page);
567 				break;
568 			}
569 
570 			priv = page_private(page);
571 			f = priv & AFS_PRIV_MAX;
572 			t = priv >> AFS_PRIV_SHIFT;
573 			if (f != 0 &&
574 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
575 				unlock_page(page);
576 				break;
577 			}
578 			to = t;
579 
580 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
581 					     page->index, priv);
582 
583 			if (!clear_page_dirty_for_io(page))
584 				BUG();
585 			if (test_set_page_writeback(page))
586 				BUG();
587 			unlock_page(page);
588 			put_page(page);
589 		}
590 		count += loop;
591 		if (loop < n) {
592 			for (; loop < n; loop++)
593 				put_page(pages[loop]);
594 			goto no_more;
595 		}
596 
597 		start += loop;
598 	} while (start <= final_page && count < 65536);
599 
600 no_more:
601 	/* We now have a contiguous set of dirty pages, each with writeback
602 	 * set; the first page is still locked at this point, but all the rest
603 	 * have been unlocked.
604 	 */
605 	unlock_page(primary_page);
606 
607 	first = primary_page->index;
608 	last = first + count - 1;
609 
610 	end = (loff_t)last * PAGE_SIZE + to;
611 	i_size = i_size_read(&vnode->vfs_inode);
612 
613 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
614 	if (end > i_size)
615 		to = i_size & ~PAGE_MASK;
616 
617 	ret = afs_store_data(mapping, first, last, offset, to, false);
618 	switch (ret) {
619 	case 0:
620 		ret = count;
621 		break;
622 
623 	default:
624 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
625 		fallthrough;
626 	case -EACCES:
627 	case -EPERM:
628 	case -ENOKEY:
629 	case -EKEYEXPIRED:
630 	case -EKEYREJECTED:
631 	case -EKEYREVOKED:
632 		afs_redirty_pages(wbc, mapping, first, last);
633 		mapping_set_error(mapping, ret);
634 		break;
635 
636 	case -EDQUOT:
637 	case -ENOSPC:
638 		afs_redirty_pages(wbc, mapping, first, last);
639 		mapping_set_error(mapping, -ENOSPC);
640 		break;
641 
642 	case -EROFS:
643 	case -EIO:
644 	case -EREMOTEIO:
645 	case -EFBIG:
646 	case -ENOENT:
647 	case -ENOMEDIUM:
648 	case -ENXIO:
649 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
650 		afs_kill_pages(mapping, first, last);
651 		mapping_set_error(mapping, ret);
652 		break;
653 	}
654 
655 	_leave(" = %d", ret);
656 	return ret;
657 }
658 
659 /*
660  * write a page back to the server
661  * - the caller locked the page for us
662  */
663 int afs_writepage(struct page *page, struct writeback_control *wbc)
664 {
665 	int ret;
666 
667 	_enter("{%lx},", page->index);
668 
669 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
670 					      wbc->range_end >> PAGE_SHIFT);
671 	if (ret < 0) {
672 		_leave(" = %d", ret);
673 		return 0;
674 	}
675 
676 	wbc->nr_to_write -= ret;
677 
678 	_leave(" = 0");
679 	return 0;
680 }
681 
682 /*
683  * write a region of pages back to the server
684  */
685 static int afs_writepages_region(struct address_space *mapping,
686 				 struct writeback_control *wbc,
687 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
688 {
689 	struct page *page;
690 	int ret, n;
691 
692 	_enter(",,%lx,%lx,", index, end);
693 
694 	do {
695 		n = find_get_pages_range_tag(mapping, &index, end,
696 					PAGECACHE_TAG_DIRTY, 1, &page);
697 		if (!n)
698 			break;
699 
700 		_debug("wback %lx", page->index);
701 
702 		/*
703 		 * at this point we hold neither the i_pages lock nor the
704 		 * page lock: the page may be truncated or invalidated
705 		 * (changing page->mapping to NULL), or even swizzled
706 		 * back from swapper_space to tmpfs file mapping
707 		 */
708 		ret = lock_page_killable(page);
709 		if (ret < 0) {
710 			put_page(page);
711 			_leave(" = %d", ret);
712 			return ret;
713 		}
714 
715 		if (page->mapping != mapping || !PageDirty(page)) {
716 			unlock_page(page);
717 			put_page(page);
718 			continue;
719 		}
720 
721 		if (PageWriteback(page)) {
722 			unlock_page(page);
723 			if (wbc->sync_mode != WB_SYNC_NONE)
724 				wait_on_page_writeback(page);
725 			put_page(page);
726 			continue;
727 		}
728 
729 		if (!clear_page_dirty_for_io(page))
730 			BUG();
731 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
732 		put_page(page);
733 		if (ret < 0) {
734 			_leave(" = %d", ret);
735 			return ret;
736 		}
737 
738 		wbc->nr_to_write -= ret;
739 
740 		cond_resched();
741 	} while (index < end && wbc->nr_to_write > 0);
742 
743 	*_next = index;
744 	_leave(" = 0 [%lx]", *_next);
745 	return 0;
746 }
747 
748 /*
749  * write some of the pending data back to the server
750  */
751 int afs_writepages(struct address_space *mapping,
752 		   struct writeback_control *wbc)
753 {
754 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
755 	pgoff_t start, end, next;
756 	int ret;
757 
758 	_enter("");
759 
760 	/* We have to be careful as we can end up racing with setattr()
761 	 * truncating the pagecache since the caller doesn't take a lock here
762 	 * to prevent it.
763 	 */
764 	if (wbc->sync_mode == WB_SYNC_ALL)
765 		down_read(&vnode->validate_lock);
766 	else if (!down_read_trylock(&vnode->validate_lock))
767 		return 0;
768 
769 	if (wbc->range_cyclic) {
770 		start = mapping->writeback_index;
771 		end = -1;
772 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
773 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
774 			ret = afs_writepages_region(mapping, wbc, 0, start,
775 						    &next);
776 		mapping->writeback_index = next;
777 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
778 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
779 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
780 		if (wbc->nr_to_write > 0)
781 			mapping->writeback_index = next;
782 	} else {
783 		start = wbc->range_start >> PAGE_SHIFT;
784 		end = wbc->range_end >> PAGE_SHIFT;
785 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
786 	}
787 
788 	up_read(&vnode->validate_lock);
789 	_leave(" = %d", ret);
790 	return ret;
791 }
792 
793 /*
794  * write to an AFS file
795  */
796 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
797 {
798 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
799 	ssize_t result;
800 	size_t count = iov_iter_count(from);
801 
802 	_enter("{%llx:%llu},{%zu},",
803 	       vnode->fid.vid, vnode->fid.vnode, count);
804 
805 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
806 		printk(KERN_INFO
807 		       "AFS: Attempt to write to active swap file!\n");
808 		return -EBUSY;
809 	}
810 
811 	if (!count)
812 		return 0;
813 
814 	result = generic_file_write_iter(iocb, from);
815 
816 	_leave(" = %zd", result);
817 	return result;
818 }
819 
820 /*
821  * flush any dirty pages for this process, and check for write errors.
822  * - the return status from this call provides a reliable indication of
823  *   whether any write errors occurred for this process.
824  */
825 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
826 {
827 	struct inode *inode = file_inode(file);
828 	struct afs_vnode *vnode = AFS_FS_I(inode);
829 
830 	_enter("{%llx:%llu},{n=%pD},%d",
831 	       vnode->fid.vid, vnode->fid.vnode, file,
832 	       datasync);
833 
834 	return file_write_and_wait_range(file, start, end);
835 }
836 
837 /*
838  * notification that a previously read-only page is about to become writable
839  * - if it returns an error, the caller will deliver a bus error signal
840  */
841 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
842 {
843 	struct file *file = vmf->vma->vm_file;
844 	struct inode *inode = file_inode(file);
845 	struct afs_vnode *vnode = AFS_FS_I(inode);
846 	unsigned long priv;
847 
848 	_enter("{{%llx:%llu}},{%lx}",
849 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
850 
851 	sb_start_pagefault(inode->i_sb);
852 
853 	/* Wait for the page to be written to the cache before we allow it to
854 	 * be modified.  We then assume the entire page will need writing back.
855 	 */
856 #ifdef CONFIG_AFS_FSCACHE
857 	fscache_wait_on_page_write(vnode->cache, vmf->page);
858 #endif
859 
860 	if (PageWriteback(vmf->page) &&
861 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
862 		return VM_FAULT_RETRY;
863 
864 	if (lock_page_killable(vmf->page) < 0)
865 		return VM_FAULT_RETRY;
866 
867 	/* We mustn't change page->private until writeback is complete as that
868 	 * details the portion of the page we need to write back and we might
869 	 * need to redirty the page if there's a problem.
870 	 */
871 	wait_on_page_writeback(vmf->page);
872 
873 	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
874 	priv |= 0; /* From */
875 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
876 			     vmf->page->index, priv);
877 	if (PagePrivate(vmf->page))
878 		set_page_private(vmf->page, priv);
879 	else
880 		attach_page_private(vmf->page, (void *)priv);
881 	file_update_time(file);
882 
883 	sb_end_pagefault(inode->i_sb);
884 	return VM_FAULT_LOCKED;
885 }
886 
887 /*
888  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
889  */
890 void afs_prune_wb_keys(struct afs_vnode *vnode)
891 {
892 	LIST_HEAD(graveyard);
893 	struct afs_wb_key *wbk, *tmp;
894 
895 	/* Discard unused keys */
896 	spin_lock(&vnode->wb_lock);
897 
898 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
899 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
900 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
901 			if (refcount_read(&wbk->usage) == 1)
902 				list_move(&wbk->vnode_link, &graveyard);
903 		}
904 	}
905 
906 	spin_unlock(&vnode->wb_lock);
907 
908 	while (!list_empty(&graveyard)) {
909 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
910 		list_del(&wbk->vnode_link);
911 		afs_put_wb_key(wbk);
912 	}
913 }
914 
915 /*
916  * Clean up a page during invalidation.
917  */
918 int afs_launder_page(struct page *page)
919 {
920 	struct address_space *mapping = page->mapping;
921 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
922 	unsigned long priv;
923 	unsigned int f, t;
924 	int ret = 0;
925 
926 	_enter("{%lx}", page->index);
927 
928 	priv = page_private(page);
929 	if (clear_page_dirty_for_io(page)) {
930 		f = 0;
931 		t = PAGE_SIZE;
932 		if (PagePrivate(page)) {
933 			f = priv & AFS_PRIV_MAX;
934 			t = priv >> AFS_PRIV_SHIFT;
935 		}
936 
937 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
938 				     page->index, priv);
939 		ret = afs_store_data(mapping, page->index, page->index, t, f, true);
940 	}
941 
942 	priv = (unsigned long)detach_page_private(page);
943 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
944 			     page->index, priv);
945 
946 #ifdef CONFIG_AFS_FSCACHE
947 	if (PageFsCache(page)) {
948 		fscache_wait_on_page_write(vnode->cache, page);
949 		fscache_uncache_page(vnode->cache, page);
950 	}
951 #endif
952 	return ret;
953 }
954