1 /* handling of writes to regular files and writing back to the server 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/backing-dev.h> 13 #include <linux/slab.h> 14 #include <linux/fs.h> 15 #include <linux/pagemap.h> 16 #include <linux/writeback.h> 17 #include <linux/pagevec.h> 18 #include "internal.h" 19 20 /* 21 * mark a page as having been made dirty and thus needing writeback 22 */ 23 int afs_set_page_dirty(struct page *page) 24 { 25 _enter(""); 26 return __set_page_dirty_nobuffers(page); 27 } 28 29 /* 30 * partly or wholly fill a page that's under preparation for writing 31 */ 32 static int afs_fill_page(struct afs_vnode *vnode, struct key *key, 33 loff_t pos, unsigned int len, struct page *page) 34 { 35 struct afs_read *req; 36 int ret; 37 38 _enter(",,%llu", (unsigned long long)pos); 39 40 req = kzalloc(sizeof(struct afs_read) + sizeof(struct page *), 41 GFP_KERNEL); 42 if (!req) 43 return -ENOMEM; 44 45 atomic_set(&req->usage, 1); 46 req->pos = pos; 47 req->len = len; 48 req->nr_pages = 1; 49 req->pages[0] = page; 50 get_page(page); 51 52 ret = afs_fetch_data(vnode, key, req); 53 afs_put_read(req); 54 if (ret < 0) { 55 if (ret == -ENOENT) { 56 _debug("got NOENT from server" 57 " - marking file deleted and stale"); 58 set_bit(AFS_VNODE_DELETED, &vnode->flags); 59 ret = -ESTALE; 60 } 61 } 62 63 _leave(" = %d", ret); 64 return ret; 65 } 66 67 /* 68 * prepare to perform part of a write to a page 69 */ 70 int afs_write_begin(struct file *file, struct address_space *mapping, 71 loff_t pos, unsigned len, unsigned flags, 72 struct page **pagep, void **fsdata) 73 { 74 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 75 struct page *page; 76 struct key *key = afs_file_key(file); 77 unsigned long priv; 78 unsigned f, from = pos & (PAGE_SIZE - 1); 79 unsigned t, to = from + len; 80 pgoff_t index = pos >> PAGE_SHIFT; 81 int ret; 82 83 _enter("{%x:%u},{%lx},%u,%u", 84 vnode->fid.vid, vnode->fid.vnode, index, from, to); 85 86 /* We want to store information about how much of a page is altered in 87 * page->private. 88 */ 89 BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8); 90 91 page = grab_cache_page_write_begin(mapping, index, flags); 92 if (!page) 93 return -ENOMEM; 94 95 if (!PageUptodate(page) && len != PAGE_SIZE) { 96 ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page); 97 if (ret < 0) { 98 unlock_page(page); 99 put_page(page); 100 _leave(" = %d [prep]", ret); 101 return ret; 102 } 103 SetPageUptodate(page); 104 } 105 106 /* page won't leak in error case: it eventually gets cleaned off LRU */ 107 *pagep = page; 108 109 try_again: 110 /* See if this page is already partially written in a way that we can 111 * merge the new write with. 112 */ 113 t = f = 0; 114 if (PagePrivate(page)) { 115 priv = page_private(page); 116 f = priv & AFS_PRIV_MAX; 117 t = priv >> AFS_PRIV_SHIFT; 118 ASSERTCMP(f, <=, t); 119 } 120 121 if (f != t) { 122 if (PageWriteback(page)) { 123 trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), 124 page->index, priv); 125 goto flush_conflicting_write; 126 } 127 if (to < f || from > t) 128 goto flush_conflicting_write; 129 if (from < f) 130 f = from; 131 if (to > t) 132 t = to; 133 } else { 134 f = from; 135 t = to; 136 } 137 138 priv = (unsigned long)t << AFS_PRIV_SHIFT; 139 priv |= f; 140 trace_afs_page_dirty(vnode, tracepoint_string("begin"), 141 page->index, priv); 142 SetPagePrivate(page); 143 set_page_private(page, priv); 144 _leave(" = 0"); 145 return 0; 146 147 /* The previous write and this write aren't adjacent or overlapping, so 148 * flush the page out. 149 */ 150 flush_conflicting_write: 151 _debug("flush conflict"); 152 ret = write_one_page(page); 153 if (ret < 0) { 154 _leave(" = %d", ret); 155 return ret; 156 } 157 158 ret = lock_page_killable(page); 159 if (ret < 0) { 160 _leave(" = %d", ret); 161 return ret; 162 } 163 goto try_again; 164 } 165 166 /* 167 * finalise part of a write to a page 168 */ 169 int afs_write_end(struct file *file, struct address_space *mapping, 170 loff_t pos, unsigned len, unsigned copied, 171 struct page *page, void *fsdata) 172 { 173 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 174 struct key *key = afs_file_key(file); 175 loff_t i_size, maybe_i_size; 176 int ret; 177 178 _enter("{%x:%u},{%lx}", 179 vnode->fid.vid, vnode->fid.vnode, page->index); 180 181 maybe_i_size = pos + copied; 182 183 i_size = i_size_read(&vnode->vfs_inode); 184 if (maybe_i_size > i_size) { 185 spin_lock(&vnode->wb_lock); 186 i_size = i_size_read(&vnode->vfs_inode); 187 if (maybe_i_size > i_size) 188 i_size_write(&vnode->vfs_inode, maybe_i_size); 189 spin_unlock(&vnode->wb_lock); 190 } 191 192 if (!PageUptodate(page)) { 193 if (copied < len) { 194 /* Try and load any missing data from the server. The 195 * unmarshalling routine will take care of clearing any 196 * bits that are beyond the EOF. 197 */ 198 ret = afs_fill_page(vnode, key, pos + copied, 199 len - copied, page); 200 if (ret < 0) 201 goto out; 202 } 203 SetPageUptodate(page); 204 } 205 206 set_page_dirty(page); 207 if (PageDirty(page)) 208 _debug("dirtied"); 209 ret = copied; 210 211 out: 212 unlock_page(page); 213 put_page(page); 214 return ret; 215 } 216 217 /* 218 * kill all the pages in the given range 219 */ 220 static void afs_kill_pages(struct address_space *mapping, 221 pgoff_t first, pgoff_t last) 222 { 223 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 224 struct pagevec pv; 225 unsigned count, loop; 226 227 _enter("{%x:%u},%lx-%lx", 228 vnode->fid.vid, vnode->fid.vnode, first, last); 229 230 pagevec_init(&pv); 231 232 do { 233 _debug("kill %lx-%lx", first, last); 234 235 count = last - first + 1; 236 if (count > PAGEVEC_SIZE) 237 count = PAGEVEC_SIZE; 238 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages); 239 ASSERTCMP(pv.nr, ==, count); 240 241 for (loop = 0; loop < count; loop++) { 242 struct page *page = pv.pages[loop]; 243 ClearPageUptodate(page); 244 SetPageError(page); 245 end_page_writeback(page); 246 if (page->index >= first) 247 first = page->index + 1; 248 lock_page(page); 249 generic_error_remove_page(mapping, page); 250 } 251 252 __pagevec_release(&pv); 253 } while (first <= last); 254 255 _leave(""); 256 } 257 258 /* 259 * Redirty all the pages in a given range. 260 */ 261 static void afs_redirty_pages(struct writeback_control *wbc, 262 struct address_space *mapping, 263 pgoff_t first, pgoff_t last) 264 { 265 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 266 struct pagevec pv; 267 unsigned count, loop; 268 269 _enter("{%x:%u},%lx-%lx", 270 vnode->fid.vid, vnode->fid.vnode, first, last); 271 272 pagevec_init(&pv); 273 274 do { 275 _debug("redirty %lx-%lx", first, last); 276 277 count = last - first + 1; 278 if (count > PAGEVEC_SIZE) 279 count = PAGEVEC_SIZE; 280 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages); 281 ASSERTCMP(pv.nr, ==, count); 282 283 for (loop = 0; loop < count; loop++) { 284 struct page *page = pv.pages[loop]; 285 286 redirty_page_for_writepage(wbc, page); 287 end_page_writeback(page); 288 if (page->index >= first) 289 first = page->index + 1; 290 } 291 292 __pagevec_release(&pv); 293 } while (first <= last); 294 295 _leave(""); 296 } 297 298 /* 299 * write to a file 300 */ 301 static int afs_store_data(struct address_space *mapping, 302 pgoff_t first, pgoff_t last, 303 unsigned offset, unsigned to) 304 { 305 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 306 struct afs_fs_cursor fc; 307 struct afs_wb_key *wbk = NULL; 308 struct list_head *p; 309 int ret = -ENOKEY, ret2; 310 311 _enter("%s{%x:%u.%u},%lx,%lx,%x,%x", 312 vnode->volume->name, 313 vnode->fid.vid, 314 vnode->fid.vnode, 315 vnode->fid.unique, 316 first, last, offset, to); 317 318 spin_lock(&vnode->wb_lock); 319 p = vnode->wb_keys.next; 320 321 /* Iterate through the list looking for a valid key to use. */ 322 try_next_key: 323 while (p != &vnode->wb_keys) { 324 wbk = list_entry(p, struct afs_wb_key, vnode_link); 325 _debug("wbk %u", key_serial(wbk->key)); 326 ret2 = key_validate(wbk->key); 327 if (ret2 == 0) 328 goto found_key; 329 if (ret == -ENOKEY) 330 ret = ret2; 331 p = p->next; 332 } 333 334 spin_unlock(&vnode->wb_lock); 335 afs_put_wb_key(wbk); 336 _leave(" = %d [no keys]", ret); 337 return ret; 338 339 found_key: 340 refcount_inc(&wbk->usage); 341 spin_unlock(&vnode->wb_lock); 342 343 _debug("USE WB KEY %u", key_serial(wbk->key)); 344 345 ret = -ERESTARTSYS; 346 if (afs_begin_vnode_operation(&fc, vnode, wbk->key)) { 347 while (afs_select_fileserver(&fc)) { 348 fc.cb_break = vnode->cb_break + vnode->cb_s_break; 349 afs_fs_store_data(&fc, mapping, first, last, offset, to); 350 } 351 352 afs_check_for_remote_deletion(&fc, fc.vnode); 353 afs_vnode_commit_status(&fc, vnode, fc.cb_break); 354 ret = afs_end_vnode_operation(&fc); 355 } 356 357 switch (ret) { 358 case -EACCES: 359 case -EPERM: 360 case -ENOKEY: 361 case -EKEYEXPIRED: 362 case -EKEYREJECTED: 363 case -EKEYREVOKED: 364 _debug("next"); 365 spin_lock(&vnode->wb_lock); 366 p = wbk->vnode_link.next; 367 afs_put_wb_key(wbk); 368 goto try_next_key; 369 } 370 371 afs_put_wb_key(wbk); 372 _leave(" = %d", ret); 373 return ret; 374 } 375 376 /* 377 * Synchronously write back the locked page and any subsequent non-locked dirty 378 * pages. 379 */ 380 static int afs_write_back_from_locked_page(struct address_space *mapping, 381 struct writeback_control *wbc, 382 struct page *primary_page, 383 pgoff_t final_page) 384 { 385 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 386 struct page *pages[8], *page; 387 unsigned long count, priv; 388 unsigned n, offset, to, f, t; 389 pgoff_t start, first, last; 390 int loop, ret; 391 392 _enter(",%lx", primary_page->index); 393 394 count = 1; 395 if (test_set_page_writeback(primary_page)) 396 BUG(); 397 398 /* Find all consecutive lockable dirty pages that have contiguous 399 * written regions, stopping when we find a page that is not 400 * immediately lockable, is not dirty or is missing, or we reach the 401 * end of the range. 402 */ 403 start = primary_page->index; 404 priv = page_private(primary_page); 405 offset = priv & AFS_PRIV_MAX; 406 to = priv >> AFS_PRIV_SHIFT; 407 trace_afs_page_dirty(vnode, tracepoint_string("store"), 408 primary_page->index, priv); 409 410 WARN_ON(offset == to); 411 if (offset == to) 412 trace_afs_page_dirty(vnode, tracepoint_string("WARN"), 413 primary_page->index, priv); 414 415 if (start >= final_page || to < PAGE_SIZE) 416 goto no_more; 417 418 start++; 419 do { 420 _debug("more %lx [%lx]", start, count); 421 n = final_page - start + 1; 422 if (n > ARRAY_SIZE(pages)) 423 n = ARRAY_SIZE(pages); 424 n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages); 425 _debug("fgpc %u", n); 426 if (n == 0) 427 goto no_more; 428 if (pages[0]->index != start) { 429 do { 430 put_page(pages[--n]); 431 } while (n > 0); 432 goto no_more; 433 } 434 435 for (loop = 0; loop < n; loop++) { 436 if (to != PAGE_SIZE) 437 break; 438 page = pages[loop]; 439 if (page->index > final_page) 440 break; 441 if (!trylock_page(page)) 442 break; 443 if (!PageDirty(page) || PageWriteback(page)) { 444 unlock_page(page); 445 break; 446 } 447 448 priv = page_private(page); 449 f = priv & AFS_PRIV_MAX; 450 t = priv >> AFS_PRIV_SHIFT; 451 if (f != 0) { 452 unlock_page(page); 453 break; 454 } 455 to = t; 456 457 trace_afs_page_dirty(vnode, tracepoint_string("store+"), 458 page->index, priv); 459 460 if (!clear_page_dirty_for_io(page)) 461 BUG(); 462 if (test_set_page_writeback(page)) 463 BUG(); 464 unlock_page(page); 465 put_page(page); 466 } 467 count += loop; 468 if (loop < n) { 469 for (; loop < n; loop++) 470 put_page(pages[loop]); 471 goto no_more; 472 } 473 474 start += loop; 475 } while (start <= final_page && count < 65536); 476 477 no_more: 478 /* We now have a contiguous set of dirty pages, each with writeback 479 * set; the first page is still locked at this point, but all the rest 480 * have been unlocked. 481 */ 482 unlock_page(primary_page); 483 484 first = primary_page->index; 485 last = first + count - 1; 486 487 _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to); 488 489 ret = afs_store_data(mapping, first, last, offset, to); 490 switch (ret) { 491 case 0: 492 ret = count; 493 break; 494 495 default: 496 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret); 497 /* Fall through */ 498 case -EACCES: 499 case -EPERM: 500 case -ENOKEY: 501 case -EKEYEXPIRED: 502 case -EKEYREJECTED: 503 case -EKEYREVOKED: 504 afs_redirty_pages(wbc, mapping, first, last); 505 mapping_set_error(mapping, ret); 506 break; 507 508 case -EDQUOT: 509 case -ENOSPC: 510 afs_redirty_pages(wbc, mapping, first, last); 511 mapping_set_error(mapping, -ENOSPC); 512 break; 513 514 case -EROFS: 515 case -EIO: 516 case -EREMOTEIO: 517 case -EFBIG: 518 case -ENOENT: 519 case -ENOMEDIUM: 520 case -ENXIO: 521 afs_kill_pages(mapping, first, last); 522 mapping_set_error(mapping, ret); 523 break; 524 } 525 526 _leave(" = %d", ret); 527 return ret; 528 } 529 530 /* 531 * write a page back to the server 532 * - the caller locked the page for us 533 */ 534 int afs_writepage(struct page *page, struct writeback_control *wbc) 535 { 536 int ret; 537 538 _enter("{%lx},", page->index); 539 540 ret = afs_write_back_from_locked_page(page->mapping, wbc, page, 541 wbc->range_end >> PAGE_SHIFT); 542 if (ret < 0) { 543 _leave(" = %d", ret); 544 return 0; 545 } 546 547 wbc->nr_to_write -= ret; 548 549 _leave(" = 0"); 550 return 0; 551 } 552 553 /* 554 * write a region of pages back to the server 555 */ 556 static int afs_writepages_region(struct address_space *mapping, 557 struct writeback_control *wbc, 558 pgoff_t index, pgoff_t end, pgoff_t *_next) 559 { 560 struct page *page; 561 int ret, n; 562 563 _enter(",,%lx,%lx,", index, end); 564 565 do { 566 n = find_get_pages_range_tag(mapping, &index, end, 567 PAGECACHE_TAG_DIRTY, 1, &page); 568 if (!n) 569 break; 570 571 _debug("wback %lx", page->index); 572 573 /* at this point we hold neither mapping->tree_lock nor lock on 574 * the page itself: the page may be truncated or invalidated 575 * (changing page->mapping to NULL), or even swizzled back from 576 * swapper_space to tmpfs file mapping 577 */ 578 ret = lock_page_killable(page); 579 if (ret < 0) { 580 put_page(page); 581 _leave(" = %d", ret); 582 return ret; 583 } 584 585 if (page->mapping != mapping || !PageDirty(page)) { 586 unlock_page(page); 587 put_page(page); 588 continue; 589 } 590 591 if (PageWriteback(page)) { 592 unlock_page(page); 593 if (wbc->sync_mode != WB_SYNC_NONE) 594 wait_on_page_writeback(page); 595 put_page(page); 596 continue; 597 } 598 599 if (!clear_page_dirty_for_io(page)) 600 BUG(); 601 ret = afs_write_back_from_locked_page(mapping, wbc, page, end); 602 put_page(page); 603 if (ret < 0) { 604 _leave(" = %d", ret); 605 return ret; 606 } 607 608 wbc->nr_to_write -= ret; 609 610 cond_resched(); 611 } while (index < end && wbc->nr_to_write > 0); 612 613 *_next = index; 614 _leave(" = 0 [%lx]", *_next); 615 return 0; 616 } 617 618 /* 619 * write some of the pending data back to the server 620 */ 621 int afs_writepages(struct address_space *mapping, 622 struct writeback_control *wbc) 623 { 624 pgoff_t start, end, next; 625 int ret; 626 627 _enter(""); 628 629 if (wbc->range_cyclic) { 630 start = mapping->writeback_index; 631 end = -1; 632 ret = afs_writepages_region(mapping, wbc, start, end, &next); 633 if (start > 0 && wbc->nr_to_write > 0 && ret == 0) 634 ret = afs_writepages_region(mapping, wbc, 0, start, 635 &next); 636 mapping->writeback_index = next; 637 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { 638 end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT); 639 ret = afs_writepages_region(mapping, wbc, 0, end, &next); 640 if (wbc->nr_to_write > 0) 641 mapping->writeback_index = next; 642 } else { 643 start = wbc->range_start >> PAGE_SHIFT; 644 end = wbc->range_end >> PAGE_SHIFT; 645 ret = afs_writepages_region(mapping, wbc, start, end, &next); 646 } 647 648 _leave(" = %d", ret); 649 return ret; 650 } 651 652 /* 653 * completion of write to server 654 */ 655 void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call) 656 { 657 struct pagevec pv; 658 unsigned long priv; 659 unsigned count, loop; 660 pgoff_t first = call->first, last = call->last; 661 662 _enter("{%x:%u},{%lx-%lx}", 663 vnode->fid.vid, vnode->fid.vnode, first, last); 664 665 pagevec_init(&pv); 666 667 do { 668 _debug("done %lx-%lx", first, last); 669 670 count = last - first + 1; 671 if (count > PAGEVEC_SIZE) 672 count = PAGEVEC_SIZE; 673 pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping, 674 first, count, pv.pages); 675 ASSERTCMP(pv.nr, ==, count); 676 677 for (loop = 0; loop < count; loop++) { 678 priv = page_private(pv.pages[loop]); 679 trace_afs_page_dirty(vnode, tracepoint_string("clear"), 680 pv.pages[loop]->index, priv); 681 set_page_private(pv.pages[loop], 0); 682 end_page_writeback(pv.pages[loop]); 683 } 684 first += count; 685 __pagevec_release(&pv); 686 } while (first <= last); 687 688 afs_prune_wb_keys(vnode); 689 _leave(""); 690 } 691 692 /* 693 * write to an AFS file 694 */ 695 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from) 696 { 697 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); 698 ssize_t result; 699 size_t count = iov_iter_count(from); 700 701 _enter("{%x.%u},{%zu},", 702 vnode->fid.vid, vnode->fid.vnode, count); 703 704 if (IS_SWAPFILE(&vnode->vfs_inode)) { 705 printk(KERN_INFO 706 "AFS: Attempt to write to active swap file!\n"); 707 return -EBUSY; 708 } 709 710 if (!count) 711 return 0; 712 713 result = generic_file_write_iter(iocb, from); 714 715 _leave(" = %zd", result); 716 return result; 717 } 718 719 /* 720 * flush any dirty pages for this process, and check for write errors. 721 * - the return status from this call provides a reliable indication of 722 * whether any write errors occurred for this process. 723 */ 724 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 725 { 726 struct inode *inode = file_inode(file); 727 struct afs_vnode *vnode = AFS_FS_I(inode); 728 729 _enter("{%x:%u},{n=%pD},%d", 730 vnode->fid.vid, vnode->fid.vnode, file, 731 datasync); 732 733 return file_write_and_wait_range(file, start, end); 734 } 735 736 /* 737 * Flush out all outstanding writes on a file opened for writing when it is 738 * closed. 739 */ 740 int afs_flush(struct file *file, fl_owner_t id) 741 { 742 _enter(""); 743 744 if ((file->f_mode & FMODE_WRITE) == 0) 745 return 0; 746 747 return vfs_fsync(file, 0); 748 } 749 750 /* 751 * notification that a previously read-only page is about to become writable 752 * - if it returns an error, the caller will deliver a bus error signal 753 */ 754 int afs_page_mkwrite(struct vm_fault *vmf) 755 { 756 struct file *file = vmf->vma->vm_file; 757 struct inode *inode = file_inode(file); 758 struct afs_vnode *vnode = AFS_FS_I(inode); 759 unsigned long priv; 760 761 _enter("{{%x:%u}},{%lx}", 762 vnode->fid.vid, vnode->fid.vnode, vmf->page->index); 763 764 sb_start_pagefault(inode->i_sb); 765 766 /* Wait for the page to be written to the cache before we allow it to 767 * be modified. We then assume the entire page will need writing back. 768 */ 769 #ifdef CONFIG_AFS_FSCACHE 770 fscache_wait_on_page_write(vnode->cache, vmf->page); 771 #endif 772 773 if (PageWriteback(vmf->page) && 774 wait_on_page_bit_killable(vmf->page, PG_writeback) < 0) 775 return VM_FAULT_RETRY; 776 777 if (lock_page_killable(vmf->page) < 0) 778 return VM_FAULT_RETRY; 779 780 /* We mustn't change page->private until writeback is complete as that 781 * details the portion of the page we need to write back and we might 782 * need to redirty the page if there's a problem. 783 */ 784 wait_on_page_writeback(vmf->page); 785 786 priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */ 787 priv |= 0; /* From */ 788 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), 789 vmf->page->index, priv); 790 SetPagePrivate(vmf->page); 791 set_page_private(vmf->page, priv); 792 793 sb_end_pagefault(inode->i_sb); 794 return VM_FAULT_LOCKED; 795 } 796 797 /* 798 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. 799 */ 800 void afs_prune_wb_keys(struct afs_vnode *vnode) 801 { 802 LIST_HEAD(graveyard); 803 struct afs_wb_key *wbk, *tmp; 804 805 /* Discard unused keys */ 806 spin_lock(&vnode->wb_lock); 807 808 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) && 809 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) { 810 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { 811 if (refcount_read(&wbk->usage) == 1) 812 list_move(&wbk->vnode_link, &graveyard); 813 } 814 } 815 816 spin_unlock(&vnode->wb_lock); 817 818 while (!list_empty(&graveyard)) { 819 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); 820 list_del(&wbk->vnode_link); 821 afs_put_wb_key(wbk); 822 } 823 } 824 825 /* 826 * Clean up a page during invalidation. 827 */ 828 int afs_launder_page(struct page *page) 829 { 830 struct address_space *mapping = page->mapping; 831 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 832 unsigned long priv; 833 unsigned int f, t; 834 int ret = 0; 835 836 _enter("{%lx}", page->index); 837 838 priv = page_private(page); 839 if (clear_page_dirty_for_io(page)) { 840 f = 0; 841 t = PAGE_SIZE; 842 if (PagePrivate(page)) { 843 f = priv & AFS_PRIV_MAX; 844 t = priv >> AFS_PRIV_SHIFT; 845 } 846 847 trace_afs_page_dirty(vnode, tracepoint_string("launder"), 848 page->index, priv); 849 ret = afs_store_data(mapping, page->index, page->index, t, f); 850 } 851 852 trace_afs_page_dirty(vnode, tracepoint_string("laundered"), 853 page->index, priv); 854 set_page_private(page, 0); 855 ClearPagePrivate(page); 856 857 #ifdef CONFIG_AFS_FSCACHE 858 if (PageFsCache(page)) { 859 fscache_wait_on_page_write(vnode->cache, page); 860 fscache_uncache_page(vnode->cache, page); 861 } 862 #endif 863 return ret; 864 } 865