1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* handling of writes to regular files and writing back to the server 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/backing-dev.h> 9 #include <linux/slab.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/netfs.h> 15 #include <linux/fscache.h> 16 #include "internal.h" 17 18 /* 19 * mark a page as having been made dirty and thus needing writeback 20 */ 21 int afs_set_page_dirty(struct page *page) 22 { 23 _enter(""); 24 return __set_page_dirty_nobuffers(page); 25 } 26 27 /* 28 * prepare to perform part of a write to a page 29 */ 30 int afs_write_begin(struct file *file, struct address_space *mapping, 31 loff_t pos, unsigned len, unsigned flags, 32 struct page **_page, void **fsdata) 33 { 34 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 35 struct page *page; 36 unsigned long priv; 37 unsigned f, from; 38 unsigned t, to; 39 pgoff_t index; 40 int ret; 41 42 _enter("{%llx:%llu},%llx,%x", 43 vnode->fid.vid, vnode->fid.vnode, pos, len); 44 45 /* Prefetch area to be written into the cache if we're caching this 46 * file. We need to do this before we get a lock on the page in case 47 * there's more than one writer competing for the same cache block. 48 */ 49 ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata, 50 &afs_req_ops, NULL); 51 if (ret < 0) 52 return ret; 53 54 index = page->index; 55 from = pos - index * PAGE_SIZE; 56 to = from + len; 57 58 try_again: 59 /* See if this page is already partially written in a way that we can 60 * merge the new write with. 61 */ 62 if (PagePrivate(page)) { 63 priv = page_private(page); 64 f = afs_page_dirty_from(page, priv); 65 t = afs_page_dirty_to(page, priv); 66 ASSERTCMP(f, <=, t); 67 68 if (PageWriteback(page)) { 69 trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page); 70 goto flush_conflicting_write; 71 } 72 /* If the file is being filled locally, allow inter-write 73 * spaces to be merged into writes. If it's not, only write 74 * back what the user gives us. 75 */ 76 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) && 77 (to < f || from > t)) 78 goto flush_conflicting_write; 79 } 80 81 *_page = page; 82 _leave(" = 0"); 83 return 0; 84 85 /* The previous write and this write aren't adjacent or overlapping, so 86 * flush the page out. 87 */ 88 flush_conflicting_write: 89 _debug("flush conflict"); 90 ret = write_one_page(page); 91 if (ret < 0) 92 goto error; 93 94 ret = lock_page_killable(page); 95 if (ret < 0) 96 goto error; 97 goto try_again; 98 99 error: 100 put_page(page); 101 _leave(" = %d", ret); 102 return ret; 103 } 104 105 /* 106 * finalise part of a write to a page 107 */ 108 int afs_write_end(struct file *file, struct address_space *mapping, 109 loff_t pos, unsigned len, unsigned copied, 110 struct page *page, void *fsdata) 111 { 112 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 113 unsigned long priv; 114 unsigned int f, from = pos & (thp_size(page) - 1); 115 unsigned int t, to = from + copied; 116 loff_t i_size, maybe_i_size; 117 118 _enter("{%llx:%llu},{%lx}", 119 vnode->fid.vid, vnode->fid.vnode, page->index); 120 121 if (!PageUptodate(page)) { 122 if (copied < len) { 123 copied = 0; 124 goto out; 125 } 126 127 SetPageUptodate(page); 128 } 129 130 if (copied == 0) 131 goto out; 132 133 maybe_i_size = pos + copied; 134 135 i_size = i_size_read(&vnode->vfs_inode); 136 if (maybe_i_size > i_size) { 137 write_seqlock(&vnode->cb_lock); 138 i_size = i_size_read(&vnode->vfs_inode); 139 if (maybe_i_size > i_size) 140 afs_set_i_size(vnode, maybe_i_size); 141 write_sequnlock(&vnode->cb_lock); 142 } 143 144 if (PagePrivate(page)) { 145 priv = page_private(page); 146 f = afs_page_dirty_from(page, priv); 147 t = afs_page_dirty_to(page, priv); 148 if (from < f) 149 f = from; 150 if (to > t) 151 t = to; 152 priv = afs_page_dirty(page, f, t); 153 set_page_private(page, priv); 154 trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page); 155 } else { 156 priv = afs_page_dirty(page, from, to); 157 attach_page_private(page, (void *)priv); 158 trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page); 159 } 160 161 if (set_page_dirty(page)) 162 _debug("dirtied %lx", page->index); 163 164 out: 165 unlock_page(page); 166 put_page(page); 167 return copied; 168 } 169 170 /* 171 * kill all the pages in the given range 172 */ 173 static void afs_kill_pages(struct address_space *mapping, 174 loff_t start, loff_t len) 175 { 176 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 177 struct pagevec pv; 178 unsigned int loop, psize; 179 180 _enter("{%llx:%llu},%llx @%llx", 181 vnode->fid.vid, vnode->fid.vnode, len, start); 182 183 pagevec_init(&pv); 184 185 do { 186 _debug("kill %llx @%llx", len, start); 187 188 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE, 189 PAGEVEC_SIZE, pv.pages); 190 if (pv.nr == 0) 191 break; 192 193 for (loop = 0; loop < pv.nr; loop++) { 194 struct page *page = pv.pages[loop]; 195 196 if (page->index * PAGE_SIZE >= start + len) 197 break; 198 199 psize = thp_size(page); 200 start += psize; 201 len -= psize; 202 ClearPageUptodate(page); 203 end_page_writeback(page); 204 lock_page(page); 205 generic_error_remove_page(mapping, page); 206 unlock_page(page); 207 } 208 209 __pagevec_release(&pv); 210 } while (len > 0); 211 212 _leave(""); 213 } 214 215 /* 216 * Redirty all the pages in a given range. 217 */ 218 static void afs_redirty_pages(struct writeback_control *wbc, 219 struct address_space *mapping, 220 loff_t start, loff_t len) 221 { 222 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 223 struct pagevec pv; 224 unsigned int loop, psize; 225 226 _enter("{%llx:%llu},%llx @%llx", 227 vnode->fid.vid, vnode->fid.vnode, len, start); 228 229 pagevec_init(&pv); 230 231 do { 232 _debug("redirty %llx @%llx", len, start); 233 234 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE, 235 PAGEVEC_SIZE, pv.pages); 236 if (pv.nr == 0) 237 break; 238 239 for (loop = 0; loop < pv.nr; loop++) { 240 struct page *page = pv.pages[loop]; 241 242 if (page->index * PAGE_SIZE >= start + len) 243 break; 244 245 psize = thp_size(page); 246 start += psize; 247 len -= psize; 248 redirty_page_for_writepage(wbc, page); 249 end_page_writeback(page); 250 } 251 252 __pagevec_release(&pv); 253 } while (len > 0); 254 255 _leave(""); 256 } 257 258 /* 259 * completion of write to server 260 */ 261 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len) 262 { 263 struct address_space *mapping = vnode->vfs_inode.i_mapping; 264 struct page *page; 265 pgoff_t end; 266 267 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 268 269 _enter("{%llx:%llu},{%x @%llx}", 270 vnode->fid.vid, vnode->fid.vnode, len, start); 271 272 rcu_read_lock(); 273 274 end = (start + len - 1) / PAGE_SIZE; 275 xas_for_each(&xas, page, end) { 276 if (!PageWriteback(page)) { 277 kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end); 278 ASSERT(PageWriteback(page)); 279 } 280 281 trace_afs_page_dirty(vnode, tracepoint_string("clear"), page); 282 detach_page_private(page); 283 page_endio(page, true, 0); 284 } 285 286 rcu_read_unlock(); 287 288 afs_prune_wb_keys(vnode); 289 _leave(""); 290 } 291 292 /* 293 * Find a key to use for the writeback. We cached the keys used to author the 294 * writes on the vnode. *_wbk will contain the last writeback key used or NULL 295 * and we need to start from there if it's set. 296 */ 297 static int afs_get_writeback_key(struct afs_vnode *vnode, 298 struct afs_wb_key **_wbk) 299 { 300 struct afs_wb_key *wbk = NULL; 301 struct list_head *p; 302 int ret = -ENOKEY, ret2; 303 304 spin_lock(&vnode->wb_lock); 305 if (*_wbk) 306 p = (*_wbk)->vnode_link.next; 307 else 308 p = vnode->wb_keys.next; 309 310 while (p != &vnode->wb_keys) { 311 wbk = list_entry(p, struct afs_wb_key, vnode_link); 312 _debug("wbk %u", key_serial(wbk->key)); 313 ret2 = key_validate(wbk->key); 314 if (ret2 == 0) { 315 refcount_inc(&wbk->usage); 316 _debug("USE WB KEY %u", key_serial(wbk->key)); 317 break; 318 } 319 320 wbk = NULL; 321 if (ret == -ENOKEY) 322 ret = ret2; 323 p = p->next; 324 } 325 326 spin_unlock(&vnode->wb_lock); 327 if (*_wbk) 328 afs_put_wb_key(*_wbk); 329 *_wbk = wbk; 330 return 0; 331 } 332 333 static void afs_store_data_success(struct afs_operation *op) 334 { 335 struct afs_vnode *vnode = op->file[0].vnode; 336 337 op->ctime = op->file[0].scb.status.mtime_client; 338 afs_vnode_commit_status(op, &op->file[0]); 339 if (op->error == 0) { 340 if (!op->store.laundering) 341 afs_pages_written_back(vnode, op->store.pos, op->store.size); 342 afs_stat_v(vnode, n_stores); 343 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes); 344 } 345 } 346 347 static const struct afs_operation_ops afs_store_data_operation = { 348 .issue_afs_rpc = afs_fs_store_data, 349 .issue_yfs_rpc = yfs_fs_store_data, 350 .success = afs_store_data_success, 351 }; 352 353 /* 354 * write to a file 355 */ 356 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos, 357 bool laundering) 358 { 359 struct afs_operation *op; 360 struct afs_wb_key *wbk = NULL; 361 loff_t size = iov_iter_count(iter), i_size; 362 int ret = -ENOKEY; 363 364 _enter("%s{%llx:%llu.%u},%llx,%llx", 365 vnode->volume->name, 366 vnode->fid.vid, 367 vnode->fid.vnode, 368 vnode->fid.unique, 369 size, pos); 370 371 ret = afs_get_writeback_key(vnode, &wbk); 372 if (ret) { 373 _leave(" = %d [no keys]", ret); 374 return ret; 375 } 376 377 op = afs_alloc_operation(wbk->key, vnode->volume); 378 if (IS_ERR(op)) { 379 afs_put_wb_key(wbk); 380 return -ENOMEM; 381 } 382 383 i_size = i_size_read(&vnode->vfs_inode); 384 385 afs_op_set_vnode(op, 0, vnode); 386 op->file[0].dv_delta = 1; 387 op->file[0].modification = true; 388 op->store.write_iter = iter; 389 op->store.pos = pos; 390 op->store.size = size; 391 op->store.i_size = max(pos + size, i_size); 392 op->store.laundering = laundering; 393 op->mtime = vnode->vfs_inode.i_mtime; 394 op->flags |= AFS_OPERATION_UNINTR; 395 op->ops = &afs_store_data_operation; 396 397 try_next_key: 398 afs_begin_vnode_operation(op); 399 afs_wait_for_operation(op); 400 401 switch (op->error) { 402 case -EACCES: 403 case -EPERM: 404 case -ENOKEY: 405 case -EKEYEXPIRED: 406 case -EKEYREJECTED: 407 case -EKEYREVOKED: 408 _debug("next"); 409 410 ret = afs_get_writeback_key(vnode, &wbk); 411 if (ret == 0) { 412 key_put(op->key); 413 op->key = key_get(wbk->key); 414 goto try_next_key; 415 } 416 break; 417 } 418 419 afs_put_wb_key(wbk); 420 _leave(" = %d", op->error); 421 return afs_put_operation(op); 422 } 423 424 /* 425 * Extend the region to be written back to include subsequent contiguously 426 * dirty pages if possible, but don't sleep while doing so. 427 * 428 * If this page holds new content, then we can include filler zeros in the 429 * writeback. 430 */ 431 static void afs_extend_writeback(struct address_space *mapping, 432 struct afs_vnode *vnode, 433 long *_count, 434 loff_t start, 435 loff_t max_len, 436 bool new_content, 437 unsigned int *_len) 438 { 439 struct pagevec pvec; 440 struct page *page; 441 unsigned long priv; 442 unsigned int psize, filler = 0; 443 unsigned int f, t; 444 loff_t len = *_len; 445 pgoff_t index = (start + len) / PAGE_SIZE; 446 bool stop = true; 447 unsigned int i; 448 449 XA_STATE(xas, &mapping->i_pages, index); 450 pagevec_init(&pvec); 451 452 do { 453 /* Firstly, we gather up a batch of contiguous dirty pages 454 * under the RCU read lock - but we can't clear the dirty flags 455 * there if any of those pages are mapped. 456 */ 457 rcu_read_lock(); 458 459 xas_for_each(&xas, page, ULONG_MAX) { 460 stop = true; 461 if (xas_retry(&xas, page)) 462 continue; 463 if (xa_is_value(page)) 464 break; 465 if (page->index != index) 466 break; 467 468 if (!page_cache_get_speculative(page)) { 469 xas_reset(&xas); 470 continue; 471 } 472 473 /* Has the page moved or been split? */ 474 if (unlikely(page != xas_reload(&xas))) { 475 put_page(page); 476 break; 477 } 478 479 if (!trylock_page(page)) { 480 put_page(page); 481 break; 482 } 483 if (!PageDirty(page) || PageWriteback(page)) { 484 unlock_page(page); 485 put_page(page); 486 break; 487 } 488 489 psize = thp_size(page); 490 priv = page_private(page); 491 f = afs_page_dirty_from(page, priv); 492 t = afs_page_dirty_to(page, priv); 493 if (f != 0 && !new_content) { 494 unlock_page(page); 495 put_page(page); 496 break; 497 } 498 499 len += filler + t; 500 filler = psize - t; 501 if (len >= max_len || *_count <= 0) 502 stop = true; 503 else if (t == psize || new_content) 504 stop = false; 505 506 index += thp_nr_pages(page); 507 if (!pagevec_add(&pvec, page)) 508 break; 509 if (stop) 510 break; 511 } 512 513 if (!stop) 514 xas_pause(&xas); 515 rcu_read_unlock(); 516 517 /* Now, if we obtained any pages, we can shift them to being 518 * writable and mark them for caching. 519 */ 520 if (!pagevec_count(&pvec)) 521 break; 522 523 for (i = 0; i < pagevec_count(&pvec); i++) { 524 page = pvec.pages[i]; 525 trace_afs_page_dirty(vnode, tracepoint_string("store+"), page); 526 527 if (!clear_page_dirty_for_io(page)) 528 BUG(); 529 if (test_set_page_writeback(page)) 530 BUG(); 531 532 *_count -= thp_nr_pages(page); 533 unlock_page(page); 534 } 535 536 pagevec_release(&pvec); 537 cond_resched(); 538 } while (!stop); 539 540 *_len = len; 541 } 542 543 /* 544 * Synchronously write back the locked page and any subsequent non-locked dirty 545 * pages. 546 */ 547 static ssize_t afs_write_back_from_locked_page(struct address_space *mapping, 548 struct writeback_control *wbc, 549 struct page *page, 550 loff_t start, loff_t end) 551 { 552 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 553 struct iov_iter iter; 554 unsigned long priv; 555 unsigned int offset, to, len, max_len; 556 loff_t i_size = i_size_read(&vnode->vfs_inode); 557 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 558 long count = wbc->nr_to_write; 559 int ret; 560 561 _enter(",%lx,%llx-%llx", page->index, start, end); 562 563 if (test_set_page_writeback(page)) 564 BUG(); 565 566 count -= thp_nr_pages(page); 567 568 /* Find all consecutive lockable dirty pages that have contiguous 569 * written regions, stopping when we find a page that is not 570 * immediately lockable, is not dirty or is missing, or we reach the 571 * end of the range. 572 */ 573 priv = page_private(page); 574 offset = afs_page_dirty_from(page, priv); 575 to = afs_page_dirty_to(page, priv); 576 trace_afs_page_dirty(vnode, tracepoint_string("store"), page); 577 578 len = to - offset; 579 start += offset; 580 if (start < i_size) { 581 /* Trim the write to the EOF; the extra data is ignored. Also 582 * put an upper limit on the size of a single storedata op. 583 */ 584 max_len = 65536 * 4096; 585 max_len = min_t(unsigned long long, max_len, end - start + 1); 586 max_len = min_t(unsigned long long, max_len, i_size - start); 587 588 if (len < max_len && 589 (to == thp_size(page) || new_content)) 590 afs_extend_writeback(mapping, vnode, &count, 591 start, max_len, new_content, &len); 592 len = min_t(loff_t, len, max_len); 593 } 594 595 /* We now have a contiguous set of dirty pages, each with writeback 596 * set; the first page is still locked at this point, but all the rest 597 * have been unlocked. 598 */ 599 unlock_page(page); 600 601 if (start < i_size) { 602 _debug("write back %x @%llx [%llx]", len, start, i_size); 603 604 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len); 605 ret = afs_store_data(vnode, &iter, start, false); 606 } else { 607 _debug("write discard %x @%llx [%llx]", len, start, i_size); 608 609 /* The dirty region was entirely beyond the EOF. */ 610 afs_pages_written_back(vnode, start, len); 611 ret = 0; 612 } 613 614 switch (ret) { 615 case 0: 616 wbc->nr_to_write = count; 617 ret = len; 618 break; 619 620 default: 621 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret); 622 fallthrough; 623 case -EACCES: 624 case -EPERM: 625 case -ENOKEY: 626 case -EKEYEXPIRED: 627 case -EKEYREJECTED: 628 case -EKEYREVOKED: 629 afs_redirty_pages(wbc, mapping, start, len); 630 mapping_set_error(mapping, ret); 631 break; 632 633 case -EDQUOT: 634 case -ENOSPC: 635 afs_redirty_pages(wbc, mapping, start, len); 636 mapping_set_error(mapping, -ENOSPC); 637 break; 638 639 case -EROFS: 640 case -EIO: 641 case -EREMOTEIO: 642 case -EFBIG: 643 case -ENOENT: 644 case -ENOMEDIUM: 645 case -ENXIO: 646 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail); 647 afs_kill_pages(mapping, start, len); 648 mapping_set_error(mapping, ret); 649 break; 650 } 651 652 _leave(" = %d", ret); 653 return ret; 654 } 655 656 /* 657 * write a page back to the server 658 * - the caller locked the page for us 659 */ 660 int afs_writepage(struct page *page, struct writeback_control *wbc) 661 { 662 ssize_t ret; 663 loff_t start; 664 665 _enter("{%lx},", page->index); 666 667 start = page->index * PAGE_SIZE; 668 ret = afs_write_back_from_locked_page(page->mapping, wbc, page, 669 start, LLONG_MAX - start); 670 if (ret < 0) { 671 _leave(" = %zd", ret); 672 return ret; 673 } 674 675 _leave(" = 0"); 676 return 0; 677 } 678 679 /* 680 * write a region of pages back to the server 681 */ 682 static int afs_writepages_region(struct address_space *mapping, 683 struct writeback_control *wbc, 684 loff_t start, loff_t end, loff_t *_next) 685 { 686 struct page *page; 687 ssize_t ret; 688 int n; 689 690 _enter("%llx,%llx,", start, end); 691 692 do { 693 pgoff_t index = start / PAGE_SIZE; 694 695 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE, 696 PAGECACHE_TAG_DIRTY, 1, &page); 697 if (!n) 698 break; 699 700 start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */ 701 702 _debug("wback %lx", page->index); 703 704 /* At this point we hold neither the i_pages lock nor the 705 * page lock: the page may be truncated or invalidated 706 * (changing page->mapping to NULL), or even swizzled 707 * back from swapper_space to tmpfs file mapping 708 */ 709 if (wbc->sync_mode != WB_SYNC_NONE) { 710 ret = lock_page_killable(page); 711 if (ret < 0) { 712 put_page(page); 713 return ret; 714 } 715 } else { 716 if (!trylock_page(page)) { 717 put_page(page); 718 return 0; 719 } 720 } 721 722 if (page->mapping != mapping || !PageDirty(page)) { 723 start += thp_size(page); 724 unlock_page(page); 725 put_page(page); 726 continue; 727 } 728 729 if (PageWriteback(page)) { 730 unlock_page(page); 731 if (wbc->sync_mode != WB_SYNC_NONE) 732 wait_on_page_writeback(page); 733 put_page(page); 734 continue; 735 } 736 737 if (!clear_page_dirty_for_io(page)) 738 BUG(); 739 ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end); 740 put_page(page); 741 if (ret < 0) { 742 _leave(" = %zd", ret); 743 return ret; 744 } 745 746 start += ret; 747 748 cond_resched(); 749 } while (wbc->nr_to_write > 0); 750 751 *_next = start; 752 _leave(" = 0 [%llx]", *_next); 753 return 0; 754 } 755 756 /* 757 * write some of the pending data back to the server 758 */ 759 int afs_writepages(struct address_space *mapping, 760 struct writeback_control *wbc) 761 { 762 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 763 loff_t start, next; 764 int ret; 765 766 _enter(""); 767 768 /* We have to be careful as we can end up racing with setattr() 769 * truncating the pagecache since the caller doesn't take a lock here 770 * to prevent it. 771 */ 772 if (wbc->sync_mode == WB_SYNC_ALL) 773 down_read(&vnode->validate_lock); 774 else if (!down_read_trylock(&vnode->validate_lock)) 775 return 0; 776 777 if (wbc->range_cyclic) { 778 start = mapping->writeback_index * PAGE_SIZE; 779 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next); 780 if (ret == 0) { 781 mapping->writeback_index = next / PAGE_SIZE; 782 if (start > 0 && wbc->nr_to_write > 0) { 783 ret = afs_writepages_region(mapping, wbc, 0, 784 start, &next); 785 if (ret == 0) 786 mapping->writeback_index = 787 next / PAGE_SIZE; 788 } 789 } 790 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { 791 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next); 792 if (wbc->nr_to_write > 0 && ret == 0) 793 mapping->writeback_index = next / PAGE_SIZE; 794 } else { 795 ret = afs_writepages_region(mapping, wbc, 796 wbc->range_start, wbc->range_end, &next); 797 } 798 799 up_read(&vnode->validate_lock); 800 _leave(" = %d", ret); 801 return ret; 802 } 803 804 /* 805 * write to an AFS file 806 */ 807 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from) 808 { 809 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); 810 struct afs_file *af = iocb->ki_filp->private_data; 811 ssize_t result; 812 size_t count = iov_iter_count(from); 813 814 _enter("{%llx:%llu},{%zu},", 815 vnode->fid.vid, vnode->fid.vnode, count); 816 817 if (IS_SWAPFILE(&vnode->vfs_inode)) { 818 printk(KERN_INFO 819 "AFS: Attempt to write to active swap file!\n"); 820 return -EBUSY; 821 } 822 823 if (!count) 824 return 0; 825 826 result = afs_validate(vnode, af->key); 827 if (result < 0) 828 return result; 829 830 result = generic_file_write_iter(iocb, from); 831 832 _leave(" = %zd", result); 833 return result; 834 } 835 836 /* 837 * flush any dirty pages for this process, and check for write errors. 838 * - the return status from this call provides a reliable indication of 839 * whether any write errors occurred for this process. 840 */ 841 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 842 { 843 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 844 struct afs_file *af = file->private_data; 845 int ret; 846 847 _enter("{%llx:%llu},{n=%pD},%d", 848 vnode->fid.vid, vnode->fid.vnode, file, 849 datasync); 850 851 ret = afs_validate(vnode, af->key); 852 if (ret < 0) 853 return ret; 854 855 return file_write_and_wait_range(file, start, end); 856 } 857 858 /* 859 * notification that a previously read-only page is about to become writable 860 * - if it returns an error, the caller will deliver a bus error signal 861 */ 862 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf) 863 { 864 struct page *page = thp_head(vmf->page); 865 struct file *file = vmf->vma->vm_file; 866 struct inode *inode = file_inode(file); 867 struct afs_vnode *vnode = AFS_FS_I(inode); 868 struct afs_file *af = file->private_data; 869 unsigned long priv; 870 vm_fault_t ret = VM_FAULT_RETRY; 871 872 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index); 873 874 afs_validate(vnode, af->key); 875 876 sb_start_pagefault(inode->i_sb); 877 878 /* Wait for the page to be written to the cache before we allow it to 879 * be modified. We then assume the entire page will need writing back. 880 */ 881 #ifdef CONFIG_AFS_FSCACHE 882 if (PageFsCache(page) && 883 wait_on_page_fscache_killable(page) < 0) 884 goto out; 885 #endif 886 887 if (wait_on_page_writeback_killable(page)) 888 goto out; 889 890 if (lock_page_killable(page) < 0) 891 goto out; 892 893 /* We mustn't change page->private until writeback is complete as that 894 * details the portion of the page we need to write back and we might 895 * need to redirty the page if there's a problem. 896 */ 897 if (wait_on_page_writeback_killable(page) < 0) { 898 unlock_page(page); 899 goto out; 900 } 901 902 priv = afs_page_dirty(page, 0, thp_size(page)); 903 priv = afs_page_dirty_mmapped(priv); 904 if (PagePrivate(page)) { 905 set_page_private(page, priv); 906 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page); 907 } else { 908 attach_page_private(page, (void *)priv); 909 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page); 910 } 911 file_update_time(file); 912 913 ret = VM_FAULT_LOCKED; 914 out: 915 sb_end_pagefault(inode->i_sb); 916 return ret; 917 } 918 919 /* 920 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. 921 */ 922 void afs_prune_wb_keys(struct afs_vnode *vnode) 923 { 924 LIST_HEAD(graveyard); 925 struct afs_wb_key *wbk, *tmp; 926 927 /* Discard unused keys */ 928 spin_lock(&vnode->wb_lock); 929 930 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) && 931 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) { 932 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { 933 if (refcount_read(&wbk->usage) == 1) 934 list_move(&wbk->vnode_link, &graveyard); 935 } 936 } 937 938 spin_unlock(&vnode->wb_lock); 939 940 while (!list_empty(&graveyard)) { 941 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); 942 list_del(&wbk->vnode_link); 943 afs_put_wb_key(wbk); 944 } 945 } 946 947 /* 948 * Clean up a page during invalidation. 949 */ 950 int afs_launder_page(struct page *page) 951 { 952 struct address_space *mapping = page->mapping; 953 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 954 struct iov_iter iter; 955 struct bio_vec bv[1]; 956 unsigned long priv; 957 unsigned int f, t; 958 int ret = 0; 959 960 _enter("{%lx}", page->index); 961 962 priv = page_private(page); 963 if (clear_page_dirty_for_io(page)) { 964 f = 0; 965 t = thp_size(page); 966 if (PagePrivate(page)) { 967 f = afs_page_dirty_from(page, priv); 968 t = afs_page_dirty_to(page, priv); 969 } 970 971 bv[0].bv_page = page; 972 bv[0].bv_offset = f; 973 bv[0].bv_len = t - f; 974 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len); 975 976 trace_afs_page_dirty(vnode, tracepoint_string("launder"), page); 977 ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE, 978 true); 979 } 980 981 trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page); 982 detach_page_private(page); 983 wait_on_page_fscache(page); 984 return ret; 985 } 986