xref: /openbmc/linux/fs/afs/write.c (revision c65176fd49f45bd5a5ffaa1790109745d1fa462c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21 	_enter("");
22 	return __set_page_dirty_nobuffers(page);
23 }
24 
25 /*
26  * partly or wholly fill a page that's under preparation for writing
27  */
28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29 			 loff_t pos, unsigned int len, struct page *page)
30 {
31 	struct afs_read *req;
32 	size_t p;
33 	void *data;
34 	int ret;
35 
36 	_enter(",,%llu", (unsigned long long)pos);
37 
38 	if (pos >= vnode->vfs_inode.i_size) {
39 		p = pos & ~PAGE_MASK;
40 		ASSERTCMP(p + len, <=, PAGE_SIZE);
41 		data = kmap(page);
42 		memset(data + p, 0, len);
43 		kunmap(page);
44 		return 0;
45 	}
46 
47 	req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48 	if (!req)
49 		return -ENOMEM;
50 
51 	refcount_set(&req->usage, 1);
52 	req->pos = pos;
53 	req->len = len;
54 	req->nr_pages = 1;
55 	req->pages = req->array;
56 	req->pages[0] = page;
57 	get_page(page);
58 
59 	ret = afs_fetch_data(vnode, key, req);
60 	afs_put_read(req);
61 	if (ret < 0) {
62 		if (ret == -ENOENT) {
63 			_debug("got NOENT from server"
64 			       " - marking file deleted and stale");
65 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
66 			ret = -ESTALE;
67 		}
68 	}
69 
70 	_leave(" = %d", ret);
71 	return ret;
72 }
73 
74 /*
75  * prepare to perform part of a write to a page
76  */
77 int afs_write_begin(struct file *file, struct address_space *mapping,
78 		    loff_t pos, unsigned len, unsigned flags,
79 		    struct page **pagep, void **fsdata)
80 {
81 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82 	struct page *page;
83 	struct key *key = afs_file_key(file);
84 	unsigned long priv;
85 	unsigned f, from = pos & (PAGE_SIZE - 1);
86 	unsigned t, to = from + len;
87 	pgoff_t index = pos >> PAGE_SHIFT;
88 	int ret;
89 
90 	_enter("{%llx:%llu},{%lx},%u,%u",
91 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
92 
93 	/* We want to store information about how much of a page is altered in
94 	 * page->private.
95 	 */
96 	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
97 
98 	page = grab_cache_page_write_begin(mapping, index, flags);
99 	if (!page)
100 		return -ENOMEM;
101 
102 	if (!PageUptodate(page) && len != PAGE_SIZE) {
103 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
104 		if (ret < 0) {
105 			unlock_page(page);
106 			put_page(page);
107 			_leave(" = %d [prep]", ret);
108 			return ret;
109 		}
110 		SetPageUptodate(page);
111 	}
112 
113 	/* page won't leak in error case: it eventually gets cleaned off LRU */
114 	*pagep = page;
115 
116 try_again:
117 	/* See if this page is already partially written in a way that we can
118 	 * merge the new write with.
119 	 */
120 	t = f = 0;
121 	if (PagePrivate(page)) {
122 		priv = page_private(page);
123 		f = priv & AFS_PRIV_MAX;
124 		t = priv >> AFS_PRIV_SHIFT;
125 		ASSERTCMP(f, <=, t);
126 	}
127 
128 	if (f != t) {
129 		if (PageWriteback(page)) {
130 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
131 					     page->index, priv);
132 			goto flush_conflicting_write;
133 		}
134 		/* If the file is being filled locally, allow inter-write
135 		 * spaces to be merged into writes.  If it's not, only write
136 		 * back what the user gives us.
137 		 */
138 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
139 		    (to < f || from > t))
140 			goto flush_conflicting_write;
141 		if (from < f)
142 			f = from;
143 		if (to > t)
144 			t = to;
145 	} else {
146 		f = from;
147 		t = to;
148 	}
149 
150 	priv = (unsigned long)t << AFS_PRIV_SHIFT;
151 	priv |= f;
152 	trace_afs_page_dirty(vnode, tracepoint_string("begin"),
153 			     page->index, priv);
154 	SetPagePrivate(page);
155 	set_page_private(page, priv);
156 	_leave(" = 0");
157 	return 0;
158 
159 	/* The previous write and this write aren't adjacent or overlapping, so
160 	 * flush the page out.
161 	 */
162 flush_conflicting_write:
163 	_debug("flush conflict");
164 	ret = write_one_page(page);
165 	if (ret < 0) {
166 		_leave(" = %d", ret);
167 		return ret;
168 	}
169 
170 	ret = lock_page_killable(page);
171 	if (ret < 0) {
172 		_leave(" = %d", ret);
173 		return ret;
174 	}
175 	goto try_again;
176 }
177 
178 /*
179  * finalise part of a write to a page
180  */
181 int afs_write_end(struct file *file, struct address_space *mapping,
182 		  loff_t pos, unsigned len, unsigned copied,
183 		  struct page *page, void *fsdata)
184 {
185 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
186 	struct key *key = afs_file_key(file);
187 	loff_t i_size, maybe_i_size;
188 	int ret;
189 
190 	_enter("{%llx:%llu},{%lx}",
191 	       vnode->fid.vid, vnode->fid.vnode, page->index);
192 
193 	maybe_i_size = pos + copied;
194 
195 	i_size = i_size_read(&vnode->vfs_inode);
196 	if (maybe_i_size > i_size) {
197 		write_seqlock(&vnode->cb_lock);
198 		i_size = i_size_read(&vnode->vfs_inode);
199 		if (maybe_i_size > i_size)
200 			i_size_write(&vnode->vfs_inode, maybe_i_size);
201 		write_sequnlock(&vnode->cb_lock);
202 	}
203 
204 	if (!PageUptodate(page)) {
205 		if (copied < len) {
206 			/* Try and load any missing data from the server.  The
207 			 * unmarshalling routine will take care of clearing any
208 			 * bits that are beyond the EOF.
209 			 */
210 			ret = afs_fill_page(vnode, key, pos + copied,
211 					    len - copied, page);
212 			if (ret < 0)
213 				goto out;
214 		}
215 		SetPageUptodate(page);
216 	}
217 
218 	set_page_dirty(page);
219 	if (PageDirty(page))
220 		_debug("dirtied");
221 	ret = copied;
222 
223 out:
224 	unlock_page(page);
225 	put_page(page);
226 	return ret;
227 }
228 
229 /*
230  * kill all the pages in the given range
231  */
232 static void afs_kill_pages(struct address_space *mapping,
233 			   pgoff_t first, pgoff_t last)
234 {
235 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
236 	struct pagevec pv;
237 	unsigned count, loop;
238 
239 	_enter("{%llx:%llu},%lx-%lx",
240 	       vnode->fid.vid, vnode->fid.vnode, first, last);
241 
242 	pagevec_init(&pv);
243 
244 	do {
245 		_debug("kill %lx-%lx", first, last);
246 
247 		count = last - first + 1;
248 		if (count > PAGEVEC_SIZE)
249 			count = PAGEVEC_SIZE;
250 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
251 		ASSERTCMP(pv.nr, ==, count);
252 
253 		for (loop = 0; loop < count; loop++) {
254 			struct page *page = pv.pages[loop];
255 			ClearPageUptodate(page);
256 			SetPageError(page);
257 			end_page_writeback(page);
258 			if (page->index >= first)
259 				first = page->index + 1;
260 			lock_page(page);
261 			generic_error_remove_page(mapping, page);
262 			unlock_page(page);
263 		}
264 
265 		__pagevec_release(&pv);
266 	} while (first <= last);
267 
268 	_leave("");
269 }
270 
271 /*
272  * Redirty all the pages in a given range.
273  */
274 static void afs_redirty_pages(struct writeback_control *wbc,
275 			      struct address_space *mapping,
276 			      pgoff_t first, pgoff_t last)
277 {
278 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
279 	struct pagevec pv;
280 	unsigned count, loop;
281 
282 	_enter("{%llx:%llu},%lx-%lx",
283 	       vnode->fid.vid, vnode->fid.vnode, first, last);
284 
285 	pagevec_init(&pv);
286 
287 	do {
288 		_debug("redirty %lx-%lx", first, last);
289 
290 		count = last - first + 1;
291 		if (count > PAGEVEC_SIZE)
292 			count = PAGEVEC_SIZE;
293 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
294 		ASSERTCMP(pv.nr, ==, count);
295 
296 		for (loop = 0; loop < count; loop++) {
297 			struct page *page = pv.pages[loop];
298 
299 			redirty_page_for_writepage(wbc, page);
300 			end_page_writeback(page);
301 			if (page->index >= first)
302 				first = page->index + 1;
303 		}
304 
305 		__pagevec_release(&pv);
306 	} while (first <= last);
307 
308 	_leave("");
309 }
310 
311 /*
312  * completion of write to server
313  */
314 static void afs_pages_written_back(struct afs_vnode *vnode,
315 				   pgoff_t first, pgoff_t last)
316 {
317 	struct pagevec pv;
318 	unsigned long priv;
319 	unsigned count, loop;
320 
321 	_enter("{%llx:%llu},{%lx-%lx}",
322 	       vnode->fid.vid, vnode->fid.vnode, first, last);
323 
324 	pagevec_init(&pv);
325 
326 	do {
327 		_debug("done %lx-%lx", first, last);
328 
329 		count = last - first + 1;
330 		if (count > PAGEVEC_SIZE)
331 			count = PAGEVEC_SIZE;
332 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
333 					      first, count, pv.pages);
334 		ASSERTCMP(pv.nr, ==, count);
335 
336 		for (loop = 0; loop < count; loop++) {
337 			priv = page_private(pv.pages[loop]);
338 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
339 					     pv.pages[loop]->index, priv);
340 			set_page_private(pv.pages[loop], 0);
341 			end_page_writeback(pv.pages[loop]);
342 		}
343 		first += count;
344 		__pagevec_release(&pv);
345 	} while (first <= last);
346 
347 	afs_prune_wb_keys(vnode);
348 	_leave("");
349 }
350 
351 /*
352  * Find a key to use for the writeback.  We cached the keys used to author the
353  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
354  * and we need to start from there if it's set.
355  */
356 static int afs_get_writeback_key(struct afs_vnode *vnode,
357 				 struct afs_wb_key **_wbk)
358 {
359 	struct afs_wb_key *wbk = NULL;
360 	struct list_head *p;
361 	int ret = -ENOKEY, ret2;
362 
363 	spin_lock(&vnode->wb_lock);
364 	if (*_wbk)
365 		p = (*_wbk)->vnode_link.next;
366 	else
367 		p = vnode->wb_keys.next;
368 
369 	while (p != &vnode->wb_keys) {
370 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
371 		_debug("wbk %u", key_serial(wbk->key));
372 		ret2 = key_validate(wbk->key);
373 		if (ret2 == 0) {
374 			refcount_inc(&wbk->usage);
375 			_debug("USE WB KEY %u", key_serial(wbk->key));
376 			break;
377 		}
378 
379 		wbk = NULL;
380 		if (ret == -ENOKEY)
381 			ret = ret2;
382 		p = p->next;
383 	}
384 
385 	spin_unlock(&vnode->wb_lock);
386 	if (*_wbk)
387 		afs_put_wb_key(*_wbk);
388 	*_wbk = wbk;
389 	return 0;
390 }
391 
392 static void afs_store_data_success(struct afs_operation *op)
393 {
394 	struct afs_vnode *vnode = op->file[0].vnode;
395 
396 	op->ctime = op->file[0].scb.status.mtime_client;
397 	afs_vnode_commit_status(op, &op->file[0]);
398 	if (op->error == 0) {
399 		afs_pages_written_back(vnode, op->store.first, op->store.last);
400 		afs_stat_v(vnode, n_stores);
401 		atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
402 				(op->store.first * PAGE_SIZE + op->store.first_offset),
403 				&afs_v2net(vnode)->n_store_bytes);
404 	}
405 }
406 
407 static const struct afs_operation_ops afs_store_data_operation = {
408 	.issue_afs_rpc	= afs_fs_store_data,
409 	.issue_yfs_rpc	= yfs_fs_store_data,
410 	.success	= afs_store_data_success,
411 };
412 
413 /*
414  * write to a file
415  */
416 static int afs_store_data(struct address_space *mapping,
417 			  pgoff_t first, pgoff_t last,
418 			  unsigned offset, unsigned to)
419 {
420 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
421 	struct afs_operation *op;
422 	struct afs_wb_key *wbk = NULL;
423 	int ret;
424 
425 	_enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
426 	       vnode->volume->name,
427 	       vnode->fid.vid,
428 	       vnode->fid.vnode,
429 	       vnode->fid.unique,
430 	       first, last, offset, to);
431 
432 	ret = afs_get_writeback_key(vnode, &wbk);
433 	if (ret) {
434 		_leave(" = %d [no keys]", ret);
435 		return ret;
436 	}
437 
438 	op = afs_alloc_operation(wbk->key, vnode->volume);
439 	if (IS_ERR(op)) {
440 		afs_put_wb_key(wbk);
441 		return -ENOMEM;
442 	}
443 
444 	afs_op_set_vnode(op, 0, vnode);
445 	op->file[0].dv_delta = 1;
446 	op->store.mapping = mapping;
447 	op->store.first = first;
448 	op->store.last = last;
449 	op->store.first_offset = offset;
450 	op->store.last_to = to;
451 	op->mtime = vnode->vfs_inode.i_mtime;
452 	op->flags |= AFS_OPERATION_UNINTR;
453 	op->ops = &afs_store_data_operation;
454 
455 try_next_key:
456 	afs_begin_vnode_operation(op);
457 	afs_wait_for_operation(op);
458 
459 	switch (op->error) {
460 	case -EACCES:
461 	case -EPERM:
462 	case -ENOKEY:
463 	case -EKEYEXPIRED:
464 	case -EKEYREJECTED:
465 	case -EKEYREVOKED:
466 		_debug("next");
467 
468 		ret = afs_get_writeback_key(vnode, &wbk);
469 		if (ret == 0) {
470 			key_put(op->key);
471 			op->key = key_get(wbk->key);
472 			goto try_next_key;
473 		}
474 		break;
475 	}
476 
477 	afs_put_wb_key(wbk);
478 	_leave(" = %d", op->error);
479 	return afs_put_operation(op);
480 }
481 
482 /*
483  * Synchronously write back the locked page and any subsequent non-locked dirty
484  * pages.
485  */
486 static int afs_write_back_from_locked_page(struct address_space *mapping,
487 					   struct writeback_control *wbc,
488 					   struct page *primary_page,
489 					   pgoff_t final_page)
490 {
491 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
492 	struct page *pages[8], *page;
493 	unsigned long count, priv;
494 	unsigned n, offset, to, f, t;
495 	pgoff_t start, first, last;
496 	loff_t i_size, end;
497 	int loop, ret;
498 
499 	_enter(",%lx", primary_page->index);
500 
501 	count = 1;
502 	if (test_set_page_writeback(primary_page))
503 		BUG();
504 
505 	/* Find all consecutive lockable dirty pages that have contiguous
506 	 * written regions, stopping when we find a page that is not
507 	 * immediately lockable, is not dirty or is missing, or we reach the
508 	 * end of the range.
509 	 */
510 	start = primary_page->index;
511 	priv = page_private(primary_page);
512 	offset = priv & AFS_PRIV_MAX;
513 	to = priv >> AFS_PRIV_SHIFT;
514 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
515 			     primary_page->index, priv);
516 
517 	WARN_ON(offset == to);
518 	if (offset == to)
519 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
520 				     primary_page->index, priv);
521 
522 	if (start >= final_page ||
523 	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
524 		goto no_more;
525 
526 	start++;
527 	do {
528 		_debug("more %lx [%lx]", start, count);
529 		n = final_page - start + 1;
530 		if (n > ARRAY_SIZE(pages))
531 			n = ARRAY_SIZE(pages);
532 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
533 		_debug("fgpc %u", n);
534 		if (n == 0)
535 			goto no_more;
536 		if (pages[0]->index != start) {
537 			do {
538 				put_page(pages[--n]);
539 			} while (n > 0);
540 			goto no_more;
541 		}
542 
543 		for (loop = 0; loop < n; loop++) {
544 			page = pages[loop];
545 			if (to != PAGE_SIZE &&
546 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
547 				break;
548 			if (page->index > final_page)
549 				break;
550 			if (!trylock_page(page))
551 				break;
552 			if (!PageDirty(page) || PageWriteback(page)) {
553 				unlock_page(page);
554 				break;
555 			}
556 
557 			priv = page_private(page);
558 			f = priv & AFS_PRIV_MAX;
559 			t = priv >> AFS_PRIV_SHIFT;
560 			if (f != 0 &&
561 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
562 				unlock_page(page);
563 				break;
564 			}
565 			to = t;
566 
567 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
568 					     page->index, priv);
569 
570 			if (!clear_page_dirty_for_io(page))
571 				BUG();
572 			if (test_set_page_writeback(page))
573 				BUG();
574 			unlock_page(page);
575 			put_page(page);
576 		}
577 		count += loop;
578 		if (loop < n) {
579 			for (; loop < n; loop++)
580 				put_page(pages[loop]);
581 			goto no_more;
582 		}
583 
584 		start += loop;
585 	} while (start <= final_page && count < 65536);
586 
587 no_more:
588 	/* We now have a contiguous set of dirty pages, each with writeback
589 	 * set; the first page is still locked at this point, but all the rest
590 	 * have been unlocked.
591 	 */
592 	unlock_page(primary_page);
593 
594 	first = primary_page->index;
595 	last = first + count - 1;
596 
597 	end = (loff_t)last * PAGE_SIZE + to;
598 	i_size = i_size_read(&vnode->vfs_inode);
599 
600 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
601 	if (end > i_size)
602 		to = i_size & ~PAGE_MASK;
603 
604 	ret = afs_store_data(mapping, first, last, offset, to);
605 	switch (ret) {
606 	case 0:
607 		ret = count;
608 		break;
609 
610 	default:
611 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
612 		fallthrough;
613 	case -EACCES:
614 	case -EPERM:
615 	case -ENOKEY:
616 	case -EKEYEXPIRED:
617 	case -EKEYREJECTED:
618 	case -EKEYREVOKED:
619 		afs_redirty_pages(wbc, mapping, first, last);
620 		mapping_set_error(mapping, ret);
621 		break;
622 
623 	case -EDQUOT:
624 	case -ENOSPC:
625 		afs_redirty_pages(wbc, mapping, first, last);
626 		mapping_set_error(mapping, -ENOSPC);
627 		break;
628 
629 	case -EROFS:
630 	case -EIO:
631 	case -EREMOTEIO:
632 	case -EFBIG:
633 	case -ENOENT:
634 	case -ENOMEDIUM:
635 	case -ENXIO:
636 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
637 		afs_kill_pages(mapping, first, last);
638 		mapping_set_error(mapping, ret);
639 		break;
640 	}
641 
642 	_leave(" = %d", ret);
643 	return ret;
644 }
645 
646 /*
647  * write a page back to the server
648  * - the caller locked the page for us
649  */
650 int afs_writepage(struct page *page, struct writeback_control *wbc)
651 {
652 	int ret;
653 
654 	_enter("{%lx},", page->index);
655 
656 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
657 					      wbc->range_end >> PAGE_SHIFT);
658 	if (ret < 0) {
659 		_leave(" = %d", ret);
660 		return 0;
661 	}
662 
663 	wbc->nr_to_write -= ret;
664 
665 	_leave(" = 0");
666 	return 0;
667 }
668 
669 /*
670  * write a region of pages back to the server
671  */
672 static int afs_writepages_region(struct address_space *mapping,
673 				 struct writeback_control *wbc,
674 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
675 {
676 	struct page *page;
677 	int ret, n;
678 
679 	_enter(",,%lx,%lx,", index, end);
680 
681 	do {
682 		n = find_get_pages_range_tag(mapping, &index, end,
683 					PAGECACHE_TAG_DIRTY, 1, &page);
684 		if (!n)
685 			break;
686 
687 		_debug("wback %lx", page->index);
688 
689 		/*
690 		 * at this point we hold neither the i_pages lock nor the
691 		 * page lock: the page may be truncated or invalidated
692 		 * (changing page->mapping to NULL), or even swizzled
693 		 * back from swapper_space to tmpfs file mapping
694 		 */
695 		ret = lock_page_killable(page);
696 		if (ret < 0) {
697 			put_page(page);
698 			_leave(" = %d", ret);
699 			return ret;
700 		}
701 
702 		if (page->mapping != mapping || !PageDirty(page)) {
703 			unlock_page(page);
704 			put_page(page);
705 			continue;
706 		}
707 
708 		if (PageWriteback(page)) {
709 			unlock_page(page);
710 			if (wbc->sync_mode != WB_SYNC_NONE)
711 				wait_on_page_writeback(page);
712 			put_page(page);
713 			continue;
714 		}
715 
716 		if (!clear_page_dirty_for_io(page))
717 			BUG();
718 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
719 		put_page(page);
720 		if (ret < 0) {
721 			_leave(" = %d", ret);
722 			return ret;
723 		}
724 
725 		wbc->nr_to_write -= ret;
726 
727 		cond_resched();
728 	} while (index < end && wbc->nr_to_write > 0);
729 
730 	*_next = index;
731 	_leave(" = 0 [%lx]", *_next);
732 	return 0;
733 }
734 
735 /*
736  * write some of the pending data back to the server
737  */
738 int afs_writepages(struct address_space *mapping,
739 		   struct writeback_control *wbc)
740 {
741 	pgoff_t start, end, next;
742 	int ret;
743 
744 	_enter("");
745 
746 	if (wbc->range_cyclic) {
747 		start = mapping->writeback_index;
748 		end = -1;
749 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
750 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
751 			ret = afs_writepages_region(mapping, wbc, 0, start,
752 						    &next);
753 		mapping->writeback_index = next;
754 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
755 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
756 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
757 		if (wbc->nr_to_write > 0)
758 			mapping->writeback_index = next;
759 	} else {
760 		start = wbc->range_start >> PAGE_SHIFT;
761 		end = wbc->range_end >> PAGE_SHIFT;
762 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
763 	}
764 
765 	_leave(" = %d", ret);
766 	return ret;
767 }
768 
769 /*
770  * write to an AFS file
771  */
772 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
773 {
774 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
775 	ssize_t result;
776 	size_t count = iov_iter_count(from);
777 
778 	_enter("{%llx:%llu},{%zu},",
779 	       vnode->fid.vid, vnode->fid.vnode, count);
780 
781 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
782 		printk(KERN_INFO
783 		       "AFS: Attempt to write to active swap file!\n");
784 		return -EBUSY;
785 	}
786 
787 	if (!count)
788 		return 0;
789 
790 	result = generic_file_write_iter(iocb, from);
791 
792 	_leave(" = %zd", result);
793 	return result;
794 }
795 
796 /*
797  * flush any dirty pages for this process, and check for write errors.
798  * - the return status from this call provides a reliable indication of
799  *   whether any write errors occurred for this process.
800  */
801 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
802 {
803 	struct inode *inode = file_inode(file);
804 	struct afs_vnode *vnode = AFS_FS_I(inode);
805 
806 	_enter("{%llx:%llu},{n=%pD},%d",
807 	       vnode->fid.vid, vnode->fid.vnode, file,
808 	       datasync);
809 
810 	return file_write_and_wait_range(file, start, end);
811 }
812 
813 /*
814  * notification that a previously read-only page is about to become writable
815  * - if it returns an error, the caller will deliver a bus error signal
816  */
817 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
818 {
819 	struct file *file = vmf->vma->vm_file;
820 	struct inode *inode = file_inode(file);
821 	struct afs_vnode *vnode = AFS_FS_I(inode);
822 	unsigned long priv;
823 
824 	_enter("{{%llx:%llu}},{%lx}",
825 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
826 
827 	sb_start_pagefault(inode->i_sb);
828 
829 	/* Wait for the page to be written to the cache before we allow it to
830 	 * be modified.  We then assume the entire page will need writing back.
831 	 */
832 #ifdef CONFIG_AFS_FSCACHE
833 	fscache_wait_on_page_write(vnode->cache, vmf->page);
834 #endif
835 
836 	if (PageWriteback(vmf->page) &&
837 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
838 		return VM_FAULT_RETRY;
839 
840 	if (lock_page_killable(vmf->page) < 0)
841 		return VM_FAULT_RETRY;
842 
843 	/* We mustn't change page->private until writeback is complete as that
844 	 * details the portion of the page we need to write back and we might
845 	 * need to redirty the page if there's a problem.
846 	 */
847 	wait_on_page_writeback(vmf->page);
848 
849 	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
850 	priv |= 0; /* From */
851 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
852 			     vmf->page->index, priv);
853 	SetPagePrivate(vmf->page);
854 	set_page_private(vmf->page, priv);
855 	file_update_time(file);
856 
857 	sb_end_pagefault(inode->i_sb);
858 	return VM_FAULT_LOCKED;
859 }
860 
861 /*
862  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
863  */
864 void afs_prune_wb_keys(struct afs_vnode *vnode)
865 {
866 	LIST_HEAD(graveyard);
867 	struct afs_wb_key *wbk, *tmp;
868 
869 	/* Discard unused keys */
870 	spin_lock(&vnode->wb_lock);
871 
872 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
873 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
874 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
875 			if (refcount_read(&wbk->usage) == 1)
876 				list_move(&wbk->vnode_link, &graveyard);
877 		}
878 	}
879 
880 	spin_unlock(&vnode->wb_lock);
881 
882 	while (!list_empty(&graveyard)) {
883 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
884 		list_del(&wbk->vnode_link);
885 		afs_put_wb_key(wbk);
886 	}
887 }
888 
889 /*
890  * Clean up a page during invalidation.
891  */
892 int afs_launder_page(struct page *page)
893 {
894 	struct address_space *mapping = page->mapping;
895 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
896 	unsigned long priv;
897 	unsigned int f, t;
898 	int ret = 0;
899 
900 	_enter("{%lx}", page->index);
901 
902 	priv = page_private(page);
903 	if (clear_page_dirty_for_io(page)) {
904 		f = 0;
905 		t = PAGE_SIZE;
906 		if (PagePrivate(page)) {
907 			f = priv & AFS_PRIV_MAX;
908 			t = priv >> AFS_PRIV_SHIFT;
909 		}
910 
911 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
912 				     page->index, priv);
913 		ret = afs_store_data(mapping, page->index, page->index, t, f);
914 	}
915 
916 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
917 			     page->index, priv);
918 	set_page_private(page, 0);
919 	ClearPagePrivate(page);
920 
921 #ifdef CONFIG_AFS_FSCACHE
922 	if (PageFsCache(page)) {
923 		fscache_wait_on_page_write(vnode->cache, page);
924 		fscache_uncache_page(vnode->cache, page);
925 	}
926 #endif
927 	return ret;
928 }
929