xref: /openbmc/linux/fs/afs/write.c (revision c5c87812)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21 	_enter("");
22 	return __set_page_dirty_nobuffers(page);
23 }
24 
25 /*
26  * partly or wholly fill a page that's under preparation for writing
27  */
28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29 			 loff_t pos, unsigned int len, struct page *page)
30 {
31 	struct afs_read *req;
32 	size_t p;
33 	void *data;
34 	int ret;
35 
36 	_enter(",,%llu", (unsigned long long)pos);
37 
38 	if (pos >= vnode->vfs_inode.i_size) {
39 		p = pos & ~PAGE_MASK;
40 		ASSERTCMP(p + len, <=, PAGE_SIZE);
41 		data = kmap(page);
42 		memset(data + p, 0, len);
43 		kunmap(page);
44 		return 0;
45 	}
46 
47 	req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48 	if (!req)
49 		return -ENOMEM;
50 
51 	refcount_set(&req->usage, 1);
52 	req->pos = pos;
53 	req->len = len;
54 	req->nr_pages = 1;
55 	req->pages = req->array;
56 	req->pages[0] = page;
57 	get_page(page);
58 
59 	ret = afs_fetch_data(vnode, key, req);
60 	afs_put_read(req);
61 	if (ret < 0) {
62 		if (ret == -ENOENT) {
63 			_debug("got NOENT from server"
64 			       " - marking file deleted and stale");
65 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
66 			ret = -ESTALE;
67 		}
68 	}
69 
70 	_leave(" = %d", ret);
71 	return ret;
72 }
73 
74 /*
75  * prepare to perform part of a write to a page
76  */
77 int afs_write_begin(struct file *file, struct address_space *mapping,
78 		    loff_t pos, unsigned len, unsigned flags,
79 		    struct page **_page, void **fsdata)
80 {
81 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82 	struct page *page;
83 	struct key *key = afs_file_key(file);
84 	unsigned long priv;
85 	unsigned f, from = pos & (PAGE_SIZE - 1);
86 	unsigned t, to = from + len;
87 	pgoff_t index = pos >> PAGE_SHIFT;
88 	int ret;
89 
90 	_enter("{%llx:%llu},{%lx},%u,%u",
91 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
92 
93 	page = grab_cache_page_write_begin(mapping, index, flags);
94 	if (!page)
95 		return -ENOMEM;
96 
97 	if (!PageUptodate(page) && len != PAGE_SIZE) {
98 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
99 		if (ret < 0) {
100 			unlock_page(page);
101 			put_page(page);
102 			_leave(" = %d [prep]", ret);
103 			return ret;
104 		}
105 		SetPageUptodate(page);
106 	}
107 
108 try_again:
109 	/* See if this page is already partially written in a way that we can
110 	 * merge the new write with.
111 	 */
112 	t = f = 0;
113 	if (PagePrivate(page)) {
114 		priv = page_private(page);
115 		f = afs_page_dirty_from(priv);
116 		t = afs_page_dirty_to(priv);
117 		ASSERTCMP(f, <=, t);
118 	}
119 
120 	if (f != t) {
121 		if (PageWriteback(page)) {
122 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
123 					     page->index, priv);
124 			goto flush_conflicting_write;
125 		}
126 		/* If the file is being filled locally, allow inter-write
127 		 * spaces to be merged into writes.  If it's not, only write
128 		 * back what the user gives us.
129 		 */
130 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
131 		    (to < f || from > t))
132 			goto flush_conflicting_write;
133 	}
134 
135 	*_page = page;
136 	_leave(" = 0");
137 	return 0;
138 
139 	/* The previous write and this write aren't adjacent or overlapping, so
140 	 * flush the page out.
141 	 */
142 flush_conflicting_write:
143 	_debug("flush conflict");
144 	ret = write_one_page(page);
145 	if (ret < 0)
146 		goto error;
147 
148 	ret = lock_page_killable(page);
149 	if (ret < 0)
150 		goto error;
151 	goto try_again;
152 
153 error:
154 	put_page(page);
155 	_leave(" = %d", ret);
156 	return ret;
157 }
158 
159 /*
160  * finalise part of a write to a page
161  */
162 int afs_write_end(struct file *file, struct address_space *mapping,
163 		  loff_t pos, unsigned len, unsigned copied,
164 		  struct page *page, void *fsdata)
165 {
166 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
167 	struct key *key = afs_file_key(file);
168 	unsigned long priv;
169 	unsigned int f, from = pos & (PAGE_SIZE - 1);
170 	unsigned int t, to = from + copied;
171 	loff_t i_size, maybe_i_size;
172 	int ret;
173 
174 	_enter("{%llx:%llu},{%lx}",
175 	       vnode->fid.vid, vnode->fid.vnode, page->index);
176 
177 	maybe_i_size = pos + copied;
178 
179 	i_size = i_size_read(&vnode->vfs_inode);
180 	if (maybe_i_size > i_size) {
181 		write_seqlock(&vnode->cb_lock);
182 		i_size = i_size_read(&vnode->vfs_inode);
183 		if (maybe_i_size > i_size)
184 			i_size_write(&vnode->vfs_inode, maybe_i_size);
185 		write_sequnlock(&vnode->cb_lock);
186 	}
187 
188 	if (!PageUptodate(page)) {
189 		if (copied < len) {
190 			/* Try and load any missing data from the server.  The
191 			 * unmarshalling routine will take care of clearing any
192 			 * bits that are beyond the EOF.
193 			 */
194 			ret = afs_fill_page(vnode, key, pos + copied,
195 					    len - copied, page);
196 			if (ret < 0)
197 				goto out;
198 		}
199 		SetPageUptodate(page);
200 	}
201 
202 	if (PagePrivate(page)) {
203 		priv = page_private(page);
204 		f = afs_page_dirty_from(priv);
205 		t = afs_page_dirty_to(priv);
206 		if (from < f)
207 			f = from;
208 		if (to > t)
209 			t = to;
210 		priv = afs_page_dirty(f, t);
211 		set_page_private(page, priv);
212 		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"),
213 				     page->index, priv);
214 	} else {
215 		priv = afs_page_dirty(from, to);
216 		attach_page_private(page, (void *)priv);
217 		trace_afs_page_dirty(vnode, tracepoint_string("dirty"),
218 				     page->index, priv);
219 	}
220 
221 	set_page_dirty(page);
222 	if (PageDirty(page))
223 		_debug("dirtied");
224 	ret = copied;
225 
226 out:
227 	unlock_page(page);
228 	put_page(page);
229 	return ret;
230 }
231 
232 /*
233  * kill all the pages in the given range
234  */
235 static void afs_kill_pages(struct address_space *mapping,
236 			   pgoff_t first, pgoff_t last)
237 {
238 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
239 	struct pagevec pv;
240 	unsigned count, loop;
241 
242 	_enter("{%llx:%llu},%lx-%lx",
243 	       vnode->fid.vid, vnode->fid.vnode, first, last);
244 
245 	pagevec_init(&pv);
246 
247 	do {
248 		_debug("kill %lx-%lx", first, last);
249 
250 		count = last - first + 1;
251 		if (count > PAGEVEC_SIZE)
252 			count = PAGEVEC_SIZE;
253 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
254 		ASSERTCMP(pv.nr, ==, count);
255 
256 		for (loop = 0; loop < count; loop++) {
257 			struct page *page = pv.pages[loop];
258 			ClearPageUptodate(page);
259 			SetPageError(page);
260 			end_page_writeback(page);
261 			if (page->index >= first)
262 				first = page->index + 1;
263 			lock_page(page);
264 			generic_error_remove_page(mapping, page);
265 			unlock_page(page);
266 		}
267 
268 		__pagevec_release(&pv);
269 	} while (first <= last);
270 
271 	_leave("");
272 }
273 
274 /*
275  * Redirty all the pages in a given range.
276  */
277 static void afs_redirty_pages(struct writeback_control *wbc,
278 			      struct address_space *mapping,
279 			      pgoff_t first, pgoff_t last)
280 {
281 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
282 	struct pagevec pv;
283 	unsigned count, loop;
284 
285 	_enter("{%llx:%llu},%lx-%lx",
286 	       vnode->fid.vid, vnode->fid.vnode, first, last);
287 
288 	pagevec_init(&pv);
289 
290 	do {
291 		_debug("redirty %lx-%lx", first, last);
292 
293 		count = last - first + 1;
294 		if (count > PAGEVEC_SIZE)
295 			count = PAGEVEC_SIZE;
296 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
297 		ASSERTCMP(pv.nr, ==, count);
298 
299 		for (loop = 0; loop < count; loop++) {
300 			struct page *page = pv.pages[loop];
301 
302 			redirty_page_for_writepage(wbc, page);
303 			end_page_writeback(page);
304 			if (page->index >= first)
305 				first = page->index + 1;
306 		}
307 
308 		__pagevec_release(&pv);
309 	} while (first <= last);
310 
311 	_leave("");
312 }
313 
314 /*
315  * completion of write to server
316  */
317 static void afs_pages_written_back(struct afs_vnode *vnode,
318 				   pgoff_t first, pgoff_t last)
319 {
320 	struct pagevec pv;
321 	unsigned long priv;
322 	unsigned count, loop;
323 
324 	_enter("{%llx:%llu},{%lx-%lx}",
325 	       vnode->fid.vid, vnode->fid.vnode, first, last);
326 
327 	pagevec_init(&pv);
328 
329 	do {
330 		_debug("done %lx-%lx", first, last);
331 
332 		count = last - first + 1;
333 		if (count > PAGEVEC_SIZE)
334 			count = PAGEVEC_SIZE;
335 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
336 					      first, count, pv.pages);
337 		ASSERTCMP(pv.nr, ==, count);
338 
339 		for (loop = 0; loop < count; loop++) {
340 			priv = (unsigned long)detach_page_private(pv.pages[loop]);
341 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
342 					     pv.pages[loop]->index, priv);
343 			end_page_writeback(pv.pages[loop]);
344 		}
345 		first += count;
346 		__pagevec_release(&pv);
347 	} while (first <= last);
348 
349 	afs_prune_wb_keys(vnode);
350 	_leave("");
351 }
352 
353 /*
354  * Find a key to use for the writeback.  We cached the keys used to author the
355  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
356  * and we need to start from there if it's set.
357  */
358 static int afs_get_writeback_key(struct afs_vnode *vnode,
359 				 struct afs_wb_key **_wbk)
360 {
361 	struct afs_wb_key *wbk = NULL;
362 	struct list_head *p;
363 	int ret = -ENOKEY, ret2;
364 
365 	spin_lock(&vnode->wb_lock);
366 	if (*_wbk)
367 		p = (*_wbk)->vnode_link.next;
368 	else
369 		p = vnode->wb_keys.next;
370 
371 	while (p != &vnode->wb_keys) {
372 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
373 		_debug("wbk %u", key_serial(wbk->key));
374 		ret2 = key_validate(wbk->key);
375 		if (ret2 == 0) {
376 			refcount_inc(&wbk->usage);
377 			_debug("USE WB KEY %u", key_serial(wbk->key));
378 			break;
379 		}
380 
381 		wbk = NULL;
382 		if (ret == -ENOKEY)
383 			ret = ret2;
384 		p = p->next;
385 	}
386 
387 	spin_unlock(&vnode->wb_lock);
388 	if (*_wbk)
389 		afs_put_wb_key(*_wbk);
390 	*_wbk = wbk;
391 	return 0;
392 }
393 
394 static void afs_store_data_success(struct afs_operation *op)
395 {
396 	struct afs_vnode *vnode = op->file[0].vnode;
397 
398 	op->ctime = op->file[0].scb.status.mtime_client;
399 	afs_vnode_commit_status(op, &op->file[0]);
400 	if (op->error == 0) {
401 		if (!op->store.laundering)
402 			afs_pages_written_back(vnode, op->store.first, op->store.last);
403 		afs_stat_v(vnode, n_stores);
404 		atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
405 				(op->store.first * PAGE_SIZE + op->store.first_offset),
406 				&afs_v2net(vnode)->n_store_bytes);
407 	}
408 }
409 
410 static const struct afs_operation_ops afs_store_data_operation = {
411 	.issue_afs_rpc	= afs_fs_store_data,
412 	.issue_yfs_rpc	= yfs_fs_store_data,
413 	.success	= afs_store_data_success,
414 };
415 
416 /*
417  * write to a file
418  */
419 static int afs_store_data(struct address_space *mapping,
420 			  pgoff_t first, pgoff_t last,
421 			  unsigned offset, unsigned to, bool laundering)
422 {
423 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
424 	struct afs_operation *op;
425 	struct afs_wb_key *wbk = NULL;
426 	int ret;
427 
428 	_enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
429 	       vnode->volume->name,
430 	       vnode->fid.vid,
431 	       vnode->fid.vnode,
432 	       vnode->fid.unique,
433 	       first, last, offset, to);
434 
435 	ret = afs_get_writeback_key(vnode, &wbk);
436 	if (ret) {
437 		_leave(" = %d [no keys]", ret);
438 		return ret;
439 	}
440 
441 	op = afs_alloc_operation(wbk->key, vnode->volume);
442 	if (IS_ERR(op)) {
443 		afs_put_wb_key(wbk);
444 		return -ENOMEM;
445 	}
446 
447 	afs_op_set_vnode(op, 0, vnode);
448 	op->file[0].dv_delta = 1;
449 	op->store.mapping = mapping;
450 	op->store.first = first;
451 	op->store.last = last;
452 	op->store.first_offset = offset;
453 	op->store.last_to = to;
454 	op->store.laundering = laundering;
455 	op->mtime = vnode->vfs_inode.i_mtime;
456 	op->flags |= AFS_OPERATION_UNINTR;
457 	op->ops = &afs_store_data_operation;
458 
459 try_next_key:
460 	afs_begin_vnode_operation(op);
461 	afs_wait_for_operation(op);
462 
463 	switch (op->error) {
464 	case -EACCES:
465 	case -EPERM:
466 	case -ENOKEY:
467 	case -EKEYEXPIRED:
468 	case -EKEYREJECTED:
469 	case -EKEYREVOKED:
470 		_debug("next");
471 
472 		ret = afs_get_writeback_key(vnode, &wbk);
473 		if (ret == 0) {
474 			key_put(op->key);
475 			op->key = key_get(wbk->key);
476 			goto try_next_key;
477 		}
478 		break;
479 	}
480 
481 	afs_put_wb_key(wbk);
482 	_leave(" = %d", op->error);
483 	return afs_put_operation(op);
484 }
485 
486 /*
487  * Synchronously write back the locked page and any subsequent non-locked dirty
488  * pages.
489  */
490 static int afs_write_back_from_locked_page(struct address_space *mapping,
491 					   struct writeback_control *wbc,
492 					   struct page *primary_page,
493 					   pgoff_t final_page)
494 {
495 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
496 	struct page *pages[8], *page;
497 	unsigned long count, priv;
498 	unsigned n, offset, to, f, t;
499 	pgoff_t start, first, last;
500 	loff_t i_size, end;
501 	int loop, ret;
502 
503 	_enter(",%lx", primary_page->index);
504 
505 	count = 1;
506 	if (test_set_page_writeback(primary_page))
507 		BUG();
508 
509 	/* Find all consecutive lockable dirty pages that have contiguous
510 	 * written regions, stopping when we find a page that is not
511 	 * immediately lockable, is not dirty or is missing, or we reach the
512 	 * end of the range.
513 	 */
514 	start = primary_page->index;
515 	priv = page_private(primary_page);
516 	offset = afs_page_dirty_from(priv);
517 	to = afs_page_dirty_to(priv);
518 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
519 			     primary_page->index, priv);
520 
521 	WARN_ON(offset == to);
522 	if (offset == to)
523 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
524 				     primary_page->index, priv);
525 
526 	if (start >= final_page ||
527 	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
528 		goto no_more;
529 
530 	start++;
531 	do {
532 		_debug("more %lx [%lx]", start, count);
533 		n = final_page - start + 1;
534 		if (n > ARRAY_SIZE(pages))
535 			n = ARRAY_SIZE(pages);
536 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
537 		_debug("fgpc %u", n);
538 		if (n == 0)
539 			goto no_more;
540 		if (pages[0]->index != start) {
541 			do {
542 				put_page(pages[--n]);
543 			} while (n > 0);
544 			goto no_more;
545 		}
546 
547 		for (loop = 0; loop < n; loop++) {
548 			page = pages[loop];
549 			if (to != PAGE_SIZE &&
550 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
551 				break;
552 			if (page->index > final_page)
553 				break;
554 			if (!trylock_page(page))
555 				break;
556 			if (!PageDirty(page) || PageWriteback(page)) {
557 				unlock_page(page);
558 				break;
559 			}
560 
561 			priv = page_private(page);
562 			f = afs_page_dirty_from(priv);
563 			t = afs_page_dirty_to(priv);
564 			if (f != 0 &&
565 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
566 				unlock_page(page);
567 				break;
568 			}
569 			to = t;
570 
571 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
572 					     page->index, priv);
573 
574 			if (!clear_page_dirty_for_io(page))
575 				BUG();
576 			if (test_set_page_writeback(page))
577 				BUG();
578 			unlock_page(page);
579 			put_page(page);
580 		}
581 		count += loop;
582 		if (loop < n) {
583 			for (; loop < n; loop++)
584 				put_page(pages[loop]);
585 			goto no_more;
586 		}
587 
588 		start += loop;
589 	} while (start <= final_page && count < 65536);
590 
591 no_more:
592 	/* We now have a contiguous set of dirty pages, each with writeback
593 	 * set; the first page is still locked at this point, but all the rest
594 	 * have been unlocked.
595 	 */
596 	unlock_page(primary_page);
597 
598 	first = primary_page->index;
599 	last = first + count - 1;
600 
601 	end = (loff_t)last * PAGE_SIZE + to;
602 	i_size = i_size_read(&vnode->vfs_inode);
603 
604 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
605 	if (end > i_size)
606 		to = i_size & ~PAGE_MASK;
607 
608 	ret = afs_store_data(mapping, first, last, offset, to, false);
609 	switch (ret) {
610 	case 0:
611 		ret = count;
612 		break;
613 
614 	default:
615 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
616 		fallthrough;
617 	case -EACCES:
618 	case -EPERM:
619 	case -ENOKEY:
620 	case -EKEYEXPIRED:
621 	case -EKEYREJECTED:
622 	case -EKEYREVOKED:
623 		afs_redirty_pages(wbc, mapping, first, last);
624 		mapping_set_error(mapping, ret);
625 		break;
626 
627 	case -EDQUOT:
628 	case -ENOSPC:
629 		afs_redirty_pages(wbc, mapping, first, last);
630 		mapping_set_error(mapping, -ENOSPC);
631 		break;
632 
633 	case -EROFS:
634 	case -EIO:
635 	case -EREMOTEIO:
636 	case -EFBIG:
637 	case -ENOENT:
638 	case -ENOMEDIUM:
639 	case -ENXIO:
640 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
641 		afs_kill_pages(mapping, first, last);
642 		mapping_set_error(mapping, ret);
643 		break;
644 	}
645 
646 	_leave(" = %d", ret);
647 	return ret;
648 }
649 
650 /*
651  * write a page back to the server
652  * - the caller locked the page for us
653  */
654 int afs_writepage(struct page *page, struct writeback_control *wbc)
655 {
656 	int ret;
657 
658 	_enter("{%lx},", page->index);
659 
660 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
661 					      wbc->range_end >> PAGE_SHIFT);
662 	if (ret < 0) {
663 		_leave(" = %d", ret);
664 		return 0;
665 	}
666 
667 	wbc->nr_to_write -= ret;
668 
669 	_leave(" = 0");
670 	return 0;
671 }
672 
673 /*
674  * write a region of pages back to the server
675  */
676 static int afs_writepages_region(struct address_space *mapping,
677 				 struct writeback_control *wbc,
678 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
679 {
680 	struct page *page;
681 	int ret, n;
682 
683 	_enter(",,%lx,%lx,", index, end);
684 
685 	do {
686 		n = find_get_pages_range_tag(mapping, &index, end,
687 					PAGECACHE_TAG_DIRTY, 1, &page);
688 		if (!n)
689 			break;
690 
691 		_debug("wback %lx", page->index);
692 
693 		/*
694 		 * at this point we hold neither the i_pages lock nor the
695 		 * page lock: the page may be truncated or invalidated
696 		 * (changing page->mapping to NULL), or even swizzled
697 		 * back from swapper_space to tmpfs file mapping
698 		 */
699 		ret = lock_page_killable(page);
700 		if (ret < 0) {
701 			put_page(page);
702 			_leave(" = %d", ret);
703 			return ret;
704 		}
705 
706 		if (page->mapping != mapping || !PageDirty(page)) {
707 			unlock_page(page);
708 			put_page(page);
709 			continue;
710 		}
711 
712 		if (PageWriteback(page)) {
713 			unlock_page(page);
714 			if (wbc->sync_mode != WB_SYNC_NONE)
715 				wait_on_page_writeback(page);
716 			put_page(page);
717 			continue;
718 		}
719 
720 		if (!clear_page_dirty_for_io(page))
721 			BUG();
722 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
723 		put_page(page);
724 		if (ret < 0) {
725 			_leave(" = %d", ret);
726 			return ret;
727 		}
728 
729 		wbc->nr_to_write -= ret;
730 
731 		cond_resched();
732 	} while (index < end && wbc->nr_to_write > 0);
733 
734 	*_next = index;
735 	_leave(" = 0 [%lx]", *_next);
736 	return 0;
737 }
738 
739 /*
740  * write some of the pending data back to the server
741  */
742 int afs_writepages(struct address_space *mapping,
743 		   struct writeback_control *wbc)
744 {
745 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
746 	pgoff_t start, end, next;
747 	int ret;
748 
749 	_enter("");
750 
751 	/* We have to be careful as we can end up racing with setattr()
752 	 * truncating the pagecache since the caller doesn't take a lock here
753 	 * to prevent it.
754 	 */
755 	if (wbc->sync_mode == WB_SYNC_ALL)
756 		down_read(&vnode->validate_lock);
757 	else if (!down_read_trylock(&vnode->validate_lock))
758 		return 0;
759 
760 	if (wbc->range_cyclic) {
761 		start = mapping->writeback_index;
762 		end = -1;
763 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
764 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
765 			ret = afs_writepages_region(mapping, wbc, 0, start,
766 						    &next);
767 		mapping->writeback_index = next;
768 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
769 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
770 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
771 		if (wbc->nr_to_write > 0)
772 			mapping->writeback_index = next;
773 	} else {
774 		start = wbc->range_start >> PAGE_SHIFT;
775 		end = wbc->range_end >> PAGE_SHIFT;
776 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
777 	}
778 
779 	up_read(&vnode->validate_lock);
780 	_leave(" = %d", ret);
781 	return ret;
782 }
783 
784 /*
785  * write to an AFS file
786  */
787 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
788 {
789 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
790 	ssize_t result;
791 	size_t count = iov_iter_count(from);
792 
793 	_enter("{%llx:%llu},{%zu},",
794 	       vnode->fid.vid, vnode->fid.vnode, count);
795 
796 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
797 		printk(KERN_INFO
798 		       "AFS: Attempt to write to active swap file!\n");
799 		return -EBUSY;
800 	}
801 
802 	if (!count)
803 		return 0;
804 
805 	result = generic_file_write_iter(iocb, from);
806 
807 	_leave(" = %zd", result);
808 	return result;
809 }
810 
811 /*
812  * flush any dirty pages for this process, and check for write errors.
813  * - the return status from this call provides a reliable indication of
814  *   whether any write errors occurred for this process.
815  */
816 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
817 {
818 	struct inode *inode = file_inode(file);
819 	struct afs_vnode *vnode = AFS_FS_I(inode);
820 
821 	_enter("{%llx:%llu},{n=%pD},%d",
822 	       vnode->fid.vid, vnode->fid.vnode, file,
823 	       datasync);
824 
825 	return file_write_and_wait_range(file, start, end);
826 }
827 
828 /*
829  * notification that a previously read-only page is about to become writable
830  * - if it returns an error, the caller will deliver a bus error signal
831  */
832 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
833 {
834 	struct file *file = vmf->vma->vm_file;
835 	struct inode *inode = file_inode(file);
836 	struct afs_vnode *vnode = AFS_FS_I(inode);
837 	unsigned long priv;
838 
839 	_enter("{{%llx:%llu}},{%lx}",
840 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
841 
842 	sb_start_pagefault(inode->i_sb);
843 
844 	/* Wait for the page to be written to the cache before we allow it to
845 	 * be modified.  We then assume the entire page will need writing back.
846 	 */
847 #ifdef CONFIG_AFS_FSCACHE
848 	fscache_wait_on_page_write(vnode->cache, vmf->page);
849 #endif
850 
851 	if (PageWriteback(vmf->page) &&
852 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
853 		return VM_FAULT_RETRY;
854 
855 	if (lock_page_killable(vmf->page) < 0)
856 		return VM_FAULT_RETRY;
857 
858 	/* We mustn't change page->private until writeback is complete as that
859 	 * details the portion of the page we need to write back and we might
860 	 * need to redirty the page if there's a problem.
861 	 */
862 	wait_on_page_writeback(vmf->page);
863 
864 	priv = afs_page_dirty(0, PAGE_SIZE);
865 	priv = afs_page_dirty_mmapped(priv);
866 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
867 			     vmf->page->index, priv);
868 	if (PagePrivate(vmf->page))
869 		set_page_private(vmf->page, priv);
870 	else
871 		attach_page_private(vmf->page, (void *)priv);
872 	file_update_time(file);
873 
874 	sb_end_pagefault(inode->i_sb);
875 	return VM_FAULT_LOCKED;
876 }
877 
878 /*
879  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
880  */
881 void afs_prune_wb_keys(struct afs_vnode *vnode)
882 {
883 	LIST_HEAD(graveyard);
884 	struct afs_wb_key *wbk, *tmp;
885 
886 	/* Discard unused keys */
887 	spin_lock(&vnode->wb_lock);
888 
889 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
890 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
891 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
892 			if (refcount_read(&wbk->usage) == 1)
893 				list_move(&wbk->vnode_link, &graveyard);
894 		}
895 	}
896 
897 	spin_unlock(&vnode->wb_lock);
898 
899 	while (!list_empty(&graveyard)) {
900 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
901 		list_del(&wbk->vnode_link);
902 		afs_put_wb_key(wbk);
903 	}
904 }
905 
906 /*
907  * Clean up a page during invalidation.
908  */
909 int afs_launder_page(struct page *page)
910 {
911 	struct address_space *mapping = page->mapping;
912 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
913 	unsigned long priv;
914 	unsigned int f, t;
915 	int ret = 0;
916 
917 	_enter("{%lx}", page->index);
918 
919 	priv = page_private(page);
920 	if (clear_page_dirty_for_io(page)) {
921 		f = 0;
922 		t = PAGE_SIZE;
923 		if (PagePrivate(page)) {
924 			f = afs_page_dirty_from(priv);
925 			t = afs_page_dirty_to(priv);
926 		}
927 
928 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
929 				     page->index, priv);
930 		ret = afs_store_data(mapping, page->index, page->index, t, f, true);
931 	}
932 
933 	priv = (unsigned long)detach_page_private(page);
934 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
935 			     page->index, priv);
936 
937 #ifdef CONFIG_AFS_FSCACHE
938 	if (PageFsCache(page)) {
939 		fscache_wait_on_page_write(vnode->cache, page);
940 		fscache_uncache_page(vnode->cache, page);
941 	}
942 #endif
943 	return ret;
944 }
945