xref: /openbmc/linux/fs/afs/write.c (revision bd80d8a8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21 	_enter("");
22 	return __set_page_dirty_nobuffers(page);
23 }
24 
25 /*
26  * Handle completion of a read operation to fill a page.
27  */
28 static void afs_fill_hole(struct afs_read *req)
29 {
30 	if (iov_iter_count(req->iter) > 0)
31 		/* The read was short - clear the excess buffer. */
32 		iov_iter_zero(iov_iter_count(req->iter), req->iter);
33 }
34 
35 /*
36  * partly or wholly fill a page that's under preparation for writing
37  */
38 static int afs_fill_page(struct file *file,
39 			 loff_t pos, unsigned int len, struct page *page)
40 {
41 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
42 	struct afs_read *req;
43 	size_t p;
44 	void *data;
45 	int ret;
46 
47 	_enter(",,%llu", (unsigned long long)pos);
48 
49 	if (pos >= vnode->vfs_inode.i_size) {
50 		p = pos & ~PAGE_MASK;
51 		ASSERTCMP(p + len, <=, PAGE_SIZE);
52 		data = kmap(page);
53 		memset(data + p, 0, len);
54 		kunmap(page);
55 		return 0;
56 	}
57 
58 	req = kzalloc(sizeof(struct afs_read), GFP_KERNEL);
59 	if (!req)
60 		return -ENOMEM;
61 
62 	refcount_set(&req->usage, 1);
63 	req->vnode	= vnode;
64 	req->done	= afs_fill_hole;
65 	req->key	= key_get(afs_file_key(file));
66 	req->pos	= pos;
67 	req->len	= len;
68 	req->nr_pages	= 1;
69 	req->iter	= &req->def_iter;
70 	iov_iter_xarray(&req->def_iter, READ, &file->f_mapping->i_pages, pos, len);
71 
72 	ret = afs_fetch_data(vnode, req);
73 	afs_put_read(req);
74 	if (ret < 0) {
75 		if (ret == -ENOENT) {
76 			_debug("got NOENT from server"
77 			       " - marking file deleted and stale");
78 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
79 			ret = -ESTALE;
80 		}
81 	}
82 
83 	_leave(" = %d", ret);
84 	return ret;
85 }
86 
87 /*
88  * prepare to perform part of a write to a page
89  */
90 int afs_write_begin(struct file *file, struct address_space *mapping,
91 		    loff_t pos, unsigned len, unsigned flags,
92 		    struct page **_page, void **fsdata)
93 {
94 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
95 	struct page *page;
96 	unsigned long priv;
97 	unsigned f, from = pos & (PAGE_SIZE - 1);
98 	unsigned t, to = from + len;
99 	pgoff_t index = pos >> PAGE_SHIFT;
100 	int ret;
101 
102 	_enter("{%llx:%llu},{%lx},%u,%u",
103 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
104 
105 	page = grab_cache_page_write_begin(mapping, index, flags);
106 	if (!page)
107 		return -ENOMEM;
108 
109 	if (!PageUptodate(page) && len != PAGE_SIZE) {
110 		ret = afs_fill_page(file, pos & PAGE_MASK, PAGE_SIZE, page);
111 		if (ret < 0) {
112 			unlock_page(page);
113 			put_page(page);
114 			_leave(" = %d [prep]", ret);
115 			return ret;
116 		}
117 		SetPageUptodate(page);
118 	}
119 
120 try_again:
121 	/* See if this page is already partially written in a way that we can
122 	 * merge the new write with.
123 	 */
124 	t = f = 0;
125 	if (PagePrivate(page)) {
126 		priv = page_private(page);
127 		f = afs_page_dirty_from(page, priv);
128 		t = afs_page_dirty_to(page, priv);
129 		ASSERTCMP(f, <=, t);
130 	}
131 
132 	if (f != t) {
133 		if (PageWriteback(page)) {
134 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
135 			goto flush_conflicting_write;
136 		}
137 		/* If the file is being filled locally, allow inter-write
138 		 * spaces to be merged into writes.  If it's not, only write
139 		 * back what the user gives us.
140 		 */
141 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
142 		    (to < f || from > t))
143 			goto flush_conflicting_write;
144 	}
145 
146 	*_page = page;
147 	_leave(" = 0");
148 	return 0;
149 
150 	/* The previous write and this write aren't adjacent or overlapping, so
151 	 * flush the page out.
152 	 */
153 flush_conflicting_write:
154 	_debug("flush conflict");
155 	ret = write_one_page(page);
156 	if (ret < 0)
157 		goto error;
158 
159 	ret = lock_page_killable(page);
160 	if (ret < 0)
161 		goto error;
162 	goto try_again;
163 
164 error:
165 	put_page(page);
166 	_leave(" = %d", ret);
167 	return ret;
168 }
169 
170 /*
171  * finalise part of a write to a page
172  */
173 int afs_write_end(struct file *file, struct address_space *mapping,
174 		  loff_t pos, unsigned len, unsigned copied,
175 		  struct page *page, void *fsdata)
176 {
177 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
178 	unsigned long priv;
179 	unsigned int f, from = pos & (PAGE_SIZE - 1);
180 	unsigned int t, to = from + copied;
181 	loff_t i_size, maybe_i_size;
182 	int ret = 0;
183 
184 	_enter("{%llx:%llu},{%lx}",
185 	       vnode->fid.vid, vnode->fid.vnode, page->index);
186 
187 	if (copied == 0)
188 		goto out;
189 
190 	maybe_i_size = pos + copied;
191 
192 	i_size = i_size_read(&vnode->vfs_inode);
193 	if (maybe_i_size > i_size) {
194 		write_seqlock(&vnode->cb_lock);
195 		i_size = i_size_read(&vnode->vfs_inode);
196 		if (maybe_i_size > i_size)
197 			i_size_write(&vnode->vfs_inode, maybe_i_size);
198 		write_sequnlock(&vnode->cb_lock);
199 	}
200 
201 	if (!PageUptodate(page)) {
202 		if (copied < len) {
203 			/* Try and load any missing data from the server.  The
204 			 * unmarshalling routine will take care of clearing any
205 			 * bits that are beyond the EOF.
206 			 */
207 			ret = afs_fill_page(file, pos + copied,
208 					    len - copied, page);
209 			if (ret < 0)
210 				goto out;
211 		}
212 		SetPageUptodate(page);
213 	}
214 
215 	if (PagePrivate(page)) {
216 		priv = page_private(page);
217 		f = afs_page_dirty_from(page, priv);
218 		t = afs_page_dirty_to(page, priv);
219 		if (from < f)
220 			f = from;
221 		if (to > t)
222 			t = to;
223 		priv = afs_page_dirty(page, f, t);
224 		set_page_private(page, priv);
225 		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
226 	} else {
227 		priv = afs_page_dirty(page, from, to);
228 		attach_page_private(page, (void *)priv);
229 		trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
230 	}
231 
232 	set_page_dirty(page);
233 	if (PageDirty(page))
234 		_debug("dirtied");
235 	ret = copied;
236 
237 out:
238 	unlock_page(page);
239 	put_page(page);
240 	return ret;
241 }
242 
243 /*
244  * kill all the pages in the given range
245  */
246 static void afs_kill_pages(struct address_space *mapping,
247 			   pgoff_t first, pgoff_t last)
248 {
249 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
250 	struct pagevec pv;
251 	unsigned count, loop;
252 
253 	_enter("{%llx:%llu},%lx-%lx",
254 	       vnode->fid.vid, vnode->fid.vnode, first, last);
255 
256 	pagevec_init(&pv);
257 
258 	do {
259 		_debug("kill %lx-%lx", first, last);
260 
261 		count = last - first + 1;
262 		if (count > PAGEVEC_SIZE)
263 			count = PAGEVEC_SIZE;
264 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
265 		ASSERTCMP(pv.nr, ==, count);
266 
267 		for (loop = 0; loop < count; loop++) {
268 			struct page *page = pv.pages[loop];
269 			ClearPageUptodate(page);
270 			SetPageError(page);
271 			end_page_writeback(page);
272 			if (page->index >= first)
273 				first = page->index + 1;
274 			lock_page(page);
275 			generic_error_remove_page(mapping, page);
276 			unlock_page(page);
277 		}
278 
279 		__pagevec_release(&pv);
280 	} while (first <= last);
281 
282 	_leave("");
283 }
284 
285 /*
286  * Redirty all the pages in a given range.
287  */
288 static void afs_redirty_pages(struct writeback_control *wbc,
289 			      struct address_space *mapping,
290 			      pgoff_t first, pgoff_t last)
291 {
292 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
293 	struct pagevec pv;
294 	unsigned count, loop;
295 
296 	_enter("{%llx:%llu},%lx-%lx",
297 	       vnode->fid.vid, vnode->fid.vnode, first, last);
298 
299 	pagevec_init(&pv);
300 
301 	do {
302 		_debug("redirty %lx-%lx", first, last);
303 
304 		count = last - first + 1;
305 		if (count > PAGEVEC_SIZE)
306 			count = PAGEVEC_SIZE;
307 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
308 		ASSERTCMP(pv.nr, ==, count);
309 
310 		for (loop = 0; loop < count; loop++) {
311 			struct page *page = pv.pages[loop];
312 
313 			redirty_page_for_writepage(wbc, page);
314 			end_page_writeback(page);
315 			if (page->index >= first)
316 				first = page->index + 1;
317 		}
318 
319 		__pagevec_release(&pv);
320 	} while (first <= last);
321 
322 	_leave("");
323 }
324 
325 /*
326  * completion of write to server
327  */
328 static void afs_pages_written_back(struct afs_vnode *vnode, pgoff_t start, pgoff_t last)
329 {
330 	struct address_space *mapping = vnode->vfs_inode.i_mapping;
331 	struct page *page;
332 
333 	XA_STATE(xas, &mapping->i_pages, start);
334 
335 	_enter("{%llx:%llu},{%lx-%lx}",
336 	       vnode->fid.vid, vnode->fid.vnode, start, last);
337 
338 	rcu_read_lock();
339 
340 	xas_for_each(&xas, page, last) {
341 		ASSERT(PageWriteback(page));
342 
343 		detach_page_private(page);
344 		trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
345 		page_endio(page, true, 0);
346 	}
347 
348 	rcu_read_unlock();
349 
350 	afs_prune_wb_keys(vnode);
351 	_leave("");
352 }
353 
354 /*
355  * Find a key to use for the writeback.  We cached the keys used to author the
356  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
357  * and we need to start from there if it's set.
358  */
359 static int afs_get_writeback_key(struct afs_vnode *vnode,
360 				 struct afs_wb_key **_wbk)
361 {
362 	struct afs_wb_key *wbk = NULL;
363 	struct list_head *p;
364 	int ret = -ENOKEY, ret2;
365 
366 	spin_lock(&vnode->wb_lock);
367 	if (*_wbk)
368 		p = (*_wbk)->vnode_link.next;
369 	else
370 		p = vnode->wb_keys.next;
371 
372 	while (p != &vnode->wb_keys) {
373 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
374 		_debug("wbk %u", key_serial(wbk->key));
375 		ret2 = key_validate(wbk->key);
376 		if (ret2 == 0) {
377 			refcount_inc(&wbk->usage);
378 			_debug("USE WB KEY %u", key_serial(wbk->key));
379 			break;
380 		}
381 
382 		wbk = NULL;
383 		if (ret == -ENOKEY)
384 			ret = ret2;
385 		p = p->next;
386 	}
387 
388 	spin_unlock(&vnode->wb_lock);
389 	if (*_wbk)
390 		afs_put_wb_key(*_wbk);
391 	*_wbk = wbk;
392 	return 0;
393 }
394 
395 static void afs_store_data_success(struct afs_operation *op)
396 {
397 	struct afs_vnode *vnode = op->file[0].vnode;
398 
399 	op->ctime = op->file[0].scb.status.mtime_client;
400 	afs_vnode_commit_status(op, &op->file[0]);
401 	if (op->error == 0) {
402 		if (!op->store.laundering)
403 			afs_pages_written_back(vnode, op->store.first, op->store.last);
404 		afs_stat_v(vnode, n_stores);
405 		atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
406 	}
407 }
408 
409 static const struct afs_operation_ops afs_store_data_operation = {
410 	.issue_afs_rpc	= afs_fs_store_data,
411 	.issue_yfs_rpc	= yfs_fs_store_data,
412 	.success	= afs_store_data_success,
413 };
414 
415 /*
416  * write to a file
417  */
418 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter,
419 			  loff_t pos, pgoff_t first, pgoff_t last,
420 			  bool laundering)
421 {
422 	struct afs_operation *op;
423 	struct afs_wb_key *wbk = NULL;
424 	loff_t size = iov_iter_count(iter), i_size;
425 	int ret = -ENOKEY;
426 
427 	_enter("%s{%llx:%llu.%u},%llx,%llx",
428 	       vnode->volume->name,
429 	       vnode->fid.vid,
430 	       vnode->fid.vnode,
431 	       vnode->fid.unique,
432 	       size, pos);
433 
434 	ret = afs_get_writeback_key(vnode, &wbk);
435 	if (ret) {
436 		_leave(" = %d [no keys]", ret);
437 		return ret;
438 	}
439 
440 	op = afs_alloc_operation(wbk->key, vnode->volume);
441 	if (IS_ERR(op)) {
442 		afs_put_wb_key(wbk);
443 		return -ENOMEM;
444 	}
445 
446 	i_size = i_size_read(&vnode->vfs_inode);
447 
448 	afs_op_set_vnode(op, 0, vnode);
449 	op->file[0].dv_delta = 1;
450 	op->store.write_iter = iter;
451 	op->store.pos = pos;
452 	op->store.first = first;
453 	op->store.last = last;
454 	op->store.size = size;
455 	op->store.i_size = max(pos + size, i_size);
456 	op->store.laundering = laundering;
457 	op->mtime = vnode->vfs_inode.i_mtime;
458 	op->flags |= AFS_OPERATION_UNINTR;
459 	op->ops = &afs_store_data_operation;
460 
461 try_next_key:
462 	afs_begin_vnode_operation(op);
463 	afs_wait_for_operation(op);
464 
465 	switch (op->error) {
466 	case -EACCES:
467 	case -EPERM:
468 	case -ENOKEY:
469 	case -EKEYEXPIRED:
470 	case -EKEYREJECTED:
471 	case -EKEYREVOKED:
472 		_debug("next");
473 
474 		ret = afs_get_writeback_key(vnode, &wbk);
475 		if (ret == 0) {
476 			key_put(op->key);
477 			op->key = key_get(wbk->key);
478 			goto try_next_key;
479 		}
480 		break;
481 	}
482 
483 	afs_put_wb_key(wbk);
484 	_leave(" = %d", op->error);
485 	return afs_put_operation(op);
486 }
487 
488 /*
489  * Synchronously write back the locked page and any subsequent non-locked dirty
490  * pages.
491  */
492 static int afs_write_back_from_locked_page(struct address_space *mapping,
493 					   struct writeback_control *wbc,
494 					   struct page *primary_page,
495 					   pgoff_t final_page)
496 {
497 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
498 	struct iov_iter iter;
499 	struct page *pages[8], *page;
500 	unsigned long count, priv;
501 	unsigned n, offset, to, f, t;
502 	pgoff_t start, first, last;
503 	loff_t i_size, pos, end;
504 	int loop, ret;
505 
506 	_enter(",%lx", primary_page->index);
507 
508 	count = 1;
509 	if (test_set_page_writeback(primary_page))
510 		BUG();
511 
512 	/* Find all consecutive lockable dirty pages that have contiguous
513 	 * written regions, stopping when we find a page that is not
514 	 * immediately lockable, is not dirty or is missing, or we reach the
515 	 * end of the range.
516 	 */
517 	start = primary_page->index;
518 	priv = page_private(primary_page);
519 	offset = afs_page_dirty_from(primary_page, priv);
520 	to = afs_page_dirty_to(primary_page, priv);
521 	trace_afs_page_dirty(vnode, tracepoint_string("store"), primary_page);
522 
523 	WARN_ON(offset == to);
524 	if (offset == to)
525 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"), primary_page);
526 
527 	if (start >= final_page ||
528 	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
529 		goto no_more;
530 
531 	start++;
532 	do {
533 		_debug("more %lx [%lx]", start, count);
534 		n = final_page - start + 1;
535 		if (n > ARRAY_SIZE(pages))
536 			n = ARRAY_SIZE(pages);
537 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
538 		_debug("fgpc %u", n);
539 		if (n == 0)
540 			goto no_more;
541 		if (pages[0]->index != start) {
542 			do {
543 				put_page(pages[--n]);
544 			} while (n > 0);
545 			goto no_more;
546 		}
547 
548 		for (loop = 0; loop < n; loop++) {
549 			page = pages[loop];
550 			if (to != PAGE_SIZE &&
551 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
552 				break;
553 			if (page->index > final_page)
554 				break;
555 			if (!trylock_page(page))
556 				break;
557 			if (!PageDirty(page) || PageWriteback(page)) {
558 				unlock_page(page);
559 				break;
560 			}
561 
562 			priv = page_private(page);
563 			f = afs_page_dirty_from(page, priv);
564 			t = afs_page_dirty_to(page, priv);
565 			if (f != 0 &&
566 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
567 				unlock_page(page);
568 				break;
569 			}
570 			to = t;
571 
572 			trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
573 
574 			if (!clear_page_dirty_for_io(page))
575 				BUG();
576 			if (test_set_page_writeback(page))
577 				BUG();
578 			unlock_page(page);
579 			put_page(page);
580 		}
581 		count += loop;
582 		if (loop < n) {
583 			for (; loop < n; loop++)
584 				put_page(pages[loop]);
585 			goto no_more;
586 		}
587 
588 		start += loop;
589 	} while (start <= final_page && count < 65536);
590 
591 no_more:
592 	/* We now have a contiguous set of dirty pages, each with writeback
593 	 * set; the first page is still locked at this point, but all the rest
594 	 * have been unlocked.
595 	 */
596 	unlock_page(primary_page);
597 
598 	first = primary_page->index;
599 	last = first + count - 1;
600 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
601 
602 	pos = first;
603 	pos <<= PAGE_SHIFT;
604 	pos += offset;
605 	end = last;
606 	end <<= PAGE_SHIFT;
607 	end += to;
608 
609 	/* Trim the actual write down to the EOF */
610 	i_size = i_size_read(&vnode->vfs_inode);
611 	if (end > i_size)
612 		end = i_size;
613 
614 	if (pos < i_size) {
615 		iov_iter_xarray(&iter, WRITE, &mapping->i_pages, pos, end - pos);
616 		ret = afs_store_data(vnode, &iter, pos, first, last, false);
617 	} else {
618 		/* The dirty region was entirely beyond the EOF. */
619 		ret = 0;
620 	}
621 
622 	switch (ret) {
623 	case 0:
624 		ret = count;
625 		break;
626 
627 	default:
628 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
629 		fallthrough;
630 	case -EACCES:
631 	case -EPERM:
632 	case -ENOKEY:
633 	case -EKEYEXPIRED:
634 	case -EKEYREJECTED:
635 	case -EKEYREVOKED:
636 		afs_redirty_pages(wbc, mapping, first, last);
637 		mapping_set_error(mapping, ret);
638 		break;
639 
640 	case -EDQUOT:
641 	case -ENOSPC:
642 		afs_redirty_pages(wbc, mapping, first, last);
643 		mapping_set_error(mapping, -ENOSPC);
644 		break;
645 
646 	case -EROFS:
647 	case -EIO:
648 	case -EREMOTEIO:
649 	case -EFBIG:
650 	case -ENOENT:
651 	case -ENOMEDIUM:
652 	case -ENXIO:
653 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
654 		afs_kill_pages(mapping, first, last);
655 		mapping_set_error(mapping, ret);
656 		break;
657 	}
658 
659 	_leave(" = %d", ret);
660 	return ret;
661 }
662 
663 /*
664  * write a page back to the server
665  * - the caller locked the page for us
666  */
667 int afs_writepage(struct page *page, struct writeback_control *wbc)
668 {
669 	int ret;
670 
671 	_enter("{%lx},", page->index);
672 
673 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
674 					      wbc->range_end >> PAGE_SHIFT);
675 	if (ret < 0) {
676 		_leave(" = %d", ret);
677 		return 0;
678 	}
679 
680 	wbc->nr_to_write -= ret;
681 
682 	_leave(" = 0");
683 	return 0;
684 }
685 
686 /*
687  * write a region of pages back to the server
688  */
689 static int afs_writepages_region(struct address_space *mapping,
690 				 struct writeback_control *wbc,
691 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
692 {
693 	struct page *page;
694 	int ret, n;
695 
696 	_enter(",,%lx,%lx,", index, end);
697 
698 	do {
699 		n = find_get_pages_range_tag(mapping, &index, end,
700 					PAGECACHE_TAG_DIRTY, 1, &page);
701 		if (!n)
702 			break;
703 
704 		_debug("wback %lx", page->index);
705 
706 		/*
707 		 * at this point we hold neither the i_pages lock nor the
708 		 * page lock: the page may be truncated or invalidated
709 		 * (changing page->mapping to NULL), or even swizzled
710 		 * back from swapper_space to tmpfs file mapping
711 		 */
712 		ret = lock_page_killable(page);
713 		if (ret < 0) {
714 			put_page(page);
715 			_leave(" = %d", ret);
716 			return ret;
717 		}
718 
719 		if (page->mapping != mapping || !PageDirty(page)) {
720 			unlock_page(page);
721 			put_page(page);
722 			continue;
723 		}
724 
725 		if (PageWriteback(page)) {
726 			unlock_page(page);
727 			if (wbc->sync_mode != WB_SYNC_NONE)
728 				wait_on_page_writeback(page);
729 			put_page(page);
730 			continue;
731 		}
732 
733 		if (!clear_page_dirty_for_io(page))
734 			BUG();
735 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
736 		put_page(page);
737 		if (ret < 0) {
738 			_leave(" = %d", ret);
739 			return ret;
740 		}
741 
742 		wbc->nr_to_write -= ret;
743 
744 		cond_resched();
745 	} while (index < end && wbc->nr_to_write > 0);
746 
747 	*_next = index;
748 	_leave(" = 0 [%lx]", *_next);
749 	return 0;
750 }
751 
752 /*
753  * write some of the pending data back to the server
754  */
755 int afs_writepages(struct address_space *mapping,
756 		   struct writeback_control *wbc)
757 {
758 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
759 	pgoff_t start, end, next;
760 	int ret;
761 
762 	_enter("");
763 
764 	/* We have to be careful as we can end up racing with setattr()
765 	 * truncating the pagecache since the caller doesn't take a lock here
766 	 * to prevent it.
767 	 */
768 	if (wbc->sync_mode == WB_SYNC_ALL)
769 		down_read(&vnode->validate_lock);
770 	else if (!down_read_trylock(&vnode->validate_lock))
771 		return 0;
772 
773 	if (wbc->range_cyclic) {
774 		start = mapping->writeback_index;
775 		end = -1;
776 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
777 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
778 			ret = afs_writepages_region(mapping, wbc, 0, start,
779 						    &next);
780 		mapping->writeback_index = next;
781 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
782 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
783 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
784 		if (wbc->nr_to_write > 0)
785 			mapping->writeback_index = next;
786 	} else {
787 		start = wbc->range_start >> PAGE_SHIFT;
788 		end = wbc->range_end >> PAGE_SHIFT;
789 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
790 	}
791 
792 	up_read(&vnode->validate_lock);
793 	_leave(" = %d", ret);
794 	return ret;
795 }
796 
797 /*
798  * write to an AFS file
799  */
800 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
801 {
802 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
803 	ssize_t result;
804 	size_t count = iov_iter_count(from);
805 
806 	_enter("{%llx:%llu},{%zu},",
807 	       vnode->fid.vid, vnode->fid.vnode, count);
808 
809 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
810 		printk(KERN_INFO
811 		       "AFS: Attempt to write to active swap file!\n");
812 		return -EBUSY;
813 	}
814 
815 	if (!count)
816 		return 0;
817 
818 	result = generic_file_write_iter(iocb, from);
819 
820 	_leave(" = %zd", result);
821 	return result;
822 }
823 
824 /*
825  * flush any dirty pages for this process, and check for write errors.
826  * - the return status from this call provides a reliable indication of
827  *   whether any write errors occurred for this process.
828  */
829 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
830 {
831 	struct inode *inode = file_inode(file);
832 	struct afs_vnode *vnode = AFS_FS_I(inode);
833 
834 	_enter("{%llx:%llu},{n=%pD},%d",
835 	       vnode->fid.vid, vnode->fid.vnode, file,
836 	       datasync);
837 
838 	return file_write_and_wait_range(file, start, end);
839 }
840 
841 /*
842  * notification that a previously read-only page is about to become writable
843  * - if it returns an error, the caller will deliver a bus error signal
844  */
845 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
846 {
847 	struct file *file = vmf->vma->vm_file;
848 	struct inode *inode = file_inode(file);
849 	struct afs_vnode *vnode = AFS_FS_I(inode);
850 	unsigned long priv;
851 
852 	_enter("{{%llx:%llu}},{%lx}",
853 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
854 
855 	sb_start_pagefault(inode->i_sb);
856 
857 	/* Wait for the page to be written to the cache before we allow it to
858 	 * be modified.  We then assume the entire page will need writing back.
859 	 */
860 
861 	if (wait_on_page_writeback_killable(vmf->page))
862 		return VM_FAULT_RETRY;
863 
864 	if (lock_page_killable(vmf->page) < 0)
865 		return VM_FAULT_RETRY;
866 
867 	/* We mustn't change page->private until writeback is complete as that
868 	 * details the portion of the page we need to write back and we might
869 	 * need to redirty the page if there's a problem.
870 	 */
871 	wait_on_page_writeback(vmf->page);
872 
873 	priv = afs_page_dirty(vmf->page, 0, PAGE_SIZE);
874 	priv = afs_page_dirty_mmapped(priv);
875 	if (PagePrivate(vmf->page))
876 		set_page_private(vmf->page, priv);
877 	else
878 		attach_page_private(vmf->page, (void *)priv);
879 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), vmf->page);
880 	file_update_time(file);
881 
882 	sb_end_pagefault(inode->i_sb);
883 	return VM_FAULT_LOCKED;
884 }
885 
886 /*
887  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
888  */
889 void afs_prune_wb_keys(struct afs_vnode *vnode)
890 {
891 	LIST_HEAD(graveyard);
892 	struct afs_wb_key *wbk, *tmp;
893 
894 	/* Discard unused keys */
895 	spin_lock(&vnode->wb_lock);
896 
897 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
898 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
899 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
900 			if (refcount_read(&wbk->usage) == 1)
901 				list_move(&wbk->vnode_link, &graveyard);
902 		}
903 	}
904 
905 	spin_unlock(&vnode->wb_lock);
906 
907 	while (!list_empty(&graveyard)) {
908 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
909 		list_del(&wbk->vnode_link);
910 		afs_put_wb_key(wbk);
911 	}
912 }
913 
914 /*
915  * Clean up a page during invalidation.
916  */
917 int afs_launder_page(struct page *page)
918 {
919 	struct address_space *mapping = page->mapping;
920 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
921 	struct iov_iter iter;
922 	struct bio_vec bv[1];
923 	unsigned long priv;
924 	unsigned int f, t;
925 	int ret = 0;
926 
927 	_enter("{%lx}", page->index);
928 
929 	priv = page_private(page);
930 	if (clear_page_dirty_for_io(page)) {
931 		f = 0;
932 		t = PAGE_SIZE;
933 		if (PagePrivate(page)) {
934 			f = afs_page_dirty_from(page, priv);
935 			t = afs_page_dirty_to(page, priv);
936 		}
937 
938 		bv[0].bv_page = page;
939 		bv[0].bv_offset = f;
940 		bv[0].bv_len = t - f;
941 		iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
942 
943 		trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
944 		ret = afs_store_data(vnode, &iter, (loff_t)page->index << PAGE_SHIFT,
945 				     page->index, page->index, true);
946 	}
947 
948 	detach_page_private(page);
949 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
950 	return ret;
951 }
952