xref: /openbmc/linux/fs/afs/write.c (revision bc899ee1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include "internal.h"
16 
17 static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len,
18 			       loff_t i_size, bool caching);
19 
20 #ifdef CONFIG_AFS_FSCACHE
21 /*
22  * Mark a page as having been made dirty and thus needing writeback.  We also
23  * need to pin the cache object to write back to.
24  */
25 int afs_set_page_dirty(struct page *page)
26 {
27 	return fscache_set_page_dirty(page, afs_vnode_cache(AFS_FS_I(page->mapping->host)));
28 }
29 static void afs_folio_start_fscache(bool caching, struct folio *folio)
30 {
31 	if (caching)
32 		folio_start_fscache(folio);
33 }
34 #else
35 static void afs_folio_start_fscache(bool caching, struct folio *folio)
36 {
37 }
38 #endif
39 
40 /*
41  * prepare to perform part of a write to a page
42  */
43 int afs_write_begin(struct file *file, struct address_space *mapping,
44 		    loff_t pos, unsigned len, unsigned flags,
45 		    struct page **_page, void **fsdata)
46 {
47 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
48 	struct folio *folio;
49 	unsigned long priv;
50 	unsigned f, from;
51 	unsigned t, to;
52 	pgoff_t index;
53 	int ret;
54 
55 	_enter("{%llx:%llu},%llx,%x",
56 	       vnode->fid.vid, vnode->fid.vnode, pos, len);
57 
58 	/* Prefetch area to be written into the cache if we're caching this
59 	 * file.  We need to do this before we get a lock on the page in case
60 	 * there's more than one writer competing for the same cache block.
61 	 */
62 	ret = netfs_write_begin(file, mapping, pos, len, flags, &folio, fsdata);
63 	if (ret < 0)
64 		return ret;
65 
66 	index = folio_index(folio);
67 	from = pos - index * PAGE_SIZE;
68 	to = from + len;
69 
70 try_again:
71 	/* See if this page is already partially written in a way that we can
72 	 * merge the new write with.
73 	 */
74 	if (folio_test_private(folio)) {
75 		priv = (unsigned long)folio_get_private(folio);
76 		f = afs_folio_dirty_from(folio, priv);
77 		t = afs_folio_dirty_to(folio, priv);
78 		ASSERTCMP(f, <=, t);
79 
80 		if (folio_test_writeback(folio)) {
81 			trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio);
82 			goto flush_conflicting_write;
83 		}
84 		/* If the file is being filled locally, allow inter-write
85 		 * spaces to be merged into writes.  If it's not, only write
86 		 * back what the user gives us.
87 		 */
88 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
89 		    (to < f || from > t))
90 			goto flush_conflicting_write;
91 	}
92 
93 	*_page = &folio->page;
94 	_leave(" = 0");
95 	return 0;
96 
97 	/* The previous write and this write aren't adjacent or overlapping, so
98 	 * flush the page out.
99 	 */
100 flush_conflicting_write:
101 	_debug("flush conflict");
102 	ret = folio_write_one(folio);
103 	if (ret < 0)
104 		goto error;
105 
106 	ret = folio_lock_killable(folio);
107 	if (ret < 0)
108 		goto error;
109 	goto try_again;
110 
111 error:
112 	folio_put(folio);
113 	_leave(" = %d", ret);
114 	return ret;
115 }
116 
117 /*
118  * finalise part of a write to a page
119  */
120 int afs_write_end(struct file *file, struct address_space *mapping,
121 		  loff_t pos, unsigned len, unsigned copied,
122 		  struct page *subpage, void *fsdata)
123 {
124 	struct folio *folio = page_folio(subpage);
125 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
126 	unsigned long priv;
127 	unsigned int f, from = offset_in_folio(folio, pos);
128 	unsigned int t, to = from + copied;
129 	loff_t i_size, write_end_pos;
130 
131 	_enter("{%llx:%llu},{%lx}",
132 	       vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
133 
134 	if (!folio_test_uptodate(folio)) {
135 		if (copied < len) {
136 			copied = 0;
137 			goto out;
138 		}
139 
140 		folio_mark_uptodate(folio);
141 	}
142 
143 	if (copied == 0)
144 		goto out;
145 
146 	write_end_pos = pos + copied;
147 
148 	i_size = i_size_read(&vnode->vfs_inode);
149 	if (write_end_pos > i_size) {
150 		write_seqlock(&vnode->cb_lock);
151 		i_size = i_size_read(&vnode->vfs_inode);
152 		if (write_end_pos > i_size)
153 			afs_set_i_size(vnode, write_end_pos);
154 		write_sequnlock(&vnode->cb_lock);
155 		fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos);
156 	}
157 
158 	if (folio_test_private(folio)) {
159 		priv = (unsigned long)folio_get_private(folio);
160 		f = afs_folio_dirty_from(folio, priv);
161 		t = afs_folio_dirty_to(folio, priv);
162 		if (from < f)
163 			f = from;
164 		if (to > t)
165 			t = to;
166 		priv = afs_folio_dirty(folio, f, t);
167 		folio_change_private(folio, (void *)priv);
168 		trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio);
169 	} else {
170 		priv = afs_folio_dirty(folio, from, to);
171 		folio_attach_private(folio, (void *)priv);
172 		trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio);
173 	}
174 
175 	if (folio_mark_dirty(folio))
176 		_debug("dirtied %lx", folio_index(folio));
177 
178 out:
179 	folio_unlock(folio);
180 	folio_put(folio);
181 	return copied;
182 }
183 
184 /*
185  * kill all the pages in the given range
186  */
187 static void afs_kill_pages(struct address_space *mapping,
188 			   loff_t start, loff_t len)
189 {
190 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
191 	struct folio *folio;
192 	pgoff_t index = start / PAGE_SIZE;
193 	pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
194 
195 	_enter("{%llx:%llu},%llx @%llx",
196 	       vnode->fid.vid, vnode->fid.vnode, len, start);
197 
198 	do {
199 		_debug("kill %lx (to %lx)", index, last);
200 
201 		folio = filemap_get_folio(mapping, index);
202 		if (!folio) {
203 			next = index + 1;
204 			continue;
205 		}
206 
207 		next = folio_next_index(folio);
208 
209 		folio_clear_uptodate(folio);
210 		folio_end_writeback(folio);
211 		folio_lock(folio);
212 		generic_error_remove_page(mapping, &folio->page);
213 		folio_unlock(folio);
214 		folio_put(folio);
215 
216 	} while (index = next, index <= last);
217 
218 	_leave("");
219 }
220 
221 /*
222  * Redirty all the pages in a given range.
223  */
224 static void afs_redirty_pages(struct writeback_control *wbc,
225 			      struct address_space *mapping,
226 			      loff_t start, loff_t len)
227 {
228 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
229 	struct folio *folio;
230 	pgoff_t index = start / PAGE_SIZE;
231 	pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
232 
233 	_enter("{%llx:%llu},%llx @%llx",
234 	       vnode->fid.vid, vnode->fid.vnode, len, start);
235 
236 	do {
237 		_debug("redirty %llx @%llx", len, start);
238 
239 		folio = filemap_get_folio(mapping, index);
240 		if (!folio) {
241 			next = index + 1;
242 			continue;
243 		}
244 
245 		next = index + folio_nr_pages(folio);
246 		folio_redirty_for_writepage(wbc, folio);
247 		folio_end_writeback(folio);
248 		folio_put(folio);
249 	} while (index = next, index <= last);
250 
251 	_leave("");
252 }
253 
254 /*
255  * completion of write to server
256  */
257 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
258 {
259 	struct address_space *mapping = vnode->vfs_inode.i_mapping;
260 	struct folio *folio;
261 	pgoff_t end;
262 
263 	XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
264 
265 	_enter("{%llx:%llu},{%x @%llx}",
266 	       vnode->fid.vid, vnode->fid.vnode, len, start);
267 
268 	rcu_read_lock();
269 
270 	end = (start + len - 1) / PAGE_SIZE;
271 	xas_for_each(&xas, folio, end) {
272 		if (!folio_test_writeback(folio)) {
273 			kdebug("bad %x @%llx page %lx %lx",
274 			       len, start, folio_index(folio), end);
275 			ASSERT(folio_test_writeback(folio));
276 		}
277 
278 		trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio);
279 		folio_detach_private(folio);
280 		folio_end_writeback(folio);
281 	}
282 
283 	rcu_read_unlock();
284 
285 	afs_prune_wb_keys(vnode);
286 	_leave("");
287 }
288 
289 /*
290  * Find a key to use for the writeback.  We cached the keys used to author the
291  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
292  * and we need to start from there if it's set.
293  */
294 static int afs_get_writeback_key(struct afs_vnode *vnode,
295 				 struct afs_wb_key **_wbk)
296 {
297 	struct afs_wb_key *wbk = NULL;
298 	struct list_head *p;
299 	int ret = -ENOKEY, ret2;
300 
301 	spin_lock(&vnode->wb_lock);
302 	if (*_wbk)
303 		p = (*_wbk)->vnode_link.next;
304 	else
305 		p = vnode->wb_keys.next;
306 
307 	while (p != &vnode->wb_keys) {
308 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
309 		_debug("wbk %u", key_serial(wbk->key));
310 		ret2 = key_validate(wbk->key);
311 		if (ret2 == 0) {
312 			refcount_inc(&wbk->usage);
313 			_debug("USE WB KEY %u", key_serial(wbk->key));
314 			break;
315 		}
316 
317 		wbk = NULL;
318 		if (ret == -ENOKEY)
319 			ret = ret2;
320 		p = p->next;
321 	}
322 
323 	spin_unlock(&vnode->wb_lock);
324 	if (*_wbk)
325 		afs_put_wb_key(*_wbk);
326 	*_wbk = wbk;
327 	return 0;
328 }
329 
330 static void afs_store_data_success(struct afs_operation *op)
331 {
332 	struct afs_vnode *vnode = op->file[0].vnode;
333 
334 	op->ctime = op->file[0].scb.status.mtime_client;
335 	afs_vnode_commit_status(op, &op->file[0]);
336 	if (op->error == 0) {
337 		if (!op->store.laundering)
338 			afs_pages_written_back(vnode, op->store.pos, op->store.size);
339 		afs_stat_v(vnode, n_stores);
340 		atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
341 	}
342 }
343 
344 static const struct afs_operation_ops afs_store_data_operation = {
345 	.issue_afs_rpc	= afs_fs_store_data,
346 	.issue_yfs_rpc	= yfs_fs_store_data,
347 	.success	= afs_store_data_success,
348 };
349 
350 /*
351  * write to a file
352  */
353 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
354 			  bool laundering)
355 {
356 	struct afs_operation *op;
357 	struct afs_wb_key *wbk = NULL;
358 	loff_t size = iov_iter_count(iter), i_size;
359 	int ret = -ENOKEY;
360 
361 	_enter("%s{%llx:%llu.%u},%llx,%llx",
362 	       vnode->volume->name,
363 	       vnode->fid.vid,
364 	       vnode->fid.vnode,
365 	       vnode->fid.unique,
366 	       size, pos);
367 
368 	ret = afs_get_writeback_key(vnode, &wbk);
369 	if (ret) {
370 		_leave(" = %d [no keys]", ret);
371 		return ret;
372 	}
373 
374 	op = afs_alloc_operation(wbk->key, vnode->volume);
375 	if (IS_ERR(op)) {
376 		afs_put_wb_key(wbk);
377 		return -ENOMEM;
378 	}
379 
380 	i_size = i_size_read(&vnode->vfs_inode);
381 
382 	afs_op_set_vnode(op, 0, vnode);
383 	op->file[0].dv_delta = 1;
384 	op->file[0].modification = true;
385 	op->store.write_iter = iter;
386 	op->store.pos = pos;
387 	op->store.size = size;
388 	op->store.i_size = max(pos + size, i_size);
389 	op->store.laundering = laundering;
390 	op->mtime = vnode->vfs_inode.i_mtime;
391 	op->flags |= AFS_OPERATION_UNINTR;
392 	op->ops = &afs_store_data_operation;
393 
394 try_next_key:
395 	afs_begin_vnode_operation(op);
396 	afs_wait_for_operation(op);
397 
398 	switch (op->error) {
399 	case -EACCES:
400 	case -EPERM:
401 	case -ENOKEY:
402 	case -EKEYEXPIRED:
403 	case -EKEYREJECTED:
404 	case -EKEYREVOKED:
405 		_debug("next");
406 
407 		ret = afs_get_writeback_key(vnode, &wbk);
408 		if (ret == 0) {
409 			key_put(op->key);
410 			op->key = key_get(wbk->key);
411 			goto try_next_key;
412 		}
413 		break;
414 	}
415 
416 	afs_put_wb_key(wbk);
417 	_leave(" = %d", op->error);
418 	return afs_put_operation(op);
419 }
420 
421 /*
422  * Extend the region to be written back to include subsequent contiguously
423  * dirty pages if possible, but don't sleep while doing so.
424  *
425  * If this page holds new content, then we can include filler zeros in the
426  * writeback.
427  */
428 static void afs_extend_writeback(struct address_space *mapping,
429 				 struct afs_vnode *vnode,
430 				 long *_count,
431 				 loff_t start,
432 				 loff_t max_len,
433 				 bool new_content,
434 				 bool caching,
435 				 unsigned int *_len)
436 {
437 	struct pagevec pvec;
438 	struct folio *folio;
439 	unsigned long priv;
440 	unsigned int psize, filler = 0;
441 	unsigned int f, t;
442 	loff_t len = *_len;
443 	pgoff_t index = (start + len) / PAGE_SIZE;
444 	bool stop = true;
445 	unsigned int i;
446 
447 	XA_STATE(xas, &mapping->i_pages, index);
448 	pagevec_init(&pvec);
449 
450 	do {
451 		/* Firstly, we gather up a batch of contiguous dirty pages
452 		 * under the RCU read lock - but we can't clear the dirty flags
453 		 * there if any of those pages are mapped.
454 		 */
455 		rcu_read_lock();
456 
457 		xas_for_each(&xas, folio, ULONG_MAX) {
458 			stop = true;
459 			if (xas_retry(&xas, folio))
460 				continue;
461 			if (xa_is_value(folio))
462 				break;
463 			if (folio_index(folio) != index)
464 				break;
465 
466 			if (!folio_try_get_rcu(folio)) {
467 				xas_reset(&xas);
468 				continue;
469 			}
470 
471 			/* Has the page moved or been split? */
472 			if (unlikely(folio != xas_reload(&xas))) {
473 				folio_put(folio);
474 				break;
475 			}
476 
477 			if (!folio_trylock(folio)) {
478 				folio_put(folio);
479 				break;
480 			}
481 			if (!folio_test_dirty(folio) ||
482 			    folio_test_writeback(folio) ||
483 			    folio_test_fscache(folio)) {
484 				folio_unlock(folio);
485 				folio_put(folio);
486 				break;
487 			}
488 
489 			psize = folio_size(folio);
490 			priv = (unsigned long)folio_get_private(folio);
491 			f = afs_folio_dirty_from(folio, priv);
492 			t = afs_folio_dirty_to(folio, priv);
493 			if (f != 0 && !new_content) {
494 				folio_unlock(folio);
495 				folio_put(folio);
496 				break;
497 			}
498 
499 			len += filler + t;
500 			filler = psize - t;
501 			if (len >= max_len || *_count <= 0)
502 				stop = true;
503 			else if (t == psize || new_content)
504 				stop = false;
505 
506 			index += folio_nr_pages(folio);
507 			if (!pagevec_add(&pvec, &folio->page))
508 				break;
509 			if (stop)
510 				break;
511 		}
512 
513 		if (!stop)
514 			xas_pause(&xas);
515 		rcu_read_unlock();
516 
517 		/* Now, if we obtained any pages, we can shift them to being
518 		 * writable and mark them for caching.
519 		 */
520 		if (!pagevec_count(&pvec))
521 			break;
522 
523 		for (i = 0; i < pagevec_count(&pvec); i++) {
524 			folio = page_folio(pvec.pages[i]);
525 			trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio);
526 
527 			if (!folio_clear_dirty_for_io(folio))
528 				BUG();
529 			if (folio_start_writeback(folio))
530 				BUG();
531 			afs_folio_start_fscache(caching, folio);
532 
533 			*_count -= folio_nr_pages(folio);
534 			folio_unlock(folio);
535 		}
536 
537 		pagevec_release(&pvec);
538 		cond_resched();
539 	} while (!stop);
540 
541 	*_len = len;
542 }
543 
544 /*
545  * Synchronously write back the locked page and any subsequent non-locked dirty
546  * pages.
547  */
548 static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping,
549 						struct writeback_control *wbc,
550 						struct folio *folio,
551 						loff_t start, loff_t end)
552 {
553 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
554 	struct iov_iter iter;
555 	unsigned long priv;
556 	unsigned int offset, to, len, max_len;
557 	loff_t i_size = i_size_read(&vnode->vfs_inode);
558 	bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
559 	bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode));
560 	long count = wbc->nr_to_write;
561 	int ret;
562 
563 	_enter(",%lx,%llx-%llx", folio_index(folio), start, end);
564 
565 	if (folio_start_writeback(folio))
566 		BUG();
567 	afs_folio_start_fscache(caching, folio);
568 
569 	count -= folio_nr_pages(folio);
570 
571 	/* Find all consecutive lockable dirty pages that have contiguous
572 	 * written regions, stopping when we find a page that is not
573 	 * immediately lockable, is not dirty or is missing, or we reach the
574 	 * end of the range.
575 	 */
576 	priv = (unsigned long)folio_get_private(folio);
577 	offset = afs_folio_dirty_from(folio, priv);
578 	to = afs_folio_dirty_to(folio, priv);
579 	trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio);
580 
581 	len = to - offset;
582 	start += offset;
583 	if (start < i_size) {
584 		/* Trim the write to the EOF; the extra data is ignored.  Also
585 		 * put an upper limit on the size of a single storedata op.
586 		 */
587 		max_len = 65536 * 4096;
588 		max_len = min_t(unsigned long long, max_len, end - start + 1);
589 		max_len = min_t(unsigned long long, max_len, i_size - start);
590 
591 		if (len < max_len &&
592 		    (to == folio_size(folio) || new_content))
593 			afs_extend_writeback(mapping, vnode, &count,
594 					     start, max_len, new_content,
595 					     caching, &len);
596 		len = min_t(loff_t, len, max_len);
597 	}
598 
599 	/* We now have a contiguous set of dirty pages, each with writeback
600 	 * set; the first page is still locked at this point, but all the rest
601 	 * have been unlocked.
602 	 */
603 	folio_unlock(folio);
604 
605 	if (start < i_size) {
606 		_debug("write back %x @%llx [%llx]", len, start, i_size);
607 
608 		/* Speculatively write to the cache.  We have to fix this up
609 		 * later if the store fails.
610 		 */
611 		afs_write_to_cache(vnode, start, len, i_size, caching);
612 
613 		iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
614 		ret = afs_store_data(vnode, &iter, start, false);
615 	} else {
616 		_debug("write discard %x @%llx [%llx]", len, start, i_size);
617 
618 		/* The dirty region was entirely beyond the EOF. */
619 		fscache_clear_page_bits(afs_vnode_cache(vnode),
620 					mapping, start, len, caching);
621 		afs_pages_written_back(vnode, start, len);
622 		ret = 0;
623 	}
624 
625 	switch (ret) {
626 	case 0:
627 		wbc->nr_to_write = count;
628 		ret = len;
629 		break;
630 
631 	default:
632 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
633 		fallthrough;
634 	case -EACCES:
635 	case -EPERM:
636 	case -ENOKEY:
637 	case -EKEYEXPIRED:
638 	case -EKEYREJECTED:
639 	case -EKEYREVOKED:
640 		afs_redirty_pages(wbc, mapping, start, len);
641 		mapping_set_error(mapping, ret);
642 		break;
643 
644 	case -EDQUOT:
645 	case -ENOSPC:
646 		afs_redirty_pages(wbc, mapping, start, len);
647 		mapping_set_error(mapping, -ENOSPC);
648 		break;
649 
650 	case -EROFS:
651 	case -EIO:
652 	case -EREMOTEIO:
653 	case -EFBIG:
654 	case -ENOENT:
655 	case -ENOMEDIUM:
656 	case -ENXIO:
657 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
658 		afs_kill_pages(mapping, start, len);
659 		mapping_set_error(mapping, ret);
660 		break;
661 	}
662 
663 	_leave(" = %d", ret);
664 	return ret;
665 }
666 
667 /*
668  * write a page back to the server
669  * - the caller locked the page for us
670  */
671 int afs_writepage(struct page *subpage, struct writeback_control *wbc)
672 {
673 	struct folio *folio = page_folio(subpage);
674 	ssize_t ret;
675 	loff_t start;
676 
677 	_enter("{%lx},", folio_index(folio));
678 
679 #ifdef CONFIG_AFS_FSCACHE
680 	folio_wait_fscache(folio);
681 #endif
682 
683 	start = folio_index(folio) * PAGE_SIZE;
684 	ret = afs_write_back_from_locked_folio(folio_mapping(folio), wbc,
685 					       folio, start, LLONG_MAX - start);
686 	if (ret < 0) {
687 		_leave(" = %zd", ret);
688 		return ret;
689 	}
690 
691 	_leave(" = 0");
692 	return 0;
693 }
694 
695 /*
696  * write a region of pages back to the server
697  */
698 static int afs_writepages_region(struct address_space *mapping,
699 				 struct writeback_control *wbc,
700 				 loff_t start, loff_t end, loff_t *_next)
701 {
702 	struct folio *folio;
703 	struct page *head_page;
704 	ssize_t ret;
705 	int n;
706 
707 	_enter("%llx,%llx,", start, end);
708 
709 	do {
710 		pgoff_t index = start / PAGE_SIZE;
711 
712 		n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
713 					     PAGECACHE_TAG_DIRTY, 1, &head_page);
714 		if (!n)
715 			break;
716 
717 		folio = page_folio(head_page);
718 		start = folio_pos(folio); /* May regress with THPs */
719 
720 		_debug("wback %lx", folio_index(folio));
721 
722 		/* At this point we hold neither the i_pages lock nor the
723 		 * page lock: the page may be truncated or invalidated
724 		 * (changing page->mapping to NULL), or even swizzled
725 		 * back from swapper_space to tmpfs file mapping
726 		 */
727 		if (wbc->sync_mode != WB_SYNC_NONE) {
728 			ret = folio_lock_killable(folio);
729 			if (ret < 0) {
730 				folio_put(folio);
731 				return ret;
732 			}
733 		} else {
734 			if (!folio_trylock(folio)) {
735 				folio_put(folio);
736 				return 0;
737 			}
738 		}
739 
740 		if (folio_mapping(folio) != mapping ||
741 		    !folio_test_dirty(folio)) {
742 			start += folio_size(folio);
743 			folio_unlock(folio);
744 			folio_put(folio);
745 			continue;
746 		}
747 
748 		if (folio_test_writeback(folio) ||
749 		    folio_test_fscache(folio)) {
750 			folio_unlock(folio);
751 			if (wbc->sync_mode != WB_SYNC_NONE) {
752 				folio_wait_writeback(folio);
753 #ifdef CONFIG_AFS_FSCACHE
754 				folio_wait_fscache(folio);
755 #endif
756 			}
757 			folio_put(folio);
758 			continue;
759 		}
760 
761 		if (!folio_clear_dirty_for_io(folio))
762 			BUG();
763 		ret = afs_write_back_from_locked_folio(mapping, wbc, folio, start, end);
764 		folio_put(folio);
765 		if (ret < 0) {
766 			_leave(" = %zd", ret);
767 			return ret;
768 		}
769 
770 		start += ret;
771 
772 		cond_resched();
773 	} while (wbc->nr_to_write > 0);
774 
775 	*_next = start;
776 	_leave(" = 0 [%llx]", *_next);
777 	return 0;
778 }
779 
780 /*
781  * write some of the pending data back to the server
782  */
783 int afs_writepages(struct address_space *mapping,
784 		   struct writeback_control *wbc)
785 {
786 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
787 	loff_t start, next;
788 	int ret;
789 
790 	_enter("");
791 
792 	/* We have to be careful as we can end up racing with setattr()
793 	 * truncating the pagecache since the caller doesn't take a lock here
794 	 * to prevent it.
795 	 */
796 	if (wbc->sync_mode == WB_SYNC_ALL)
797 		down_read(&vnode->validate_lock);
798 	else if (!down_read_trylock(&vnode->validate_lock))
799 		return 0;
800 
801 	if (wbc->range_cyclic) {
802 		start = mapping->writeback_index * PAGE_SIZE;
803 		ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
804 		if (ret == 0) {
805 			mapping->writeback_index = next / PAGE_SIZE;
806 			if (start > 0 && wbc->nr_to_write > 0) {
807 				ret = afs_writepages_region(mapping, wbc, 0,
808 							    start, &next);
809 				if (ret == 0)
810 					mapping->writeback_index =
811 						next / PAGE_SIZE;
812 			}
813 		}
814 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
815 		ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
816 		if (wbc->nr_to_write > 0 && ret == 0)
817 			mapping->writeback_index = next / PAGE_SIZE;
818 	} else {
819 		ret = afs_writepages_region(mapping, wbc,
820 					    wbc->range_start, wbc->range_end, &next);
821 	}
822 
823 	up_read(&vnode->validate_lock);
824 	_leave(" = %d", ret);
825 	return ret;
826 }
827 
828 /*
829  * write to an AFS file
830  */
831 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
832 {
833 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
834 	struct afs_file *af = iocb->ki_filp->private_data;
835 	ssize_t result;
836 	size_t count = iov_iter_count(from);
837 
838 	_enter("{%llx:%llu},{%zu},",
839 	       vnode->fid.vid, vnode->fid.vnode, count);
840 
841 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
842 		printk(KERN_INFO
843 		       "AFS: Attempt to write to active swap file!\n");
844 		return -EBUSY;
845 	}
846 
847 	if (!count)
848 		return 0;
849 
850 	result = afs_validate(vnode, af->key);
851 	if (result < 0)
852 		return result;
853 
854 	result = generic_file_write_iter(iocb, from);
855 
856 	_leave(" = %zd", result);
857 	return result;
858 }
859 
860 /*
861  * flush any dirty pages for this process, and check for write errors.
862  * - the return status from this call provides a reliable indication of
863  *   whether any write errors occurred for this process.
864  */
865 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
866 {
867 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
868 	struct afs_file *af = file->private_data;
869 	int ret;
870 
871 	_enter("{%llx:%llu},{n=%pD},%d",
872 	       vnode->fid.vid, vnode->fid.vnode, file,
873 	       datasync);
874 
875 	ret = afs_validate(vnode, af->key);
876 	if (ret < 0)
877 		return ret;
878 
879 	return file_write_and_wait_range(file, start, end);
880 }
881 
882 /*
883  * notification that a previously read-only page is about to become writable
884  * - if it returns an error, the caller will deliver a bus error signal
885  */
886 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
887 {
888 	struct folio *folio = page_folio(vmf->page);
889 	struct file *file = vmf->vma->vm_file;
890 	struct inode *inode = file_inode(file);
891 	struct afs_vnode *vnode = AFS_FS_I(inode);
892 	struct afs_file *af = file->private_data;
893 	unsigned long priv;
894 	vm_fault_t ret = VM_FAULT_RETRY;
895 
896 	_enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
897 
898 	afs_validate(vnode, af->key);
899 
900 	sb_start_pagefault(inode->i_sb);
901 
902 	/* Wait for the page to be written to the cache before we allow it to
903 	 * be modified.  We then assume the entire page will need writing back.
904 	 */
905 #ifdef CONFIG_AFS_FSCACHE
906 	if (folio_test_fscache(folio) &&
907 	    folio_wait_fscache_killable(folio) < 0)
908 		goto out;
909 #endif
910 
911 	if (folio_wait_writeback_killable(folio))
912 		goto out;
913 
914 	if (folio_lock_killable(folio) < 0)
915 		goto out;
916 
917 	/* We mustn't change folio->private until writeback is complete as that
918 	 * details the portion of the page we need to write back and we might
919 	 * need to redirty the page if there's a problem.
920 	 */
921 	if (folio_wait_writeback_killable(folio) < 0) {
922 		folio_unlock(folio);
923 		goto out;
924 	}
925 
926 	priv = afs_folio_dirty(folio, 0, folio_size(folio));
927 	priv = afs_folio_dirty_mmapped(priv);
928 	if (folio_test_private(folio)) {
929 		folio_change_private(folio, (void *)priv);
930 		trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio);
931 	} else {
932 		folio_attach_private(folio, (void *)priv);
933 		trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio);
934 	}
935 	file_update_time(file);
936 
937 	ret = VM_FAULT_LOCKED;
938 out:
939 	sb_end_pagefault(inode->i_sb);
940 	return ret;
941 }
942 
943 /*
944  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
945  */
946 void afs_prune_wb_keys(struct afs_vnode *vnode)
947 {
948 	LIST_HEAD(graveyard);
949 	struct afs_wb_key *wbk, *tmp;
950 
951 	/* Discard unused keys */
952 	spin_lock(&vnode->wb_lock);
953 
954 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
955 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
956 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
957 			if (refcount_read(&wbk->usage) == 1)
958 				list_move(&wbk->vnode_link, &graveyard);
959 		}
960 	}
961 
962 	spin_unlock(&vnode->wb_lock);
963 
964 	while (!list_empty(&graveyard)) {
965 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
966 		list_del(&wbk->vnode_link);
967 		afs_put_wb_key(wbk);
968 	}
969 }
970 
971 /*
972  * Clean up a page during invalidation.
973  */
974 int afs_launder_page(struct page *subpage)
975 {
976 	struct folio *folio = page_folio(subpage);
977 	struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
978 	struct iov_iter iter;
979 	struct bio_vec bv[1];
980 	unsigned long priv;
981 	unsigned int f, t;
982 	int ret = 0;
983 
984 	_enter("{%lx}", folio_index(folio));
985 
986 	priv = (unsigned long)folio_get_private(folio);
987 	if (folio_clear_dirty_for_io(folio)) {
988 		f = 0;
989 		t = folio_size(folio);
990 		if (folio_test_private(folio)) {
991 			f = afs_folio_dirty_from(folio, priv);
992 			t = afs_folio_dirty_to(folio, priv);
993 		}
994 
995 		bv[0].bv_page = &folio->page;
996 		bv[0].bv_offset = f;
997 		bv[0].bv_len = t - f;
998 		iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
999 
1000 		trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio);
1001 		ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true);
1002 	}
1003 
1004 	trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio);
1005 	folio_detach_private(folio);
1006 	folio_wait_fscache(folio);
1007 	return ret;
1008 }
1009 
1010 /*
1011  * Deal with the completion of writing the data to the cache.
1012  */
1013 static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error,
1014 				    bool was_async)
1015 {
1016 	struct afs_vnode *vnode = priv;
1017 
1018 	if (IS_ERR_VALUE(transferred_or_error) &&
1019 	    transferred_or_error != -ENOBUFS)
1020 		afs_invalidate_cache(vnode, 0);
1021 }
1022 
1023 /*
1024  * Save the write to the cache also.
1025  */
1026 static void afs_write_to_cache(struct afs_vnode *vnode,
1027 			       loff_t start, size_t len, loff_t i_size,
1028 			       bool caching)
1029 {
1030 	fscache_write_to_cache(afs_vnode_cache(vnode),
1031 			       vnode->vfs_inode.i_mapping, start, len, i_size,
1032 			       afs_write_to_cache_done, vnode, caching);
1033 }
1034