xref: /openbmc/linux/fs/afs/write.c (revision b737eecd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21 	_enter("");
22 	return __set_page_dirty_nobuffers(page);
23 }
24 
25 /*
26  * partly or wholly fill a page that's under preparation for writing
27  */
28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29 			 loff_t pos, unsigned int len, struct page *page)
30 {
31 	struct afs_read *req;
32 	size_t p;
33 	void *data;
34 	int ret;
35 
36 	_enter(",,%llu", (unsigned long long)pos);
37 
38 	if (pos >= vnode->vfs_inode.i_size) {
39 		p = pos & ~PAGE_MASK;
40 		ASSERTCMP(p + len, <=, PAGE_SIZE);
41 		data = kmap(page);
42 		memset(data + p, 0, len);
43 		kunmap(page);
44 		return 0;
45 	}
46 
47 	req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48 	if (!req)
49 		return -ENOMEM;
50 
51 	refcount_set(&req->usage, 1);
52 	req->pos = pos;
53 	req->len = len;
54 	req->nr_pages = 1;
55 	req->pages = req->array;
56 	req->pages[0] = page;
57 	get_page(page);
58 
59 	ret = afs_fetch_data(vnode, key, req);
60 	afs_put_read(req);
61 	if (ret < 0) {
62 		if (ret == -ENOENT) {
63 			_debug("got NOENT from server"
64 			       " - marking file deleted and stale");
65 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
66 			ret = -ESTALE;
67 		}
68 	}
69 
70 	_leave(" = %d", ret);
71 	return ret;
72 }
73 
74 /*
75  * prepare to perform part of a write to a page
76  */
77 int afs_write_begin(struct file *file, struct address_space *mapping,
78 		    loff_t pos, unsigned len, unsigned flags,
79 		    struct page **_page, void **fsdata)
80 {
81 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82 	struct page *page;
83 	struct key *key = afs_file_key(file);
84 	unsigned long priv;
85 	unsigned f, from = pos & (PAGE_SIZE - 1);
86 	unsigned t, to = from + len;
87 	pgoff_t index = pos >> PAGE_SHIFT;
88 	int ret;
89 
90 	_enter("{%llx:%llu},{%lx},%u,%u",
91 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
92 
93 	page = grab_cache_page_write_begin(mapping, index, flags);
94 	if (!page)
95 		return -ENOMEM;
96 
97 	if (!PageUptodate(page) && len != PAGE_SIZE) {
98 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
99 		if (ret < 0) {
100 			unlock_page(page);
101 			put_page(page);
102 			_leave(" = %d [prep]", ret);
103 			return ret;
104 		}
105 		SetPageUptodate(page);
106 	}
107 
108 try_again:
109 	/* See if this page is already partially written in a way that we can
110 	 * merge the new write with.
111 	 */
112 	t = f = 0;
113 	if (PagePrivate(page)) {
114 		priv = page_private(page);
115 		f = afs_page_dirty_from(priv);
116 		t = afs_page_dirty_to(priv);
117 		ASSERTCMP(f, <=, t);
118 	}
119 
120 	if (f != t) {
121 		if (PageWriteback(page)) {
122 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
123 					     page->index, priv);
124 			goto flush_conflicting_write;
125 		}
126 		/* If the file is being filled locally, allow inter-write
127 		 * spaces to be merged into writes.  If it's not, only write
128 		 * back what the user gives us.
129 		 */
130 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
131 		    (to < f || from > t))
132 			goto flush_conflicting_write;
133 	}
134 
135 	*_page = page;
136 	_leave(" = 0");
137 	return 0;
138 
139 	/* The previous write and this write aren't adjacent or overlapping, so
140 	 * flush the page out.
141 	 */
142 flush_conflicting_write:
143 	_debug("flush conflict");
144 	ret = write_one_page(page);
145 	if (ret < 0)
146 		goto error;
147 
148 	ret = lock_page_killable(page);
149 	if (ret < 0)
150 		goto error;
151 	goto try_again;
152 
153 error:
154 	put_page(page);
155 	_leave(" = %d", ret);
156 	return ret;
157 }
158 
159 /*
160  * finalise part of a write to a page
161  */
162 int afs_write_end(struct file *file, struct address_space *mapping,
163 		  loff_t pos, unsigned len, unsigned copied,
164 		  struct page *page, void *fsdata)
165 {
166 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
167 	struct key *key = afs_file_key(file);
168 	unsigned long priv;
169 	unsigned int f, from = pos & (PAGE_SIZE - 1);
170 	unsigned int t, to = from + copied;
171 	loff_t i_size, maybe_i_size;
172 	int ret = 0;
173 
174 	_enter("{%llx:%llu},{%lx}",
175 	       vnode->fid.vid, vnode->fid.vnode, page->index);
176 
177 	if (copied == 0)
178 		goto out;
179 
180 	maybe_i_size = pos + copied;
181 
182 	i_size = i_size_read(&vnode->vfs_inode);
183 	if (maybe_i_size > i_size) {
184 		write_seqlock(&vnode->cb_lock);
185 		i_size = i_size_read(&vnode->vfs_inode);
186 		if (maybe_i_size > i_size)
187 			i_size_write(&vnode->vfs_inode, maybe_i_size);
188 		write_sequnlock(&vnode->cb_lock);
189 	}
190 
191 	if (!PageUptodate(page)) {
192 		if (copied < len) {
193 			/* Try and load any missing data from the server.  The
194 			 * unmarshalling routine will take care of clearing any
195 			 * bits that are beyond the EOF.
196 			 */
197 			ret = afs_fill_page(vnode, key, pos + copied,
198 					    len - copied, page);
199 			if (ret < 0)
200 				goto out;
201 		}
202 		SetPageUptodate(page);
203 	}
204 
205 	if (PagePrivate(page)) {
206 		priv = page_private(page);
207 		f = afs_page_dirty_from(priv);
208 		t = afs_page_dirty_to(priv);
209 		if (from < f)
210 			f = from;
211 		if (to > t)
212 			t = to;
213 		priv = afs_page_dirty(f, t);
214 		set_page_private(page, priv);
215 		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"),
216 				     page->index, priv);
217 	} else {
218 		priv = afs_page_dirty(from, to);
219 		attach_page_private(page, (void *)priv);
220 		trace_afs_page_dirty(vnode, tracepoint_string("dirty"),
221 				     page->index, priv);
222 	}
223 
224 	set_page_dirty(page);
225 	if (PageDirty(page))
226 		_debug("dirtied");
227 	ret = copied;
228 
229 out:
230 	unlock_page(page);
231 	put_page(page);
232 	return ret;
233 }
234 
235 /*
236  * kill all the pages in the given range
237  */
238 static void afs_kill_pages(struct address_space *mapping,
239 			   pgoff_t first, pgoff_t last)
240 {
241 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
242 	struct pagevec pv;
243 	unsigned count, loop;
244 
245 	_enter("{%llx:%llu},%lx-%lx",
246 	       vnode->fid.vid, vnode->fid.vnode, first, last);
247 
248 	pagevec_init(&pv);
249 
250 	do {
251 		_debug("kill %lx-%lx", first, last);
252 
253 		count = last - first + 1;
254 		if (count > PAGEVEC_SIZE)
255 			count = PAGEVEC_SIZE;
256 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
257 		ASSERTCMP(pv.nr, ==, count);
258 
259 		for (loop = 0; loop < count; loop++) {
260 			struct page *page = pv.pages[loop];
261 			ClearPageUptodate(page);
262 			SetPageError(page);
263 			end_page_writeback(page);
264 			if (page->index >= first)
265 				first = page->index + 1;
266 			lock_page(page);
267 			generic_error_remove_page(mapping, page);
268 			unlock_page(page);
269 		}
270 
271 		__pagevec_release(&pv);
272 	} while (first <= last);
273 
274 	_leave("");
275 }
276 
277 /*
278  * Redirty all the pages in a given range.
279  */
280 static void afs_redirty_pages(struct writeback_control *wbc,
281 			      struct address_space *mapping,
282 			      pgoff_t first, pgoff_t last)
283 {
284 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
285 	struct pagevec pv;
286 	unsigned count, loop;
287 
288 	_enter("{%llx:%llu},%lx-%lx",
289 	       vnode->fid.vid, vnode->fid.vnode, first, last);
290 
291 	pagevec_init(&pv);
292 
293 	do {
294 		_debug("redirty %lx-%lx", first, last);
295 
296 		count = last - first + 1;
297 		if (count > PAGEVEC_SIZE)
298 			count = PAGEVEC_SIZE;
299 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
300 		ASSERTCMP(pv.nr, ==, count);
301 
302 		for (loop = 0; loop < count; loop++) {
303 			struct page *page = pv.pages[loop];
304 
305 			redirty_page_for_writepage(wbc, page);
306 			end_page_writeback(page);
307 			if (page->index >= first)
308 				first = page->index + 1;
309 		}
310 
311 		__pagevec_release(&pv);
312 	} while (first <= last);
313 
314 	_leave("");
315 }
316 
317 /*
318  * completion of write to server
319  */
320 static void afs_pages_written_back(struct afs_vnode *vnode,
321 				   pgoff_t first, pgoff_t last)
322 {
323 	struct pagevec pv;
324 	unsigned long priv;
325 	unsigned count, loop;
326 
327 	_enter("{%llx:%llu},{%lx-%lx}",
328 	       vnode->fid.vid, vnode->fid.vnode, first, last);
329 
330 	pagevec_init(&pv);
331 
332 	do {
333 		_debug("done %lx-%lx", first, last);
334 
335 		count = last - first + 1;
336 		if (count > PAGEVEC_SIZE)
337 			count = PAGEVEC_SIZE;
338 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
339 					      first, count, pv.pages);
340 		ASSERTCMP(pv.nr, ==, count);
341 
342 		for (loop = 0; loop < count; loop++) {
343 			priv = (unsigned long)detach_page_private(pv.pages[loop]);
344 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
345 					     pv.pages[loop]->index, priv);
346 			end_page_writeback(pv.pages[loop]);
347 		}
348 		first += count;
349 		__pagevec_release(&pv);
350 	} while (first <= last);
351 
352 	afs_prune_wb_keys(vnode);
353 	_leave("");
354 }
355 
356 /*
357  * Find a key to use for the writeback.  We cached the keys used to author the
358  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
359  * and we need to start from there if it's set.
360  */
361 static int afs_get_writeback_key(struct afs_vnode *vnode,
362 				 struct afs_wb_key **_wbk)
363 {
364 	struct afs_wb_key *wbk = NULL;
365 	struct list_head *p;
366 	int ret = -ENOKEY, ret2;
367 
368 	spin_lock(&vnode->wb_lock);
369 	if (*_wbk)
370 		p = (*_wbk)->vnode_link.next;
371 	else
372 		p = vnode->wb_keys.next;
373 
374 	while (p != &vnode->wb_keys) {
375 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
376 		_debug("wbk %u", key_serial(wbk->key));
377 		ret2 = key_validate(wbk->key);
378 		if (ret2 == 0) {
379 			refcount_inc(&wbk->usage);
380 			_debug("USE WB KEY %u", key_serial(wbk->key));
381 			break;
382 		}
383 
384 		wbk = NULL;
385 		if (ret == -ENOKEY)
386 			ret = ret2;
387 		p = p->next;
388 	}
389 
390 	spin_unlock(&vnode->wb_lock);
391 	if (*_wbk)
392 		afs_put_wb_key(*_wbk);
393 	*_wbk = wbk;
394 	return 0;
395 }
396 
397 static void afs_store_data_success(struct afs_operation *op)
398 {
399 	struct afs_vnode *vnode = op->file[0].vnode;
400 
401 	op->ctime = op->file[0].scb.status.mtime_client;
402 	afs_vnode_commit_status(op, &op->file[0]);
403 	if (op->error == 0) {
404 		if (!op->store.laundering)
405 			afs_pages_written_back(vnode, op->store.first, op->store.last);
406 		afs_stat_v(vnode, n_stores);
407 		atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
408 				(op->store.first * PAGE_SIZE + op->store.first_offset),
409 				&afs_v2net(vnode)->n_store_bytes);
410 	}
411 }
412 
413 static const struct afs_operation_ops afs_store_data_operation = {
414 	.issue_afs_rpc	= afs_fs_store_data,
415 	.issue_yfs_rpc	= yfs_fs_store_data,
416 	.success	= afs_store_data_success,
417 };
418 
419 /*
420  * write to a file
421  */
422 static int afs_store_data(struct address_space *mapping,
423 			  pgoff_t first, pgoff_t last,
424 			  unsigned offset, unsigned to, bool laundering)
425 {
426 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
427 	struct afs_operation *op;
428 	struct afs_wb_key *wbk = NULL;
429 	int ret;
430 
431 	_enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
432 	       vnode->volume->name,
433 	       vnode->fid.vid,
434 	       vnode->fid.vnode,
435 	       vnode->fid.unique,
436 	       first, last, offset, to);
437 
438 	ret = afs_get_writeback_key(vnode, &wbk);
439 	if (ret) {
440 		_leave(" = %d [no keys]", ret);
441 		return ret;
442 	}
443 
444 	op = afs_alloc_operation(wbk->key, vnode->volume);
445 	if (IS_ERR(op)) {
446 		afs_put_wb_key(wbk);
447 		return -ENOMEM;
448 	}
449 
450 	afs_op_set_vnode(op, 0, vnode);
451 	op->file[0].dv_delta = 1;
452 	op->store.mapping = mapping;
453 	op->store.first = first;
454 	op->store.last = last;
455 	op->store.first_offset = offset;
456 	op->store.last_to = to;
457 	op->store.laundering = laundering;
458 	op->mtime = vnode->vfs_inode.i_mtime;
459 	op->flags |= AFS_OPERATION_UNINTR;
460 	op->ops = &afs_store_data_operation;
461 
462 try_next_key:
463 	afs_begin_vnode_operation(op);
464 	afs_wait_for_operation(op);
465 
466 	switch (op->error) {
467 	case -EACCES:
468 	case -EPERM:
469 	case -ENOKEY:
470 	case -EKEYEXPIRED:
471 	case -EKEYREJECTED:
472 	case -EKEYREVOKED:
473 		_debug("next");
474 
475 		ret = afs_get_writeback_key(vnode, &wbk);
476 		if (ret == 0) {
477 			key_put(op->key);
478 			op->key = key_get(wbk->key);
479 			goto try_next_key;
480 		}
481 		break;
482 	}
483 
484 	afs_put_wb_key(wbk);
485 	_leave(" = %d", op->error);
486 	return afs_put_operation(op);
487 }
488 
489 /*
490  * Synchronously write back the locked page and any subsequent non-locked dirty
491  * pages.
492  */
493 static int afs_write_back_from_locked_page(struct address_space *mapping,
494 					   struct writeback_control *wbc,
495 					   struct page *primary_page,
496 					   pgoff_t final_page)
497 {
498 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
499 	struct page *pages[8], *page;
500 	unsigned long count, priv;
501 	unsigned n, offset, to, f, t;
502 	pgoff_t start, first, last;
503 	loff_t i_size, end;
504 	int loop, ret;
505 
506 	_enter(",%lx", primary_page->index);
507 
508 	count = 1;
509 	if (test_set_page_writeback(primary_page))
510 		BUG();
511 
512 	/* Find all consecutive lockable dirty pages that have contiguous
513 	 * written regions, stopping when we find a page that is not
514 	 * immediately lockable, is not dirty or is missing, or we reach the
515 	 * end of the range.
516 	 */
517 	start = primary_page->index;
518 	priv = page_private(primary_page);
519 	offset = afs_page_dirty_from(priv);
520 	to = afs_page_dirty_to(priv);
521 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
522 			     primary_page->index, priv);
523 
524 	WARN_ON(offset == to);
525 	if (offset == to)
526 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
527 				     primary_page->index, priv);
528 
529 	if (start >= final_page ||
530 	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
531 		goto no_more;
532 
533 	start++;
534 	do {
535 		_debug("more %lx [%lx]", start, count);
536 		n = final_page - start + 1;
537 		if (n > ARRAY_SIZE(pages))
538 			n = ARRAY_SIZE(pages);
539 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
540 		_debug("fgpc %u", n);
541 		if (n == 0)
542 			goto no_more;
543 		if (pages[0]->index != start) {
544 			do {
545 				put_page(pages[--n]);
546 			} while (n > 0);
547 			goto no_more;
548 		}
549 
550 		for (loop = 0; loop < n; loop++) {
551 			page = pages[loop];
552 			if (to != PAGE_SIZE &&
553 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
554 				break;
555 			if (page->index > final_page)
556 				break;
557 			if (!trylock_page(page))
558 				break;
559 			if (!PageDirty(page) || PageWriteback(page)) {
560 				unlock_page(page);
561 				break;
562 			}
563 
564 			priv = page_private(page);
565 			f = afs_page_dirty_from(priv);
566 			t = afs_page_dirty_to(priv);
567 			if (f != 0 &&
568 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
569 				unlock_page(page);
570 				break;
571 			}
572 			to = t;
573 
574 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
575 					     page->index, priv);
576 
577 			if (!clear_page_dirty_for_io(page))
578 				BUG();
579 			if (test_set_page_writeback(page))
580 				BUG();
581 			unlock_page(page);
582 			put_page(page);
583 		}
584 		count += loop;
585 		if (loop < n) {
586 			for (; loop < n; loop++)
587 				put_page(pages[loop]);
588 			goto no_more;
589 		}
590 
591 		start += loop;
592 	} while (start <= final_page && count < 65536);
593 
594 no_more:
595 	/* We now have a contiguous set of dirty pages, each with writeback
596 	 * set; the first page is still locked at this point, but all the rest
597 	 * have been unlocked.
598 	 */
599 	unlock_page(primary_page);
600 
601 	first = primary_page->index;
602 	last = first + count - 1;
603 
604 	end = (loff_t)last * PAGE_SIZE + to;
605 	i_size = i_size_read(&vnode->vfs_inode);
606 
607 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
608 	if (end > i_size)
609 		to = i_size & ~PAGE_MASK;
610 
611 	ret = afs_store_data(mapping, first, last, offset, to, false);
612 	switch (ret) {
613 	case 0:
614 		ret = count;
615 		break;
616 
617 	default:
618 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
619 		fallthrough;
620 	case -EACCES:
621 	case -EPERM:
622 	case -ENOKEY:
623 	case -EKEYEXPIRED:
624 	case -EKEYREJECTED:
625 	case -EKEYREVOKED:
626 		afs_redirty_pages(wbc, mapping, first, last);
627 		mapping_set_error(mapping, ret);
628 		break;
629 
630 	case -EDQUOT:
631 	case -ENOSPC:
632 		afs_redirty_pages(wbc, mapping, first, last);
633 		mapping_set_error(mapping, -ENOSPC);
634 		break;
635 
636 	case -EROFS:
637 	case -EIO:
638 	case -EREMOTEIO:
639 	case -EFBIG:
640 	case -ENOENT:
641 	case -ENOMEDIUM:
642 	case -ENXIO:
643 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
644 		afs_kill_pages(mapping, first, last);
645 		mapping_set_error(mapping, ret);
646 		break;
647 	}
648 
649 	_leave(" = %d", ret);
650 	return ret;
651 }
652 
653 /*
654  * write a page back to the server
655  * - the caller locked the page for us
656  */
657 int afs_writepage(struct page *page, struct writeback_control *wbc)
658 {
659 	int ret;
660 
661 	_enter("{%lx},", page->index);
662 
663 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
664 					      wbc->range_end >> PAGE_SHIFT);
665 	if (ret < 0) {
666 		_leave(" = %d", ret);
667 		return 0;
668 	}
669 
670 	wbc->nr_to_write -= ret;
671 
672 	_leave(" = 0");
673 	return 0;
674 }
675 
676 /*
677  * write a region of pages back to the server
678  */
679 static int afs_writepages_region(struct address_space *mapping,
680 				 struct writeback_control *wbc,
681 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
682 {
683 	struct page *page;
684 	int ret, n;
685 
686 	_enter(",,%lx,%lx,", index, end);
687 
688 	do {
689 		n = find_get_pages_range_tag(mapping, &index, end,
690 					PAGECACHE_TAG_DIRTY, 1, &page);
691 		if (!n)
692 			break;
693 
694 		_debug("wback %lx", page->index);
695 
696 		/*
697 		 * at this point we hold neither the i_pages lock nor the
698 		 * page lock: the page may be truncated or invalidated
699 		 * (changing page->mapping to NULL), or even swizzled
700 		 * back from swapper_space to tmpfs file mapping
701 		 */
702 		ret = lock_page_killable(page);
703 		if (ret < 0) {
704 			put_page(page);
705 			_leave(" = %d", ret);
706 			return ret;
707 		}
708 
709 		if (page->mapping != mapping || !PageDirty(page)) {
710 			unlock_page(page);
711 			put_page(page);
712 			continue;
713 		}
714 
715 		if (PageWriteback(page)) {
716 			unlock_page(page);
717 			if (wbc->sync_mode != WB_SYNC_NONE)
718 				wait_on_page_writeback(page);
719 			put_page(page);
720 			continue;
721 		}
722 
723 		if (!clear_page_dirty_for_io(page))
724 			BUG();
725 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
726 		put_page(page);
727 		if (ret < 0) {
728 			_leave(" = %d", ret);
729 			return ret;
730 		}
731 
732 		wbc->nr_to_write -= ret;
733 
734 		cond_resched();
735 	} while (index < end && wbc->nr_to_write > 0);
736 
737 	*_next = index;
738 	_leave(" = 0 [%lx]", *_next);
739 	return 0;
740 }
741 
742 /*
743  * write some of the pending data back to the server
744  */
745 int afs_writepages(struct address_space *mapping,
746 		   struct writeback_control *wbc)
747 {
748 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
749 	pgoff_t start, end, next;
750 	int ret;
751 
752 	_enter("");
753 
754 	/* We have to be careful as we can end up racing with setattr()
755 	 * truncating the pagecache since the caller doesn't take a lock here
756 	 * to prevent it.
757 	 */
758 	if (wbc->sync_mode == WB_SYNC_ALL)
759 		down_read(&vnode->validate_lock);
760 	else if (!down_read_trylock(&vnode->validate_lock))
761 		return 0;
762 
763 	if (wbc->range_cyclic) {
764 		start = mapping->writeback_index;
765 		end = -1;
766 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
767 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
768 			ret = afs_writepages_region(mapping, wbc, 0, start,
769 						    &next);
770 		mapping->writeback_index = next;
771 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
772 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
773 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
774 		if (wbc->nr_to_write > 0)
775 			mapping->writeback_index = next;
776 	} else {
777 		start = wbc->range_start >> PAGE_SHIFT;
778 		end = wbc->range_end >> PAGE_SHIFT;
779 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
780 	}
781 
782 	up_read(&vnode->validate_lock);
783 	_leave(" = %d", ret);
784 	return ret;
785 }
786 
787 /*
788  * write to an AFS file
789  */
790 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
791 {
792 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
793 	ssize_t result;
794 	size_t count = iov_iter_count(from);
795 
796 	_enter("{%llx:%llu},{%zu},",
797 	       vnode->fid.vid, vnode->fid.vnode, count);
798 
799 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
800 		printk(KERN_INFO
801 		       "AFS: Attempt to write to active swap file!\n");
802 		return -EBUSY;
803 	}
804 
805 	if (!count)
806 		return 0;
807 
808 	result = generic_file_write_iter(iocb, from);
809 
810 	_leave(" = %zd", result);
811 	return result;
812 }
813 
814 /*
815  * flush any dirty pages for this process, and check for write errors.
816  * - the return status from this call provides a reliable indication of
817  *   whether any write errors occurred for this process.
818  */
819 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
820 {
821 	struct inode *inode = file_inode(file);
822 	struct afs_vnode *vnode = AFS_FS_I(inode);
823 
824 	_enter("{%llx:%llu},{n=%pD},%d",
825 	       vnode->fid.vid, vnode->fid.vnode, file,
826 	       datasync);
827 
828 	return file_write_and_wait_range(file, start, end);
829 }
830 
831 /*
832  * notification that a previously read-only page is about to become writable
833  * - if it returns an error, the caller will deliver a bus error signal
834  */
835 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
836 {
837 	struct file *file = vmf->vma->vm_file;
838 	struct inode *inode = file_inode(file);
839 	struct afs_vnode *vnode = AFS_FS_I(inode);
840 	unsigned long priv;
841 
842 	_enter("{{%llx:%llu}},{%lx}",
843 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
844 
845 	sb_start_pagefault(inode->i_sb);
846 
847 	/* Wait for the page to be written to the cache before we allow it to
848 	 * be modified.  We then assume the entire page will need writing back.
849 	 */
850 #ifdef CONFIG_AFS_FSCACHE
851 	fscache_wait_on_page_write(vnode->cache, vmf->page);
852 #endif
853 
854 	if (PageWriteback(vmf->page) &&
855 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
856 		return VM_FAULT_RETRY;
857 
858 	if (lock_page_killable(vmf->page) < 0)
859 		return VM_FAULT_RETRY;
860 
861 	/* We mustn't change page->private until writeback is complete as that
862 	 * details the portion of the page we need to write back and we might
863 	 * need to redirty the page if there's a problem.
864 	 */
865 	wait_on_page_writeback(vmf->page);
866 
867 	priv = afs_page_dirty(0, PAGE_SIZE);
868 	priv = afs_page_dirty_mmapped(priv);
869 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
870 			     vmf->page->index, priv);
871 	if (PagePrivate(vmf->page))
872 		set_page_private(vmf->page, priv);
873 	else
874 		attach_page_private(vmf->page, (void *)priv);
875 	file_update_time(file);
876 
877 	sb_end_pagefault(inode->i_sb);
878 	return VM_FAULT_LOCKED;
879 }
880 
881 /*
882  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
883  */
884 void afs_prune_wb_keys(struct afs_vnode *vnode)
885 {
886 	LIST_HEAD(graveyard);
887 	struct afs_wb_key *wbk, *tmp;
888 
889 	/* Discard unused keys */
890 	spin_lock(&vnode->wb_lock);
891 
892 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
893 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
894 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
895 			if (refcount_read(&wbk->usage) == 1)
896 				list_move(&wbk->vnode_link, &graveyard);
897 		}
898 	}
899 
900 	spin_unlock(&vnode->wb_lock);
901 
902 	while (!list_empty(&graveyard)) {
903 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
904 		list_del(&wbk->vnode_link);
905 		afs_put_wb_key(wbk);
906 	}
907 }
908 
909 /*
910  * Clean up a page during invalidation.
911  */
912 int afs_launder_page(struct page *page)
913 {
914 	struct address_space *mapping = page->mapping;
915 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
916 	unsigned long priv;
917 	unsigned int f, t;
918 	int ret = 0;
919 
920 	_enter("{%lx}", page->index);
921 
922 	priv = page_private(page);
923 	if (clear_page_dirty_for_io(page)) {
924 		f = 0;
925 		t = PAGE_SIZE;
926 		if (PagePrivate(page)) {
927 			f = afs_page_dirty_from(priv);
928 			t = afs_page_dirty_to(priv);
929 		}
930 
931 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
932 				     page->index, priv);
933 		ret = afs_store_data(mapping, page->index, page->index, t, f, true);
934 	}
935 
936 	priv = (unsigned long)detach_page_private(page);
937 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
938 			     page->index, priv);
939 
940 #ifdef CONFIG_AFS_FSCACHE
941 	if (PageFsCache(page)) {
942 		fscache_wait_on_page_write(vnode->cache, page);
943 		fscache_uncache_page(vnode->cache, page);
944 	}
945 #endif
946 	return ret;
947 }
948