1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* handling of writes to regular files and writing back to the server 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/backing-dev.h> 9 #include <linux/slab.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include "internal.h" 15 16 /* 17 * mark a page as having been made dirty and thus needing writeback 18 */ 19 int afs_set_page_dirty(struct page *page) 20 { 21 _enter(""); 22 return __set_page_dirty_nobuffers(page); 23 } 24 25 /* 26 * partly or wholly fill a page that's under preparation for writing 27 */ 28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key, 29 loff_t pos, unsigned int len, struct page *page) 30 { 31 struct afs_read *req; 32 size_t p; 33 void *data; 34 int ret; 35 36 _enter(",,%llu", (unsigned long long)pos); 37 38 if (pos >= vnode->vfs_inode.i_size) { 39 p = pos & ~PAGE_MASK; 40 ASSERTCMP(p + len, <=, PAGE_SIZE); 41 data = kmap(page); 42 memset(data + p, 0, len); 43 kunmap(page); 44 return 0; 45 } 46 47 req = kzalloc(struct_size(req, array, 1), GFP_KERNEL); 48 if (!req) 49 return -ENOMEM; 50 51 refcount_set(&req->usage, 1); 52 req->pos = pos; 53 req->len = len; 54 req->nr_pages = 1; 55 req->pages = req->array; 56 req->pages[0] = page; 57 get_page(page); 58 59 ret = afs_fetch_data(vnode, key, req); 60 afs_put_read(req); 61 if (ret < 0) { 62 if (ret == -ENOENT) { 63 _debug("got NOENT from server" 64 " - marking file deleted and stale"); 65 set_bit(AFS_VNODE_DELETED, &vnode->flags); 66 ret = -ESTALE; 67 } 68 } 69 70 _leave(" = %d", ret); 71 return ret; 72 } 73 74 /* 75 * prepare to perform part of a write to a page 76 */ 77 int afs_write_begin(struct file *file, struct address_space *mapping, 78 loff_t pos, unsigned len, unsigned flags, 79 struct page **pagep, void **fsdata) 80 { 81 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 82 struct page *page; 83 struct key *key = afs_file_key(file); 84 unsigned long priv; 85 unsigned f, from = pos & (PAGE_SIZE - 1); 86 unsigned t, to = from + len; 87 pgoff_t index = pos >> PAGE_SHIFT; 88 int ret; 89 90 _enter("{%llx:%llu},{%lx},%u,%u", 91 vnode->fid.vid, vnode->fid.vnode, index, from, to); 92 93 /* We want to store information about how much of a page is altered in 94 * page->private. 95 */ 96 BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8); 97 98 page = grab_cache_page_write_begin(mapping, index, flags); 99 if (!page) 100 return -ENOMEM; 101 102 if (!PageUptodate(page) && len != PAGE_SIZE) { 103 ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page); 104 if (ret < 0) { 105 unlock_page(page); 106 put_page(page); 107 _leave(" = %d [prep]", ret); 108 return ret; 109 } 110 SetPageUptodate(page); 111 } 112 113 /* page won't leak in error case: it eventually gets cleaned off LRU */ 114 *pagep = page; 115 116 try_again: 117 /* See if this page is already partially written in a way that we can 118 * merge the new write with. 119 */ 120 t = f = 0; 121 if (PagePrivate(page)) { 122 priv = page_private(page); 123 f = priv & AFS_PRIV_MAX; 124 t = priv >> AFS_PRIV_SHIFT; 125 ASSERTCMP(f, <=, t); 126 } 127 128 if (f != t) { 129 if (PageWriteback(page)) { 130 trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), 131 page->index, priv); 132 goto flush_conflicting_write; 133 } 134 /* If the file is being filled locally, allow inter-write 135 * spaces to be merged into writes. If it's not, only write 136 * back what the user gives us. 137 */ 138 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) && 139 (to < f || from > t)) 140 goto flush_conflicting_write; 141 if (from < f) 142 f = from; 143 if (to > t) 144 t = to; 145 } else { 146 f = from; 147 t = to; 148 } 149 150 priv = (unsigned long)t << AFS_PRIV_SHIFT; 151 priv |= f; 152 trace_afs_page_dirty(vnode, tracepoint_string("begin"), 153 page->index, priv); 154 SetPagePrivate(page); 155 set_page_private(page, priv); 156 _leave(" = 0"); 157 return 0; 158 159 /* The previous write and this write aren't adjacent or overlapping, so 160 * flush the page out. 161 */ 162 flush_conflicting_write: 163 _debug("flush conflict"); 164 ret = write_one_page(page); 165 if (ret < 0) { 166 _leave(" = %d", ret); 167 return ret; 168 } 169 170 ret = lock_page_killable(page); 171 if (ret < 0) { 172 _leave(" = %d", ret); 173 return ret; 174 } 175 goto try_again; 176 } 177 178 /* 179 * finalise part of a write to a page 180 */ 181 int afs_write_end(struct file *file, struct address_space *mapping, 182 loff_t pos, unsigned len, unsigned copied, 183 struct page *page, void *fsdata) 184 { 185 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 186 struct key *key = afs_file_key(file); 187 loff_t i_size, maybe_i_size; 188 int ret; 189 190 _enter("{%llx:%llu},{%lx}", 191 vnode->fid.vid, vnode->fid.vnode, page->index); 192 193 maybe_i_size = pos + copied; 194 195 i_size = i_size_read(&vnode->vfs_inode); 196 if (maybe_i_size > i_size) { 197 spin_lock(&vnode->wb_lock); 198 i_size = i_size_read(&vnode->vfs_inode); 199 if (maybe_i_size > i_size) 200 i_size_write(&vnode->vfs_inode, maybe_i_size); 201 spin_unlock(&vnode->wb_lock); 202 } 203 204 if (!PageUptodate(page)) { 205 if (copied < len) { 206 /* Try and load any missing data from the server. The 207 * unmarshalling routine will take care of clearing any 208 * bits that are beyond the EOF. 209 */ 210 ret = afs_fill_page(vnode, key, pos + copied, 211 len - copied, page); 212 if (ret < 0) 213 goto out; 214 } 215 SetPageUptodate(page); 216 } 217 218 set_page_dirty(page); 219 if (PageDirty(page)) 220 _debug("dirtied"); 221 ret = copied; 222 223 out: 224 unlock_page(page); 225 put_page(page); 226 return ret; 227 } 228 229 /* 230 * kill all the pages in the given range 231 */ 232 static void afs_kill_pages(struct address_space *mapping, 233 pgoff_t first, pgoff_t last) 234 { 235 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 236 struct pagevec pv; 237 unsigned count, loop; 238 239 _enter("{%llx:%llu},%lx-%lx", 240 vnode->fid.vid, vnode->fid.vnode, first, last); 241 242 pagevec_init(&pv); 243 244 do { 245 _debug("kill %lx-%lx", first, last); 246 247 count = last - first + 1; 248 if (count > PAGEVEC_SIZE) 249 count = PAGEVEC_SIZE; 250 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages); 251 ASSERTCMP(pv.nr, ==, count); 252 253 for (loop = 0; loop < count; loop++) { 254 struct page *page = pv.pages[loop]; 255 ClearPageUptodate(page); 256 SetPageError(page); 257 end_page_writeback(page); 258 if (page->index >= first) 259 first = page->index + 1; 260 lock_page(page); 261 generic_error_remove_page(mapping, page); 262 unlock_page(page); 263 } 264 265 __pagevec_release(&pv); 266 } while (first <= last); 267 268 _leave(""); 269 } 270 271 /* 272 * Redirty all the pages in a given range. 273 */ 274 static void afs_redirty_pages(struct writeback_control *wbc, 275 struct address_space *mapping, 276 pgoff_t first, pgoff_t last) 277 { 278 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 279 struct pagevec pv; 280 unsigned count, loop; 281 282 _enter("{%llx:%llu},%lx-%lx", 283 vnode->fid.vid, vnode->fid.vnode, first, last); 284 285 pagevec_init(&pv); 286 287 do { 288 _debug("redirty %lx-%lx", first, last); 289 290 count = last - first + 1; 291 if (count > PAGEVEC_SIZE) 292 count = PAGEVEC_SIZE; 293 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages); 294 ASSERTCMP(pv.nr, ==, count); 295 296 for (loop = 0; loop < count; loop++) { 297 struct page *page = pv.pages[loop]; 298 299 redirty_page_for_writepage(wbc, page); 300 end_page_writeback(page); 301 if (page->index >= first) 302 first = page->index + 1; 303 } 304 305 __pagevec_release(&pv); 306 } while (first <= last); 307 308 _leave(""); 309 } 310 311 /* 312 * completion of write to server 313 */ 314 static void afs_pages_written_back(struct afs_vnode *vnode, 315 pgoff_t first, pgoff_t last) 316 { 317 struct pagevec pv; 318 unsigned long priv; 319 unsigned count, loop; 320 321 _enter("{%llx:%llu},{%lx-%lx}", 322 vnode->fid.vid, vnode->fid.vnode, first, last); 323 324 pagevec_init(&pv); 325 326 do { 327 _debug("done %lx-%lx", first, last); 328 329 count = last - first + 1; 330 if (count > PAGEVEC_SIZE) 331 count = PAGEVEC_SIZE; 332 pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping, 333 first, count, pv.pages); 334 ASSERTCMP(pv.nr, ==, count); 335 336 for (loop = 0; loop < count; loop++) { 337 priv = page_private(pv.pages[loop]); 338 trace_afs_page_dirty(vnode, tracepoint_string("clear"), 339 pv.pages[loop]->index, priv); 340 set_page_private(pv.pages[loop], 0); 341 end_page_writeback(pv.pages[loop]); 342 } 343 first += count; 344 __pagevec_release(&pv); 345 } while (first <= last); 346 347 afs_prune_wb_keys(vnode); 348 _leave(""); 349 } 350 351 /* 352 * Find a key to use for the writeback. We cached the keys used to author the 353 * writes on the vnode. *_wbk will contain the last writeback key used or NULL 354 * and we need to start from there if it's set. 355 */ 356 static int afs_get_writeback_key(struct afs_vnode *vnode, 357 struct afs_wb_key **_wbk) 358 { 359 struct afs_wb_key *wbk = NULL; 360 struct list_head *p; 361 int ret = -ENOKEY, ret2; 362 363 spin_lock(&vnode->wb_lock); 364 if (*_wbk) 365 p = (*_wbk)->vnode_link.next; 366 else 367 p = vnode->wb_keys.next; 368 369 while (p != &vnode->wb_keys) { 370 wbk = list_entry(p, struct afs_wb_key, vnode_link); 371 _debug("wbk %u", key_serial(wbk->key)); 372 ret2 = key_validate(wbk->key); 373 if (ret2 == 0) { 374 refcount_inc(&wbk->usage); 375 _debug("USE WB KEY %u", key_serial(wbk->key)); 376 break; 377 } 378 379 wbk = NULL; 380 if (ret == -ENOKEY) 381 ret = ret2; 382 p = p->next; 383 } 384 385 spin_unlock(&vnode->wb_lock); 386 if (*_wbk) 387 afs_put_wb_key(*_wbk); 388 *_wbk = wbk; 389 return 0; 390 } 391 392 static void afs_store_data_success(struct afs_operation *op) 393 { 394 struct afs_vnode *vnode = op->file[0].vnode; 395 396 afs_vnode_commit_status(op, &op->file[0]); 397 if (op->error == 0) { 398 afs_pages_written_back(vnode, op->store.first, op->store.last); 399 afs_stat_v(vnode, n_stores); 400 atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) - 401 (op->store.first * PAGE_SIZE + op->store.first_offset), 402 &afs_v2net(vnode)->n_store_bytes); 403 } 404 } 405 406 static const struct afs_operation_ops afs_store_data_operation = { 407 .issue_afs_rpc = afs_fs_store_data, 408 .issue_yfs_rpc = yfs_fs_store_data, 409 .success = afs_store_data_success, 410 }; 411 412 /* 413 * write to a file 414 */ 415 static int afs_store_data(struct address_space *mapping, 416 pgoff_t first, pgoff_t last, 417 unsigned offset, unsigned to) 418 { 419 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 420 struct afs_operation *op; 421 struct afs_wb_key *wbk = NULL; 422 int ret; 423 424 _enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x", 425 vnode->volume->name, 426 vnode->fid.vid, 427 vnode->fid.vnode, 428 vnode->fid.unique, 429 first, last, offset, to); 430 431 ret = afs_get_writeback_key(vnode, &wbk); 432 if (ret) { 433 _leave(" = %d [no keys]", ret); 434 return ret; 435 } 436 437 op = afs_alloc_operation(wbk->key, vnode->volume); 438 if (IS_ERR(op)) { 439 afs_put_wb_key(wbk); 440 return -ENOMEM; 441 } 442 443 afs_op_set_vnode(op, 0, vnode); 444 op->file[0].dv_delta = 1; 445 op->store.mapping = mapping; 446 op->store.first = first; 447 op->store.last = last; 448 op->store.first_offset = offset; 449 op->store.last_to = to; 450 op->mtime = vnode->vfs_inode.i_mtime; 451 op->ops = &afs_store_data_operation; 452 453 try_next_key: 454 afs_begin_vnode_operation(op); 455 afs_wait_for_operation(op); 456 457 switch (op->error) { 458 case -EACCES: 459 case -EPERM: 460 case -ENOKEY: 461 case -EKEYEXPIRED: 462 case -EKEYREJECTED: 463 case -EKEYREVOKED: 464 _debug("next"); 465 466 ret = afs_get_writeback_key(vnode, &wbk); 467 if (ret == 0) { 468 key_put(op->key); 469 op->key = key_get(wbk->key); 470 goto try_next_key; 471 } 472 break; 473 } 474 475 afs_put_wb_key(wbk); 476 _leave(" = %d", op->error); 477 return afs_put_operation(op); 478 } 479 480 /* 481 * Synchronously write back the locked page and any subsequent non-locked dirty 482 * pages. 483 */ 484 static int afs_write_back_from_locked_page(struct address_space *mapping, 485 struct writeback_control *wbc, 486 struct page *primary_page, 487 pgoff_t final_page) 488 { 489 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 490 struct page *pages[8], *page; 491 unsigned long count, priv; 492 unsigned n, offset, to, f, t; 493 pgoff_t start, first, last; 494 int loop, ret; 495 496 _enter(",%lx", primary_page->index); 497 498 count = 1; 499 if (test_set_page_writeback(primary_page)) 500 BUG(); 501 502 /* Find all consecutive lockable dirty pages that have contiguous 503 * written regions, stopping when we find a page that is not 504 * immediately lockable, is not dirty or is missing, or we reach the 505 * end of the range. 506 */ 507 start = primary_page->index; 508 priv = page_private(primary_page); 509 offset = priv & AFS_PRIV_MAX; 510 to = priv >> AFS_PRIV_SHIFT; 511 trace_afs_page_dirty(vnode, tracepoint_string("store"), 512 primary_page->index, priv); 513 514 WARN_ON(offset == to); 515 if (offset == to) 516 trace_afs_page_dirty(vnode, tracepoint_string("WARN"), 517 primary_page->index, priv); 518 519 if (start >= final_page || 520 (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))) 521 goto no_more; 522 523 start++; 524 do { 525 _debug("more %lx [%lx]", start, count); 526 n = final_page - start + 1; 527 if (n > ARRAY_SIZE(pages)) 528 n = ARRAY_SIZE(pages); 529 n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages); 530 _debug("fgpc %u", n); 531 if (n == 0) 532 goto no_more; 533 if (pages[0]->index != start) { 534 do { 535 put_page(pages[--n]); 536 } while (n > 0); 537 goto no_more; 538 } 539 540 for (loop = 0; loop < n; loop++) { 541 page = pages[loop]; 542 if (to != PAGE_SIZE && 543 !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) 544 break; 545 if (page->index > final_page) 546 break; 547 if (!trylock_page(page)) 548 break; 549 if (!PageDirty(page) || PageWriteback(page)) { 550 unlock_page(page); 551 break; 552 } 553 554 priv = page_private(page); 555 f = priv & AFS_PRIV_MAX; 556 t = priv >> AFS_PRIV_SHIFT; 557 if (f != 0 && 558 !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) { 559 unlock_page(page); 560 break; 561 } 562 to = t; 563 564 trace_afs_page_dirty(vnode, tracepoint_string("store+"), 565 page->index, priv); 566 567 if (!clear_page_dirty_for_io(page)) 568 BUG(); 569 if (test_set_page_writeback(page)) 570 BUG(); 571 unlock_page(page); 572 put_page(page); 573 } 574 count += loop; 575 if (loop < n) { 576 for (; loop < n; loop++) 577 put_page(pages[loop]); 578 goto no_more; 579 } 580 581 start += loop; 582 } while (start <= final_page && count < 65536); 583 584 no_more: 585 /* We now have a contiguous set of dirty pages, each with writeback 586 * set; the first page is still locked at this point, but all the rest 587 * have been unlocked. 588 */ 589 unlock_page(primary_page); 590 591 first = primary_page->index; 592 last = first + count - 1; 593 594 _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to); 595 596 ret = afs_store_data(mapping, first, last, offset, to); 597 switch (ret) { 598 case 0: 599 ret = count; 600 break; 601 602 default: 603 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret); 604 /* Fall through */ 605 case -EACCES: 606 case -EPERM: 607 case -ENOKEY: 608 case -EKEYEXPIRED: 609 case -EKEYREJECTED: 610 case -EKEYREVOKED: 611 afs_redirty_pages(wbc, mapping, first, last); 612 mapping_set_error(mapping, ret); 613 break; 614 615 case -EDQUOT: 616 case -ENOSPC: 617 afs_redirty_pages(wbc, mapping, first, last); 618 mapping_set_error(mapping, -ENOSPC); 619 break; 620 621 case -EROFS: 622 case -EIO: 623 case -EREMOTEIO: 624 case -EFBIG: 625 case -ENOENT: 626 case -ENOMEDIUM: 627 case -ENXIO: 628 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail); 629 afs_kill_pages(mapping, first, last); 630 mapping_set_error(mapping, ret); 631 break; 632 } 633 634 _leave(" = %d", ret); 635 return ret; 636 } 637 638 /* 639 * write a page back to the server 640 * - the caller locked the page for us 641 */ 642 int afs_writepage(struct page *page, struct writeback_control *wbc) 643 { 644 int ret; 645 646 _enter("{%lx},", page->index); 647 648 ret = afs_write_back_from_locked_page(page->mapping, wbc, page, 649 wbc->range_end >> PAGE_SHIFT); 650 if (ret < 0) { 651 _leave(" = %d", ret); 652 return 0; 653 } 654 655 wbc->nr_to_write -= ret; 656 657 _leave(" = 0"); 658 return 0; 659 } 660 661 /* 662 * write a region of pages back to the server 663 */ 664 static int afs_writepages_region(struct address_space *mapping, 665 struct writeback_control *wbc, 666 pgoff_t index, pgoff_t end, pgoff_t *_next) 667 { 668 struct page *page; 669 int ret, n; 670 671 _enter(",,%lx,%lx,", index, end); 672 673 do { 674 n = find_get_pages_range_tag(mapping, &index, end, 675 PAGECACHE_TAG_DIRTY, 1, &page); 676 if (!n) 677 break; 678 679 _debug("wback %lx", page->index); 680 681 /* 682 * at this point we hold neither the i_pages lock nor the 683 * page lock: the page may be truncated or invalidated 684 * (changing page->mapping to NULL), or even swizzled 685 * back from swapper_space to tmpfs file mapping 686 */ 687 ret = lock_page_killable(page); 688 if (ret < 0) { 689 put_page(page); 690 _leave(" = %d", ret); 691 return ret; 692 } 693 694 if (page->mapping != mapping || !PageDirty(page)) { 695 unlock_page(page); 696 put_page(page); 697 continue; 698 } 699 700 if (PageWriteback(page)) { 701 unlock_page(page); 702 if (wbc->sync_mode != WB_SYNC_NONE) 703 wait_on_page_writeback(page); 704 put_page(page); 705 continue; 706 } 707 708 if (!clear_page_dirty_for_io(page)) 709 BUG(); 710 ret = afs_write_back_from_locked_page(mapping, wbc, page, end); 711 put_page(page); 712 if (ret < 0) { 713 _leave(" = %d", ret); 714 return ret; 715 } 716 717 wbc->nr_to_write -= ret; 718 719 cond_resched(); 720 } while (index < end && wbc->nr_to_write > 0); 721 722 *_next = index; 723 _leave(" = 0 [%lx]", *_next); 724 return 0; 725 } 726 727 /* 728 * write some of the pending data back to the server 729 */ 730 int afs_writepages(struct address_space *mapping, 731 struct writeback_control *wbc) 732 { 733 pgoff_t start, end, next; 734 int ret; 735 736 _enter(""); 737 738 if (wbc->range_cyclic) { 739 start = mapping->writeback_index; 740 end = -1; 741 ret = afs_writepages_region(mapping, wbc, start, end, &next); 742 if (start > 0 && wbc->nr_to_write > 0 && ret == 0) 743 ret = afs_writepages_region(mapping, wbc, 0, start, 744 &next); 745 mapping->writeback_index = next; 746 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { 747 end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT); 748 ret = afs_writepages_region(mapping, wbc, 0, end, &next); 749 if (wbc->nr_to_write > 0) 750 mapping->writeback_index = next; 751 } else { 752 start = wbc->range_start >> PAGE_SHIFT; 753 end = wbc->range_end >> PAGE_SHIFT; 754 ret = afs_writepages_region(mapping, wbc, start, end, &next); 755 } 756 757 _leave(" = %d", ret); 758 return ret; 759 } 760 761 /* 762 * write to an AFS file 763 */ 764 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from) 765 { 766 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); 767 ssize_t result; 768 size_t count = iov_iter_count(from); 769 770 _enter("{%llx:%llu},{%zu},", 771 vnode->fid.vid, vnode->fid.vnode, count); 772 773 if (IS_SWAPFILE(&vnode->vfs_inode)) { 774 printk(KERN_INFO 775 "AFS: Attempt to write to active swap file!\n"); 776 return -EBUSY; 777 } 778 779 if (!count) 780 return 0; 781 782 result = generic_file_write_iter(iocb, from); 783 784 _leave(" = %zd", result); 785 return result; 786 } 787 788 /* 789 * flush any dirty pages for this process, and check for write errors. 790 * - the return status from this call provides a reliable indication of 791 * whether any write errors occurred for this process. 792 */ 793 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 794 { 795 struct inode *inode = file_inode(file); 796 struct afs_vnode *vnode = AFS_FS_I(inode); 797 798 _enter("{%llx:%llu},{n=%pD},%d", 799 vnode->fid.vid, vnode->fid.vnode, file, 800 datasync); 801 802 return file_write_and_wait_range(file, start, end); 803 } 804 805 /* 806 * notification that a previously read-only page is about to become writable 807 * - if it returns an error, the caller will deliver a bus error signal 808 */ 809 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf) 810 { 811 struct file *file = vmf->vma->vm_file; 812 struct inode *inode = file_inode(file); 813 struct afs_vnode *vnode = AFS_FS_I(inode); 814 unsigned long priv; 815 816 _enter("{{%llx:%llu}},{%lx}", 817 vnode->fid.vid, vnode->fid.vnode, vmf->page->index); 818 819 sb_start_pagefault(inode->i_sb); 820 821 /* Wait for the page to be written to the cache before we allow it to 822 * be modified. We then assume the entire page will need writing back. 823 */ 824 #ifdef CONFIG_AFS_FSCACHE 825 fscache_wait_on_page_write(vnode->cache, vmf->page); 826 #endif 827 828 if (PageWriteback(vmf->page) && 829 wait_on_page_bit_killable(vmf->page, PG_writeback) < 0) 830 return VM_FAULT_RETRY; 831 832 if (lock_page_killable(vmf->page) < 0) 833 return VM_FAULT_RETRY; 834 835 /* We mustn't change page->private until writeback is complete as that 836 * details the portion of the page we need to write back and we might 837 * need to redirty the page if there's a problem. 838 */ 839 wait_on_page_writeback(vmf->page); 840 841 priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */ 842 priv |= 0; /* From */ 843 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), 844 vmf->page->index, priv); 845 SetPagePrivate(vmf->page); 846 set_page_private(vmf->page, priv); 847 848 sb_end_pagefault(inode->i_sb); 849 return VM_FAULT_LOCKED; 850 } 851 852 /* 853 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. 854 */ 855 void afs_prune_wb_keys(struct afs_vnode *vnode) 856 { 857 LIST_HEAD(graveyard); 858 struct afs_wb_key *wbk, *tmp; 859 860 /* Discard unused keys */ 861 spin_lock(&vnode->wb_lock); 862 863 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) && 864 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) { 865 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { 866 if (refcount_read(&wbk->usage) == 1) 867 list_move(&wbk->vnode_link, &graveyard); 868 } 869 } 870 871 spin_unlock(&vnode->wb_lock); 872 873 while (!list_empty(&graveyard)) { 874 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); 875 list_del(&wbk->vnode_link); 876 afs_put_wb_key(wbk); 877 } 878 } 879 880 /* 881 * Clean up a page during invalidation. 882 */ 883 int afs_launder_page(struct page *page) 884 { 885 struct address_space *mapping = page->mapping; 886 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 887 unsigned long priv; 888 unsigned int f, t; 889 int ret = 0; 890 891 _enter("{%lx}", page->index); 892 893 priv = page_private(page); 894 if (clear_page_dirty_for_io(page)) { 895 f = 0; 896 t = PAGE_SIZE; 897 if (PagePrivate(page)) { 898 f = priv & AFS_PRIV_MAX; 899 t = priv >> AFS_PRIV_SHIFT; 900 } 901 902 trace_afs_page_dirty(vnode, tracepoint_string("launder"), 903 page->index, priv); 904 ret = afs_store_data(mapping, page->index, page->index, t, f); 905 } 906 907 trace_afs_page_dirty(vnode, tracepoint_string("laundered"), 908 page->index, priv); 909 set_page_private(page, 0); 910 ClearPagePrivate(page); 911 912 #ifdef CONFIG_AFS_FSCACHE 913 if (PageFsCache(page)) { 914 fscache_wait_on_page_write(vnode->cache, page); 915 fscache_uncache_page(vnode->cache, page); 916 } 917 #endif 918 return ret; 919 } 920