xref: /openbmc/linux/fs/afs/write.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21 	_enter("");
22 	return __set_page_dirty_nobuffers(page);
23 }
24 
25 /*
26  * partly or wholly fill a page that's under preparation for writing
27  */
28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29 			 loff_t pos, unsigned int len, struct page *page)
30 {
31 	struct afs_read *req;
32 	size_t p;
33 	void *data;
34 	int ret;
35 
36 	_enter(",,%llu", (unsigned long long)pos);
37 
38 	if (pos >= vnode->vfs_inode.i_size) {
39 		p = pos & ~PAGE_MASK;
40 		ASSERTCMP(p + len, <=, PAGE_SIZE);
41 		data = kmap(page);
42 		memset(data + p, 0, len);
43 		kunmap(page);
44 		return 0;
45 	}
46 
47 	req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48 	if (!req)
49 		return -ENOMEM;
50 
51 	refcount_set(&req->usage, 1);
52 	req->pos = pos;
53 	req->len = len;
54 	req->nr_pages = 1;
55 	req->pages = req->array;
56 	req->pages[0] = page;
57 	get_page(page);
58 
59 	ret = afs_fetch_data(vnode, key, req);
60 	afs_put_read(req);
61 	if (ret < 0) {
62 		if (ret == -ENOENT) {
63 			_debug("got NOENT from server"
64 			       " - marking file deleted and stale");
65 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
66 			ret = -ESTALE;
67 		}
68 	}
69 
70 	_leave(" = %d", ret);
71 	return ret;
72 }
73 
74 /*
75  * prepare to perform part of a write to a page
76  */
77 int afs_write_begin(struct file *file, struct address_space *mapping,
78 		    loff_t pos, unsigned len, unsigned flags,
79 		    struct page **pagep, void **fsdata)
80 {
81 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82 	struct page *page;
83 	struct key *key = afs_file_key(file);
84 	unsigned long priv;
85 	unsigned f, from = pos & (PAGE_SIZE - 1);
86 	unsigned t, to = from + len;
87 	pgoff_t index = pos >> PAGE_SHIFT;
88 	int ret;
89 
90 	_enter("{%llx:%llu},{%lx},%u,%u",
91 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
92 
93 	/* We want to store information about how much of a page is altered in
94 	 * page->private.
95 	 */
96 	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
97 
98 	page = grab_cache_page_write_begin(mapping, index, flags);
99 	if (!page)
100 		return -ENOMEM;
101 
102 	if (!PageUptodate(page) && len != PAGE_SIZE) {
103 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
104 		if (ret < 0) {
105 			unlock_page(page);
106 			put_page(page);
107 			_leave(" = %d [prep]", ret);
108 			return ret;
109 		}
110 		SetPageUptodate(page);
111 	}
112 
113 	/* page won't leak in error case: it eventually gets cleaned off LRU */
114 	*pagep = page;
115 
116 try_again:
117 	/* See if this page is already partially written in a way that we can
118 	 * merge the new write with.
119 	 */
120 	t = f = 0;
121 	if (PagePrivate(page)) {
122 		priv = page_private(page);
123 		f = priv & AFS_PRIV_MAX;
124 		t = priv >> AFS_PRIV_SHIFT;
125 		ASSERTCMP(f, <=, t);
126 	}
127 
128 	if (f != t) {
129 		if (PageWriteback(page)) {
130 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
131 					     page->index, priv);
132 			goto flush_conflicting_write;
133 		}
134 		/* If the file is being filled locally, allow inter-write
135 		 * spaces to be merged into writes.  If it's not, only write
136 		 * back what the user gives us.
137 		 */
138 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
139 		    (to < f || from > t))
140 			goto flush_conflicting_write;
141 		if (from < f)
142 			f = from;
143 		if (to > t)
144 			t = to;
145 	} else {
146 		f = from;
147 		t = to;
148 	}
149 
150 	priv = (unsigned long)t << AFS_PRIV_SHIFT;
151 	priv |= f;
152 	trace_afs_page_dirty(vnode, tracepoint_string("begin"),
153 			     page->index, priv);
154 	SetPagePrivate(page);
155 	set_page_private(page, priv);
156 	_leave(" = 0");
157 	return 0;
158 
159 	/* The previous write and this write aren't adjacent or overlapping, so
160 	 * flush the page out.
161 	 */
162 flush_conflicting_write:
163 	_debug("flush conflict");
164 	ret = write_one_page(page);
165 	if (ret < 0) {
166 		_leave(" = %d", ret);
167 		return ret;
168 	}
169 
170 	ret = lock_page_killable(page);
171 	if (ret < 0) {
172 		_leave(" = %d", ret);
173 		return ret;
174 	}
175 	goto try_again;
176 }
177 
178 /*
179  * finalise part of a write to a page
180  */
181 int afs_write_end(struct file *file, struct address_space *mapping,
182 		  loff_t pos, unsigned len, unsigned copied,
183 		  struct page *page, void *fsdata)
184 {
185 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
186 	struct key *key = afs_file_key(file);
187 	loff_t i_size, maybe_i_size;
188 	int ret;
189 
190 	_enter("{%llx:%llu},{%lx}",
191 	       vnode->fid.vid, vnode->fid.vnode, page->index);
192 
193 	maybe_i_size = pos + copied;
194 
195 	i_size = i_size_read(&vnode->vfs_inode);
196 	if (maybe_i_size > i_size) {
197 		spin_lock(&vnode->wb_lock);
198 		i_size = i_size_read(&vnode->vfs_inode);
199 		if (maybe_i_size > i_size)
200 			i_size_write(&vnode->vfs_inode, maybe_i_size);
201 		spin_unlock(&vnode->wb_lock);
202 	}
203 
204 	if (!PageUptodate(page)) {
205 		if (copied < len) {
206 			/* Try and load any missing data from the server.  The
207 			 * unmarshalling routine will take care of clearing any
208 			 * bits that are beyond the EOF.
209 			 */
210 			ret = afs_fill_page(vnode, key, pos + copied,
211 					    len - copied, page);
212 			if (ret < 0)
213 				goto out;
214 		}
215 		SetPageUptodate(page);
216 	}
217 
218 	set_page_dirty(page);
219 	if (PageDirty(page))
220 		_debug("dirtied");
221 	ret = copied;
222 
223 out:
224 	unlock_page(page);
225 	put_page(page);
226 	return ret;
227 }
228 
229 /*
230  * kill all the pages in the given range
231  */
232 static void afs_kill_pages(struct address_space *mapping,
233 			   pgoff_t first, pgoff_t last)
234 {
235 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
236 	struct pagevec pv;
237 	unsigned count, loop;
238 
239 	_enter("{%llx:%llu},%lx-%lx",
240 	       vnode->fid.vid, vnode->fid.vnode, first, last);
241 
242 	pagevec_init(&pv);
243 
244 	do {
245 		_debug("kill %lx-%lx", first, last);
246 
247 		count = last - first + 1;
248 		if (count > PAGEVEC_SIZE)
249 			count = PAGEVEC_SIZE;
250 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
251 		ASSERTCMP(pv.nr, ==, count);
252 
253 		for (loop = 0; loop < count; loop++) {
254 			struct page *page = pv.pages[loop];
255 			ClearPageUptodate(page);
256 			SetPageError(page);
257 			end_page_writeback(page);
258 			if (page->index >= first)
259 				first = page->index + 1;
260 			lock_page(page);
261 			generic_error_remove_page(mapping, page);
262 			unlock_page(page);
263 		}
264 
265 		__pagevec_release(&pv);
266 	} while (first <= last);
267 
268 	_leave("");
269 }
270 
271 /*
272  * Redirty all the pages in a given range.
273  */
274 static void afs_redirty_pages(struct writeback_control *wbc,
275 			      struct address_space *mapping,
276 			      pgoff_t first, pgoff_t last)
277 {
278 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
279 	struct pagevec pv;
280 	unsigned count, loop;
281 
282 	_enter("{%llx:%llu},%lx-%lx",
283 	       vnode->fid.vid, vnode->fid.vnode, first, last);
284 
285 	pagevec_init(&pv);
286 
287 	do {
288 		_debug("redirty %lx-%lx", first, last);
289 
290 		count = last - first + 1;
291 		if (count > PAGEVEC_SIZE)
292 			count = PAGEVEC_SIZE;
293 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
294 		ASSERTCMP(pv.nr, ==, count);
295 
296 		for (loop = 0; loop < count; loop++) {
297 			struct page *page = pv.pages[loop];
298 
299 			redirty_page_for_writepage(wbc, page);
300 			end_page_writeback(page);
301 			if (page->index >= first)
302 				first = page->index + 1;
303 		}
304 
305 		__pagevec_release(&pv);
306 	} while (first <= last);
307 
308 	_leave("");
309 }
310 
311 /*
312  * completion of write to server
313  */
314 static void afs_pages_written_back(struct afs_vnode *vnode,
315 				   pgoff_t first, pgoff_t last)
316 {
317 	struct pagevec pv;
318 	unsigned long priv;
319 	unsigned count, loop;
320 
321 	_enter("{%llx:%llu},{%lx-%lx}",
322 	       vnode->fid.vid, vnode->fid.vnode, first, last);
323 
324 	pagevec_init(&pv);
325 
326 	do {
327 		_debug("done %lx-%lx", first, last);
328 
329 		count = last - first + 1;
330 		if (count > PAGEVEC_SIZE)
331 			count = PAGEVEC_SIZE;
332 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
333 					      first, count, pv.pages);
334 		ASSERTCMP(pv.nr, ==, count);
335 
336 		for (loop = 0; loop < count; loop++) {
337 			priv = page_private(pv.pages[loop]);
338 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
339 					     pv.pages[loop]->index, priv);
340 			set_page_private(pv.pages[loop], 0);
341 			end_page_writeback(pv.pages[loop]);
342 		}
343 		first += count;
344 		__pagevec_release(&pv);
345 	} while (first <= last);
346 
347 	afs_prune_wb_keys(vnode);
348 	_leave("");
349 }
350 
351 /*
352  * write to a file
353  */
354 static int afs_store_data(struct address_space *mapping,
355 			  pgoff_t first, pgoff_t last,
356 			  unsigned offset, unsigned to)
357 {
358 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
359 	struct afs_fs_cursor fc;
360 	struct afs_status_cb *scb;
361 	struct afs_wb_key *wbk = NULL;
362 	struct list_head *p;
363 	int ret = -ENOKEY, ret2;
364 
365 	_enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
366 	       vnode->volume->name,
367 	       vnode->fid.vid,
368 	       vnode->fid.vnode,
369 	       vnode->fid.unique,
370 	       first, last, offset, to);
371 
372 	scb = kzalloc(sizeof(struct afs_status_cb), GFP_NOFS);
373 	if (!scb)
374 		return -ENOMEM;
375 
376 	spin_lock(&vnode->wb_lock);
377 	p = vnode->wb_keys.next;
378 
379 	/* Iterate through the list looking for a valid key to use. */
380 try_next_key:
381 	while (p != &vnode->wb_keys) {
382 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
383 		_debug("wbk %u", key_serial(wbk->key));
384 		ret2 = key_validate(wbk->key);
385 		if (ret2 == 0)
386 			goto found_key;
387 		if (ret == -ENOKEY)
388 			ret = ret2;
389 		p = p->next;
390 	}
391 
392 	spin_unlock(&vnode->wb_lock);
393 	afs_put_wb_key(wbk);
394 	kfree(scb);
395 	_leave(" = %d [no keys]", ret);
396 	return ret;
397 
398 found_key:
399 	refcount_inc(&wbk->usage);
400 	spin_unlock(&vnode->wb_lock);
401 
402 	_debug("USE WB KEY %u", key_serial(wbk->key));
403 
404 	ret = -ERESTARTSYS;
405 	if (afs_begin_vnode_operation(&fc, vnode, wbk->key, false)) {
406 		afs_dataversion_t data_version = vnode->status.data_version + 1;
407 
408 		while (afs_select_fileserver(&fc)) {
409 			fc.cb_break = afs_calc_vnode_cb_break(vnode);
410 			afs_fs_store_data(&fc, mapping, first, last, offset, to, scb);
411 		}
412 
413 		afs_check_for_remote_deletion(&fc, vnode);
414 		afs_vnode_commit_status(&fc, vnode, fc.cb_break,
415 					&data_version, scb);
416 		if (fc.ac.error == 0)
417 			afs_pages_written_back(vnode, first, last);
418 		ret = afs_end_vnode_operation(&fc);
419 	}
420 
421 	switch (ret) {
422 	case 0:
423 		afs_stat_v(vnode, n_stores);
424 		atomic_long_add((last * PAGE_SIZE + to) -
425 				(first * PAGE_SIZE + offset),
426 				&afs_v2net(vnode)->n_store_bytes);
427 		break;
428 	case -EACCES:
429 	case -EPERM:
430 	case -ENOKEY:
431 	case -EKEYEXPIRED:
432 	case -EKEYREJECTED:
433 	case -EKEYREVOKED:
434 		_debug("next");
435 		spin_lock(&vnode->wb_lock);
436 		p = wbk->vnode_link.next;
437 		afs_put_wb_key(wbk);
438 		goto try_next_key;
439 	}
440 
441 	afs_put_wb_key(wbk);
442 	kfree(scb);
443 	_leave(" = %d", ret);
444 	return ret;
445 }
446 
447 /*
448  * Synchronously write back the locked page and any subsequent non-locked dirty
449  * pages.
450  */
451 static int afs_write_back_from_locked_page(struct address_space *mapping,
452 					   struct writeback_control *wbc,
453 					   struct page *primary_page,
454 					   pgoff_t final_page)
455 {
456 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
457 	struct page *pages[8], *page;
458 	unsigned long count, priv;
459 	unsigned n, offset, to, f, t;
460 	pgoff_t start, first, last;
461 	int loop, ret;
462 
463 	_enter(",%lx", primary_page->index);
464 
465 	count = 1;
466 	if (test_set_page_writeback(primary_page))
467 		BUG();
468 
469 	/* Find all consecutive lockable dirty pages that have contiguous
470 	 * written regions, stopping when we find a page that is not
471 	 * immediately lockable, is not dirty or is missing, or we reach the
472 	 * end of the range.
473 	 */
474 	start = primary_page->index;
475 	priv = page_private(primary_page);
476 	offset = priv & AFS_PRIV_MAX;
477 	to = priv >> AFS_PRIV_SHIFT;
478 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
479 			     primary_page->index, priv);
480 
481 	WARN_ON(offset == to);
482 	if (offset == to)
483 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
484 				     primary_page->index, priv);
485 
486 	if (start >= final_page ||
487 	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
488 		goto no_more;
489 
490 	start++;
491 	do {
492 		_debug("more %lx [%lx]", start, count);
493 		n = final_page - start + 1;
494 		if (n > ARRAY_SIZE(pages))
495 			n = ARRAY_SIZE(pages);
496 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
497 		_debug("fgpc %u", n);
498 		if (n == 0)
499 			goto no_more;
500 		if (pages[0]->index != start) {
501 			do {
502 				put_page(pages[--n]);
503 			} while (n > 0);
504 			goto no_more;
505 		}
506 
507 		for (loop = 0; loop < n; loop++) {
508 			page = pages[loop];
509 			if (to != PAGE_SIZE &&
510 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
511 				break;
512 			if (page->index > final_page)
513 				break;
514 			if (!trylock_page(page))
515 				break;
516 			if (!PageDirty(page) || PageWriteback(page)) {
517 				unlock_page(page);
518 				break;
519 			}
520 
521 			priv = page_private(page);
522 			f = priv & AFS_PRIV_MAX;
523 			t = priv >> AFS_PRIV_SHIFT;
524 			if (f != 0 &&
525 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
526 				unlock_page(page);
527 				break;
528 			}
529 			to = t;
530 
531 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
532 					     page->index, priv);
533 
534 			if (!clear_page_dirty_for_io(page))
535 				BUG();
536 			if (test_set_page_writeback(page))
537 				BUG();
538 			unlock_page(page);
539 			put_page(page);
540 		}
541 		count += loop;
542 		if (loop < n) {
543 			for (; loop < n; loop++)
544 				put_page(pages[loop]);
545 			goto no_more;
546 		}
547 
548 		start += loop;
549 	} while (start <= final_page && count < 65536);
550 
551 no_more:
552 	/* We now have a contiguous set of dirty pages, each with writeback
553 	 * set; the first page is still locked at this point, but all the rest
554 	 * have been unlocked.
555 	 */
556 	unlock_page(primary_page);
557 
558 	first = primary_page->index;
559 	last = first + count - 1;
560 
561 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
562 
563 	ret = afs_store_data(mapping, first, last, offset, to);
564 	switch (ret) {
565 	case 0:
566 		ret = count;
567 		break;
568 
569 	default:
570 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
571 		/* Fall through */
572 	case -EACCES:
573 	case -EPERM:
574 	case -ENOKEY:
575 	case -EKEYEXPIRED:
576 	case -EKEYREJECTED:
577 	case -EKEYREVOKED:
578 		afs_redirty_pages(wbc, mapping, first, last);
579 		mapping_set_error(mapping, ret);
580 		break;
581 
582 	case -EDQUOT:
583 	case -ENOSPC:
584 		afs_redirty_pages(wbc, mapping, first, last);
585 		mapping_set_error(mapping, -ENOSPC);
586 		break;
587 
588 	case -EROFS:
589 	case -EIO:
590 	case -EREMOTEIO:
591 	case -EFBIG:
592 	case -ENOENT:
593 	case -ENOMEDIUM:
594 	case -ENXIO:
595 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
596 		afs_kill_pages(mapping, first, last);
597 		mapping_set_error(mapping, ret);
598 		break;
599 	}
600 
601 	_leave(" = %d", ret);
602 	return ret;
603 }
604 
605 /*
606  * write a page back to the server
607  * - the caller locked the page for us
608  */
609 int afs_writepage(struct page *page, struct writeback_control *wbc)
610 {
611 	int ret;
612 
613 	_enter("{%lx},", page->index);
614 
615 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
616 					      wbc->range_end >> PAGE_SHIFT);
617 	if (ret < 0) {
618 		_leave(" = %d", ret);
619 		return 0;
620 	}
621 
622 	wbc->nr_to_write -= ret;
623 
624 	_leave(" = 0");
625 	return 0;
626 }
627 
628 /*
629  * write a region of pages back to the server
630  */
631 static int afs_writepages_region(struct address_space *mapping,
632 				 struct writeback_control *wbc,
633 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
634 {
635 	struct page *page;
636 	int ret, n;
637 
638 	_enter(",,%lx,%lx,", index, end);
639 
640 	do {
641 		n = find_get_pages_range_tag(mapping, &index, end,
642 					PAGECACHE_TAG_DIRTY, 1, &page);
643 		if (!n)
644 			break;
645 
646 		_debug("wback %lx", page->index);
647 
648 		/*
649 		 * at this point we hold neither the i_pages lock nor the
650 		 * page lock: the page may be truncated or invalidated
651 		 * (changing page->mapping to NULL), or even swizzled
652 		 * back from swapper_space to tmpfs file mapping
653 		 */
654 		ret = lock_page_killable(page);
655 		if (ret < 0) {
656 			put_page(page);
657 			_leave(" = %d", ret);
658 			return ret;
659 		}
660 
661 		if (page->mapping != mapping || !PageDirty(page)) {
662 			unlock_page(page);
663 			put_page(page);
664 			continue;
665 		}
666 
667 		if (PageWriteback(page)) {
668 			unlock_page(page);
669 			if (wbc->sync_mode != WB_SYNC_NONE)
670 				wait_on_page_writeback(page);
671 			put_page(page);
672 			continue;
673 		}
674 
675 		if (!clear_page_dirty_for_io(page))
676 			BUG();
677 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
678 		put_page(page);
679 		if (ret < 0) {
680 			_leave(" = %d", ret);
681 			return ret;
682 		}
683 
684 		wbc->nr_to_write -= ret;
685 
686 		cond_resched();
687 	} while (index < end && wbc->nr_to_write > 0);
688 
689 	*_next = index;
690 	_leave(" = 0 [%lx]", *_next);
691 	return 0;
692 }
693 
694 /*
695  * write some of the pending data back to the server
696  */
697 int afs_writepages(struct address_space *mapping,
698 		   struct writeback_control *wbc)
699 {
700 	pgoff_t start, end, next;
701 	int ret;
702 
703 	_enter("");
704 
705 	if (wbc->range_cyclic) {
706 		start = mapping->writeback_index;
707 		end = -1;
708 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
709 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
710 			ret = afs_writepages_region(mapping, wbc, 0, start,
711 						    &next);
712 		mapping->writeback_index = next;
713 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
714 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
715 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
716 		if (wbc->nr_to_write > 0)
717 			mapping->writeback_index = next;
718 	} else {
719 		start = wbc->range_start >> PAGE_SHIFT;
720 		end = wbc->range_end >> PAGE_SHIFT;
721 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
722 	}
723 
724 	_leave(" = %d", ret);
725 	return ret;
726 }
727 
728 /*
729  * write to an AFS file
730  */
731 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
732 {
733 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
734 	ssize_t result;
735 	size_t count = iov_iter_count(from);
736 
737 	_enter("{%llx:%llu},{%zu},",
738 	       vnode->fid.vid, vnode->fid.vnode, count);
739 
740 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
741 		printk(KERN_INFO
742 		       "AFS: Attempt to write to active swap file!\n");
743 		return -EBUSY;
744 	}
745 
746 	if (!count)
747 		return 0;
748 
749 	result = generic_file_write_iter(iocb, from);
750 
751 	_leave(" = %zd", result);
752 	return result;
753 }
754 
755 /*
756  * flush any dirty pages for this process, and check for write errors.
757  * - the return status from this call provides a reliable indication of
758  *   whether any write errors occurred for this process.
759  */
760 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
761 {
762 	struct inode *inode = file_inode(file);
763 	struct afs_vnode *vnode = AFS_FS_I(inode);
764 
765 	_enter("{%llx:%llu},{n=%pD},%d",
766 	       vnode->fid.vid, vnode->fid.vnode, file,
767 	       datasync);
768 
769 	return file_write_and_wait_range(file, start, end);
770 }
771 
772 /*
773  * notification that a previously read-only page is about to become writable
774  * - if it returns an error, the caller will deliver a bus error signal
775  */
776 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
777 {
778 	struct file *file = vmf->vma->vm_file;
779 	struct inode *inode = file_inode(file);
780 	struct afs_vnode *vnode = AFS_FS_I(inode);
781 	unsigned long priv;
782 
783 	_enter("{{%llx:%llu}},{%lx}",
784 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
785 
786 	sb_start_pagefault(inode->i_sb);
787 
788 	/* Wait for the page to be written to the cache before we allow it to
789 	 * be modified.  We then assume the entire page will need writing back.
790 	 */
791 #ifdef CONFIG_AFS_FSCACHE
792 	fscache_wait_on_page_write(vnode->cache, vmf->page);
793 #endif
794 
795 	if (PageWriteback(vmf->page) &&
796 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
797 		return VM_FAULT_RETRY;
798 
799 	if (lock_page_killable(vmf->page) < 0)
800 		return VM_FAULT_RETRY;
801 
802 	/* We mustn't change page->private until writeback is complete as that
803 	 * details the portion of the page we need to write back and we might
804 	 * need to redirty the page if there's a problem.
805 	 */
806 	wait_on_page_writeback(vmf->page);
807 
808 	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
809 	priv |= 0; /* From */
810 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
811 			     vmf->page->index, priv);
812 	SetPagePrivate(vmf->page);
813 	set_page_private(vmf->page, priv);
814 
815 	sb_end_pagefault(inode->i_sb);
816 	return VM_FAULT_LOCKED;
817 }
818 
819 /*
820  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
821  */
822 void afs_prune_wb_keys(struct afs_vnode *vnode)
823 {
824 	LIST_HEAD(graveyard);
825 	struct afs_wb_key *wbk, *tmp;
826 
827 	/* Discard unused keys */
828 	spin_lock(&vnode->wb_lock);
829 
830 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
831 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
832 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
833 			if (refcount_read(&wbk->usage) == 1)
834 				list_move(&wbk->vnode_link, &graveyard);
835 		}
836 	}
837 
838 	spin_unlock(&vnode->wb_lock);
839 
840 	while (!list_empty(&graveyard)) {
841 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
842 		list_del(&wbk->vnode_link);
843 		afs_put_wb_key(wbk);
844 	}
845 }
846 
847 /*
848  * Clean up a page during invalidation.
849  */
850 int afs_launder_page(struct page *page)
851 {
852 	struct address_space *mapping = page->mapping;
853 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
854 	unsigned long priv;
855 	unsigned int f, t;
856 	int ret = 0;
857 
858 	_enter("{%lx}", page->index);
859 
860 	priv = page_private(page);
861 	if (clear_page_dirty_for_io(page)) {
862 		f = 0;
863 		t = PAGE_SIZE;
864 		if (PagePrivate(page)) {
865 			f = priv & AFS_PRIV_MAX;
866 			t = priv >> AFS_PRIV_SHIFT;
867 		}
868 
869 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
870 				     page->index, priv);
871 		ret = afs_store_data(mapping, page->index, page->index, t, f);
872 	}
873 
874 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
875 			     page->index, priv);
876 	set_page_private(page, 0);
877 	ClearPagePrivate(page);
878 
879 #ifdef CONFIG_AFS_FSCACHE
880 	if (PageFsCache(page)) {
881 		fscache_wait_on_page_write(vnode->cache, page);
882 		fscache_uncache_page(vnode->cache, page);
883 	}
884 #endif
885 	return ret;
886 }
887