xref: /openbmc/linux/fs/afs/write.c (revision 76a5cb6f)
1 /* handling of writes to regular files and writing back to the server
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/backing-dev.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include "internal.h"
19 
20 /*
21  * mark a page as having been made dirty and thus needing writeback
22  */
23 int afs_set_page_dirty(struct page *page)
24 {
25 	_enter("");
26 	return __set_page_dirty_nobuffers(page);
27 }
28 
29 /*
30  * partly or wholly fill a page that's under preparation for writing
31  */
32 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
33 			 loff_t pos, unsigned int len, struct page *page)
34 {
35 	struct afs_read *req;
36 	int ret;
37 
38 	_enter(",,%llu", (unsigned long long)pos);
39 
40 	req = kzalloc(sizeof(struct afs_read) + sizeof(struct page *),
41 		      GFP_KERNEL);
42 	if (!req)
43 		return -ENOMEM;
44 
45 	refcount_set(&req->usage, 1);
46 	req->pos = pos;
47 	req->len = len;
48 	req->nr_pages = 1;
49 	req->pages = req->array;
50 	req->pages[0] = page;
51 	get_page(page);
52 
53 	ret = afs_fetch_data(vnode, key, req);
54 	afs_put_read(req);
55 	if (ret < 0) {
56 		if (ret == -ENOENT) {
57 			_debug("got NOENT from server"
58 			       " - marking file deleted and stale");
59 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
60 			ret = -ESTALE;
61 		}
62 	}
63 
64 	_leave(" = %d", ret);
65 	return ret;
66 }
67 
68 /*
69  * prepare to perform part of a write to a page
70  */
71 int afs_write_begin(struct file *file, struct address_space *mapping,
72 		    loff_t pos, unsigned len, unsigned flags,
73 		    struct page **pagep, void **fsdata)
74 {
75 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
76 	struct page *page;
77 	struct key *key = afs_file_key(file);
78 	unsigned long priv;
79 	unsigned f, from = pos & (PAGE_SIZE - 1);
80 	unsigned t, to = from + len;
81 	pgoff_t index = pos >> PAGE_SHIFT;
82 	int ret;
83 
84 	_enter("{%x:%u},{%lx},%u,%u",
85 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
86 
87 	/* We want to store information about how much of a page is altered in
88 	 * page->private.
89 	 */
90 	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
91 
92 	page = grab_cache_page_write_begin(mapping, index, flags);
93 	if (!page)
94 		return -ENOMEM;
95 
96 	if (!PageUptodate(page) && len != PAGE_SIZE) {
97 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
98 		if (ret < 0) {
99 			unlock_page(page);
100 			put_page(page);
101 			_leave(" = %d [prep]", ret);
102 			return ret;
103 		}
104 		SetPageUptodate(page);
105 	}
106 
107 	/* page won't leak in error case: it eventually gets cleaned off LRU */
108 	*pagep = page;
109 
110 try_again:
111 	/* See if this page is already partially written in a way that we can
112 	 * merge the new write with.
113 	 */
114 	t = f = 0;
115 	if (PagePrivate(page)) {
116 		priv = page_private(page);
117 		f = priv & AFS_PRIV_MAX;
118 		t = priv >> AFS_PRIV_SHIFT;
119 		ASSERTCMP(f, <=, t);
120 	}
121 
122 	if (f != t) {
123 		if (PageWriteback(page)) {
124 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
125 					     page->index, priv);
126 			goto flush_conflicting_write;
127 		}
128 		if (to < f || from > t)
129 			goto flush_conflicting_write;
130 		if (from < f)
131 			f = from;
132 		if (to > t)
133 			t = to;
134 	} else {
135 		f = from;
136 		t = to;
137 	}
138 
139 	priv = (unsigned long)t << AFS_PRIV_SHIFT;
140 	priv |= f;
141 	trace_afs_page_dirty(vnode, tracepoint_string("begin"),
142 			     page->index, priv);
143 	SetPagePrivate(page);
144 	set_page_private(page, priv);
145 	_leave(" = 0");
146 	return 0;
147 
148 	/* The previous write and this write aren't adjacent or overlapping, so
149 	 * flush the page out.
150 	 */
151 flush_conflicting_write:
152 	_debug("flush conflict");
153 	ret = write_one_page(page);
154 	if (ret < 0) {
155 		_leave(" = %d", ret);
156 		return ret;
157 	}
158 
159 	ret = lock_page_killable(page);
160 	if (ret < 0) {
161 		_leave(" = %d", ret);
162 		return ret;
163 	}
164 	goto try_again;
165 }
166 
167 /*
168  * finalise part of a write to a page
169  */
170 int afs_write_end(struct file *file, struct address_space *mapping,
171 		  loff_t pos, unsigned len, unsigned copied,
172 		  struct page *page, void *fsdata)
173 {
174 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
175 	struct key *key = afs_file_key(file);
176 	loff_t i_size, maybe_i_size;
177 	int ret;
178 
179 	_enter("{%x:%u},{%lx}",
180 	       vnode->fid.vid, vnode->fid.vnode, page->index);
181 
182 	maybe_i_size = pos + copied;
183 
184 	i_size = i_size_read(&vnode->vfs_inode);
185 	if (maybe_i_size > i_size) {
186 		spin_lock(&vnode->wb_lock);
187 		i_size = i_size_read(&vnode->vfs_inode);
188 		if (maybe_i_size > i_size)
189 			i_size_write(&vnode->vfs_inode, maybe_i_size);
190 		spin_unlock(&vnode->wb_lock);
191 	}
192 
193 	if (!PageUptodate(page)) {
194 		if (copied < len) {
195 			/* Try and load any missing data from the server.  The
196 			 * unmarshalling routine will take care of clearing any
197 			 * bits that are beyond the EOF.
198 			 */
199 			ret = afs_fill_page(vnode, key, pos + copied,
200 					    len - copied, page);
201 			if (ret < 0)
202 				goto out;
203 		}
204 		SetPageUptodate(page);
205 	}
206 
207 	set_page_dirty(page);
208 	if (PageDirty(page))
209 		_debug("dirtied");
210 	ret = copied;
211 
212 out:
213 	unlock_page(page);
214 	put_page(page);
215 	return ret;
216 }
217 
218 /*
219  * kill all the pages in the given range
220  */
221 static void afs_kill_pages(struct address_space *mapping,
222 			   pgoff_t first, pgoff_t last)
223 {
224 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
225 	struct pagevec pv;
226 	unsigned count, loop;
227 
228 	_enter("{%x:%u},%lx-%lx",
229 	       vnode->fid.vid, vnode->fid.vnode, first, last);
230 
231 	pagevec_init(&pv);
232 
233 	do {
234 		_debug("kill %lx-%lx", first, last);
235 
236 		count = last - first + 1;
237 		if (count > PAGEVEC_SIZE)
238 			count = PAGEVEC_SIZE;
239 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
240 		ASSERTCMP(pv.nr, ==, count);
241 
242 		for (loop = 0; loop < count; loop++) {
243 			struct page *page = pv.pages[loop];
244 			ClearPageUptodate(page);
245 			SetPageError(page);
246 			end_page_writeback(page);
247 			if (page->index >= first)
248 				first = page->index + 1;
249 			lock_page(page);
250 			generic_error_remove_page(mapping, page);
251 		}
252 
253 		__pagevec_release(&pv);
254 	} while (first <= last);
255 
256 	_leave("");
257 }
258 
259 /*
260  * Redirty all the pages in a given range.
261  */
262 static void afs_redirty_pages(struct writeback_control *wbc,
263 			      struct address_space *mapping,
264 			      pgoff_t first, pgoff_t last)
265 {
266 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
267 	struct pagevec pv;
268 	unsigned count, loop;
269 
270 	_enter("{%x:%u},%lx-%lx",
271 	       vnode->fid.vid, vnode->fid.vnode, first, last);
272 
273 	pagevec_init(&pv);
274 
275 	do {
276 		_debug("redirty %lx-%lx", first, last);
277 
278 		count = last - first + 1;
279 		if (count > PAGEVEC_SIZE)
280 			count = PAGEVEC_SIZE;
281 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
282 		ASSERTCMP(pv.nr, ==, count);
283 
284 		for (loop = 0; loop < count; loop++) {
285 			struct page *page = pv.pages[loop];
286 
287 			redirty_page_for_writepage(wbc, page);
288 			end_page_writeback(page);
289 			if (page->index >= first)
290 				first = page->index + 1;
291 		}
292 
293 		__pagevec_release(&pv);
294 	} while (first <= last);
295 
296 	_leave("");
297 }
298 
299 /*
300  * write to a file
301  */
302 static int afs_store_data(struct address_space *mapping,
303 			  pgoff_t first, pgoff_t last,
304 			  unsigned offset, unsigned to)
305 {
306 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
307 	struct afs_fs_cursor fc;
308 	struct afs_wb_key *wbk = NULL;
309 	struct list_head *p;
310 	int ret = -ENOKEY, ret2;
311 
312 	_enter("%s{%x:%u.%u},%lx,%lx,%x,%x",
313 	       vnode->volume->name,
314 	       vnode->fid.vid,
315 	       vnode->fid.vnode,
316 	       vnode->fid.unique,
317 	       first, last, offset, to);
318 
319 	spin_lock(&vnode->wb_lock);
320 	p = vnode->wb_keys.next;
321 
322 	/* Iterate through the list looking for a valid key to use. */
323 try_next_key:
324 	while (p != &vnode->wb_keys) {
325 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
326 		_debug("wbk %u", key_serial(wbk->key));
327 		ret2 = key_validate(wbk->key);
328 		if (ret2 == 0)
329 			goto found_key;
330 		if (ret == -ENOKEY)
331 			ret = ret2;
332 		p = p->next;
333 	}
334 
335 	spin_unlock(&vnode->wb_lock);
336 	afs_put_wb_key(wbk);
337 	_leave(" = %d [no keys]", ret);
338 	return ret;
339 
340 found_key:
341 	refcount_inc(&wbk->usage);
342 	spin_unlock(&vnode->wb_lock);
343 
344 	_debug("USE WB KEY %u", key_serial(wbk->key));
345 
346 	ret = -ERESTARTSYS;
347 	if (afs_begin_vnode_operation(&fc, vnode, wbk->key)) {
348 		while (afs_select_fileserver(&fc)) {
349 			fc.cb_break = vnode->cb_break + vnode->cb_s_break;
350 			afs_fs_store_data(&fc, mapping, first, last, offset, to);
351 		}
352 
353 		afs_check_for_remote_deletion(&fc, fc.vnode);
354 		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
355 		ret = afs_end_vnode_operation(&fc);
356 	}
357 
358 	switch (ret) {
359 	case 0:
360 		afs_stat_v(vnode, n_stores);
361 		atomic_long_add((last * PAGE_SIZE + to) -
362 				(first * PAGE_SIZE + offset),
363 				&afs_v2net(vnode)->n_store_bytes);
364 		break;
365 	case -EACCES:
366 	case -EPERM:
367 	case -ENOKEY:
368 	case -EKEYEXPIRED:
369 	case -EKEYREJECTED:
370 	case -EKEYREVOKED:
371 		_debug("next");
372 		spin_lock(&vnode->wb_lock);
373 		p = wbk->vnode_link.next;
374 		afs_put_wb_key(wbk);
375 		goto try_next_key;
376 	}
377 
378 	afs_put_wb_key(wbk);
379 	_leave(" = %d", ret);
380 	return ret;
381 }
382 
383 /*
384  * Synchronously write back the locked page and any subsequent non-locked dirty
385  * pages.
386  */
387 static int afs_write_back_from_locked_page(struct address_space *mapping,
388 					   struct writeback_control *wbc,
389 					   struct page *primary_page,
390 					   pgoff_t final_page)
391 {
392 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
393 	struct page *pages[8], *page;
394 	unsigned long count, priv;
395 	unsigned n, offset, to, f, t;
396 	pgoff_t start, first, last;
397 	int loop, ret;
398 
399 	_enter(",%lx", primary_page->index);
400 
401 	count = 1;
402 	if (test_set_page_writeback(primary_page))
403 		BUG();
404 
405 	/* Find all consecutive lockable dirty pages that have contiguous
406 	 * written regions, stopping when we find a page that is not
407 	 * immediately lockable, is not dirty or is missing, or we reach the
408 	 * end of the range.
409 	 */
410 	start = primary_page->index;
411 	priv = page_private(primary_page);
412 	offset = priv & AFS_PRIV_MAX;
413 	to = priv >> AFS_PRIV_SHIFT;
414 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
415 			     primary_page->index, priv);
416 
417 	WARN_ON(offset == to);
418 	if (offset == to)
419 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
420 				     primary_page->index, priv);
421 
422 	if (start >= final_page || to < PAGE_SIZE)
423 		goto no_more;
424 
425 	start++;
426 	do {
427 		_debug("more %lx [%lx]", start, count);
428 		n = final_page - start + 1;
429 		if (n > ARRAY_SIZE(pages))
430 			n = ARRAY_SIZE(pages);
431 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
432 		_debug("fgpc %u", n);
433 		if (n == 0)
434 			goto no_more;
435 		if (pages[0]->index != start) {
436 			do {
437 				put_page(pages[--n]);
438 			} while (n > 0);
439 			goto no_more;
440 		}
441 
442 		for (loop = 0; loop < n; loop++) {
443 			if (to != PAGE_SIZE)
444 				break;
445 			page = pages[loop];
446 			if (page->index > final_page)
447 				break;
448 			if (!trylock_page(page))
449 				break;
450 			if (!PageDirty(page) || PageWriteback(page)) {
451 				unlock_page(page);
452 				break;
453 			}
454 
455 			priv = page_private(page);
456 			f = priv & AFS_PRIV_MAX;
457 			t = priv >> AFS_PRIV_SHIFT;
458 			if (f != 0) {
459 				unlock_page(page);
460 				break;
461 			}
462 			to = t;
463 
464 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
465 					     page->index, priv);
466 
467 			if (!clear_page_dirty_for_io(page))
468 				BUG();
469 			if (test_set_page_writeback(page))
470 				BUG();
471 			unlock_page(page);
472 			put_page(page);
473 		}
474 		count += loop;
475 		if (loop < n) {
476 			for (; loop < n; loop++)
477 				put_page(pages[loop]);
478 			goto no_more;
479 		}
480 
481 		start += loop;
482 	} while (start <= final_page && count < 65536);
483 
484 no_more:
485 	/* We now have a contiguous set of dirty pages, each with writeback
486 	 * set; the first page is still locked at this point, but all the rest
487 	 * have been unlocked.
488 	 */
489 	unlock_page(primary_page);
490 
491 	first = primary_page->index;
492 	last = first + count - 1;
493 
494 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
495 
496 	ret = afs_store_data(mapping, first, last, offset, to);
497 	switch (ret) {
498 	case 0:
499 		ret = count;
500 		break;
501 
502 	default:
503 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
504 		/* Fall through */
505 	case -EACCES:
506 	case -EPERM:
507 	case -ENOKEY:
508 	case -EKEYEXPIRED:
509 	case -EKEYREJECTED:
510 	case -EKEYREVOKED:
511 		afs_redirty_pages(wbc, mapping, first, last);
512 		mapping_set_error(mapping, ret);
513 		break;
514 
515 	case -EDQUOT:
516 	case -ENOSPC:
517 		afs_redirty_pages(wbc, mapping, first, last);
518 		mapping_set_error(mapping, -ENOSPC);
519 		break;
520 
521 	case -EROFS:
522 	case -EIO:
523 	case -EREMOTEIO:
524 	case -EFBIG:
525 	case -ENOENT:
526 	case -ENOMEDIUM:
527 	case -ENXIO:
528 		afs_kill_pages(mapping, first, last);
529 		mapping_set_error(mapping, ret);
530 		break;
531 	}
532 
533 	_leave(" = %d", ret);
534 	return ret;
535 }
536 
537 /*
538  * write a page back to the server
539  * - the caller locked the page for us
540  */
541 int afs_writepage(struct page *page, struct writeback_control *wbc)
542 {
543 	int ret;
544 
545 	_enter("{%lx},", page->index);
546 
547 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
548 					      wbc->range_end >> PAGE_SHIFT);
549 	if (ret < 0) {
550 		_leave(" = %d", ret);
551 		return 0;
552 	}
553 
554 	wbc->nr_to_write -= ret;
555 
556 	_leave(" = 0");
557 	return 0;
558 }
559 
560 /*
561  * write a region of pages back to the server
562  */
563 static int afs_writepages_region(struct address_space *mapping,
564 				 struct writeback_control *wbc,
565 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
566 {
567 	struct page *page;
568 	int ret, n;
569 
570 	_enter(",,%lx,%lx,", index, end);
571 
572 	do {
573 		n = find_get_pages_range_tag(mapping, &index, end,
574 					PAGECACHE_TAG_DIRTY, 1, &page);
575 		if (!n)
576 			break;
577 
578 		_debug("wback %lx", page->index);
579 
580 		/* at this point we hold neither mapping->tree_lock nor lock on
581 		 * the page itself: the page may be truncated or invalidated
582 		 * (changing page->mapping to NULL), or even swizzled back from
583 		 * swapper_space to tmpfs file mapping
584 		 */
585 		ret = lock_page_killable(page);
586 		if (ret < 0) {
587 			put_page(page);
588 			_leave(" = %d", ret);
589 			return ret;
590 		}
591 
592 		if (page->mapping != mapping || !PageDirty(page)) {
593 			unlock_page(page);
594 			put_page(page);
595 			continue;
596 		}
597 
598 		if (PageWriteback(page)) {
599 			unlock_page(page);
600 			if (wbc->sync_mode != WB_SYNC_NONE)
601 				wait_on_page_writeback(page);
602 			put_page(page);
603 			continue;
604 		}
605 
606 		if (!clear_page_dirty_for_io(page))
607 			BUG();
608 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
609 		put_page(page);
610 		if (ret < 0) {
611 			_leave(" = %d", ret);
612 			return ret;
613 		}
614 
615 		wbc->nr_to_write -= ret;
616 
617 		cond_resched();
618 	} while (index < end && wbc->nr_to_write > 0);
619 
620 	*_next = index;
621 	_leave(" = 0 [%lx]", *_next);
622 	return 0;
623 }
624 
625 /*
626  * write some of the pending data back to the server
627  */
628 int afs_writepages(struct address_space *mapping,
629 		   struct writeback_control *wbc)
630 {
631 	pgoff_t start, end, next;
632 	int ret;
633 
634 	_enter("");
635 
636 	if (wbc->range_cyclic) {
637 		start = mapping->writeback_index;
638 		end = -1;
639 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
640 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
641 			ret = afs_writepages_region(mapping, wbc, 0, start,
642 						    &next);
643 		mapping->writeback_index = next;
644 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
645 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
646 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
647 		if (wbc->nr_to_write > 0)
648 			mapping->writeback_index = next;
649 	} else {
650 		start = wbc->range_start >> PAGE_SHIFT;
651 		end = wbc->range_end >> PAGE_SHIFT;
652 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
653 	}
654 
655 	_leave(" = %d", ret);
656 	return ret;
657 }
658 
659 /*
660  * completion of write to server
661  */
662 void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
663 {
664 	struct pagevec pv;
665 	unsigned long priv;
666 	unsigned count, loop;
667 	pgoff_t first = call->first, last = call->last;
668 
669 	_enter("{%x:%u},{%lx-%lx}",
670 	       vnode->fid.vid, vnode->fid.vnode, first, last);
671 
672 	pagevec_init(&pv);
673 
674 	do {
675 		_debug("done %lx-%lx", first, last);
676 
677 		count = last - first + 1;
678 		if (count > PAGEVEC_SIZE)
679 			count = PAGEVEC_SIZE;
680 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
681 					      first, count, pv.pages);
682 		ASSERTCMP(pv.nr, ==, count);
683 
684 		for (loop = 0; loop < count; loop++) {
685 			priv = page_private(pv.pages[loop]);
686 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
687 					     pv.pages[loop]->index, priv);
688 			set_page_private(pv.pages[loop], 0);
689 			end_page_writeback(pv.pages[loop]);
690 		}
691 		first += count;
692 		__pagevec_release(&pv);
693 	} while (first <= last);
694 
695 	afs_prune_wb_keys(vnode);
696 	_leave("");
697 }
698 
699 /*
700  * write to an AFS file
701  */
702 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
703 {
704 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
705 	ssize_t result;
706 	size_t count = iov_iter_count(from);
707 
708 	_enter("{%x.%u},{%zu},",
709 	       vnode->fid.vid, vnode->fid.vnode, count);
710 
711 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
712 		printk(KERN_INFO
713 		       "AFS: Attempt to write to active swap file!\n");
714 		return -EBUSY;
715 	}
716 
717 	if (!count)
718 		return 0;
719 
720 	result = generic_file_write_iter(iocb, from);
721 
722 	_leave(" = %zd", result);
723 	return result;
724 }
725 
726 /*
727  * flush any dirty pages for this process, and check for write errors.
728  * - the return status from this call provides a reliable indication of
729  *   whether any write errors occurred for this process.
730  */
731 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
732 {
733 	struct inode *inode = file_inode(file);
734 	struct afs_vnode *vnode = AFS_FS_I(inode);
735 
736 	_enter("{%x:%u},{n=%pD},%d",
737 	       vnode->fid.vid, vnode->fid.vnode, file,
738 	       datasync);
739 
740 	return file_write_and_wait_range(file, start, end);
741 }
742 
743 /*
744  * Flush out all outstanding writes on a file opened for writing when it is
745  * closed.
746  */
747 int afs_flush(struct file *file, fl_owner_t id)
748 {
749 	_enter("");
750 
751 	if ((file->f_mode & FMODE_WRITE) == 0)
752 		return 0;
753 
754 	return vfs_fsync(file, 0);
755 }
756 
757 /*
758  * notification that a previously read-only page is about to become writable
759  * - if it returns an error, the caller will deliver a bus error signal
760  */
761 int afs_page_mkwrite(struct vm_fault *vmf)
762 {
763 	struct file *file = vmf->vma->vm_file;
764 	struct inode *inode = file_inode(file);
765 	struct afs_vnode *vnode = AFS_FS_I(inode);
766 	unsigned long priv;
767 
768 	_enter("{{%x:%u}},{%lx}",
769 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
770 
771 	sb_start_pagefault(inode->i_sb);
772 
773 	/* Wait for the page to be written to the cache before we allow it to
774 	 * be modified.  We then assume the entire page will need writing back.
775 	 */
776 #ifdef CONFIG_AFS_FSCACHE
777 	fscache_wait_on_page_write(vnode->cache, vmf->page);
778 #endif
779 
780 	if (PageWriteback(vmf->page) &&
781 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
782 		return VM_FAULT_RETRY;
783 
784 	if (lock_page_killable(vmf->page) < 0)
785 		return VM_FAULT_RETRY;
786 
787 	/* We mustn't change page->private until writeback is complete as that
788 	 * details the portion of the page we need to write back and we might
789 	 * need to redirty the page if there's a problem.
790 	 */
791 	wait_on_page_writeback(vmf->page);
792 
793 	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
794 	priv |= 0; /* From */
795 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
796 			     vmf->page->index, priv);
797 	SetPagePrivate(vmf->page);
798 	set_page_private(vmf->page, priv);
799 
800 	sb_end_pagefault(inode->i_sb);
801 	return VM_FAULT_LOCKED;
802 }
803 
804 /*
805  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
806  */
807 void afs_prune_wb_keys(struct afs_vnode *vnode)
808 {
809 	LIST_HEAD(graveyard);
810 	struct afs_wb_key *wbk, *tmp;
811 
812 	/* Discard unused keys */
813 	spin_lock(&vnode->wb_lock);
814 
815 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
816 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
817 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
818 			if (refcount_read(&wbk->usage) == 1)
819 				list_move(&wbk->vnode_link, &graveyard);
820 		}
821 	}
822 
823 	spin_unlock(&vnode->wb_lock);
824 
825 	while (!list_empty(&graveyard)) {
826 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
827 		list_del(&wbk->vnode_link);
828 		afs_put_wb_key(wbk);
829 	}
830 }
831 
832 /*
833  * Clean up a page during invalidation.
834  */
835 int afs_launder_page(struct page *page)
836 {
837 	struct address_space *mapping = page->mapping;
838 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
839 	unsigned long priv;
840 	unsigned int f, t;
841 	int ret = 0;
842 
843 	_enter("{%lx}", page->index);
844 
845 	priv = page_private(page);
846 	if (clear_page_dirty_for_io(page)) {
847 		f = 0;
848 		t = PAGE_SIZE;
849 		if (PagePrivate(page)) {
850 			f = priv & AFS_PRIV_MAX;
851 			t = priv >> AFS_PRIV_SHIFT;
852 		}
853 
854 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
855 				     page->index, priv);
856 		ret = afs_store_data(mapping, page->index, page->index, t, f);
857 	}
858 
859 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
860 			     page->index, priv);
861 	set_page_private(page, 0);
862 	ClearPagePrivate(page);
863 
864 #ifdef CONFIG_AFS_FSCACHE
865 	if (PageFsCache(page)) {
866 		fscache_wait_on_page_write(vnode->cache, page);
867 		fscache_uncache_page(vnode->cache, page);
868 	}
869 #endif
870 	return ret;
871 }
872