xref: /openbmc/linux/fs/afs/write.c (revision 68198dca)
1 /* handling of writes to regular files and writing back to the server
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/backing-dev.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include "internal.h"
19 
20 /*
21  * mark a page as having been made dirty and thus needing writeback
22  */
23 int afs_set_page_dirty(struct page *page)
24 {
25 	_enter("");
26 	return __set_page_dirty_nobuffers(page);
27 }
28 
29 /*
30  * partly or wholly fill a page that's under preparation for writing
31  */
32 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
33 			 loff_t pos, unsigned int len, struct page *page)
34 {
35 	struct afs_read *req;
36 	int ret;
37 
38 	_enter(",,%llu", (unsigned long long)pos);
39 
40 	req = kzalloc(sizeof(struct afs_read) + sizeof(struct page *),
41 		      GFP_KERNEL);
42 	if (!req)
43 		return -ENOMEM;
44 
45 	atomic_set(&req->usage, 1);
46 	req->pos = pos;
47 	req->len = len;
48 	req->nr_pages = 1;
49 	req->pages[0] = page;
50 	get_page(page);
51 
52 	ret = afs_fetch_data(vnode, key, req);
53 	afs_put_read(req);
54 	if (ret < 0) {
55 		if (ret == -ENOENT) {
56 			_debug("got NOENT from server"
57 			       " - marking file deleted and stale");
58 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
59 			ret = -ESTALE;
60 		}
61 	}
62 
63 	_leave(" = %d", ret);
64 	return ret;
65 }
66 
67 /*
68  * prepare to perform part of a write to a page
69  */
70 int afs_write_begin(struct file *file, struct address_space *mapping,
71 		    loff_t pos, unsigned len, unsigned flags,
72 		    struct page **pagep, void **fsdata)
73 {
74 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
75 	struct page *page;
76 	struct key *key = afs_file_key(file);
77 	unsigned long priv;
78 	unsigned f, from = pos & (PAGE_SIZE - 1);
79 	unsigned t, to = from + len;
80 	pgoff_t index = pos >> PAGE_SHIFT;
81 	int ret;
82 
83 	_enter("{%x:%u},{%lx},%u,%u",
84 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
85 
86 	/* We want to store information about how much of a page is altered in
87 	 * page->private.
88 	 */
89 	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
90 
91 	page = grab_cache_page_write_begin(mapping, index, flags);
92 	if (!page)
93 		return -ENOMEM;
94 
95 	if (!PageUptodate(page) && len != PAGE_SIZE) {
96 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
97 		if (ret < 0) {
98 			unlock_page(page);
99 			put_page(page);
100 			_leave(" = %d [prep]", ret);
101 			return ret;
102 		}
103 		SetPageUptodate(page);
104 	}
105 
106 	/* page won't leak in error case: it eventually gets cleaned off LRU */
107 	*pagep = page;
108 
109 try_again:
110 	/* See if this page is already partially written in a way that we can
111 	 * merge the new write with.
112 	 */
113 	t = f = 0;
114 	if (PagePrivate(page)) {
115 		priv = page_private(page);
116 		f = priv & AFS_PRIV_MAX;
117 		t = priv >> AFS_PRIV_SHIFT;
118 		ASSERTCMP(f, <=, t);
119 	}
120 
121 	if (f != t) {
122 		if (PageWriteback(page)) {
123 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
124 					     page->index, priv);
125 			goto flush_conflicting_write;
126 		}
127 		if (to < f || from > t)
128 			goto flush_conflicting_write;
129 		if (from < f)
130 			f = from;
131 		if (to > t)
132 			t = to;
133 	} else {
134 		f = from;
135 		t = to;
136 	}
137 
138 	priv = (unsigned long)t << AFS_PRIV_SHIFT;
139 	priv |= f;
140 	trace_afs_page_dirty(vnode, tracepoint_string("begin"),
141 			     page->index, priv);
142 	SetPagePrivate(page);
143 	set_page_private(page, priv);
144 	_leave(" = 0");
145 	return 0;
146 
147 	/* The previous write and this write aren't adjacent or overlapping, so
148 	 * flush the page out.
149 	 */
150 flush_conflicting_write:
151 	_debug("flush conflict");
152 	ret = write_one_page(page);
153 	if (ret < 0) {
154 		_leave(" = %d", ret);
155 		return ret;
156 	}
157 
158 	ret = lock_page_killable(page);
159 	if (ret < 0) {
160 		_leave(" = %d", ret);
161 		return ret;
162 	}
163 	goto try_again;
164 }
165 
166 /*
167  * finalise part of a write to a page
168  */
169 int afs_write_end(struct file *file, struct address_space *mapping,
170 		  loff_t pos, unsigned len, unsigned copied,
171 		  struct page *page, void *fsdata)
172 {
173 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
174 	struct key *key = afs_file_key(file);
175 	loff_t i_size, maybe_i_size;
176 	int ret;
177 
178 	_enter("{%x:%u},{%lx}",
179 	       vnode->fid.vid, vnode->fid.vnode, page->index);
180 
181 	maybe_i_size = pos + copied;
182 
183 	i_size = i_size_read(&vnode->vfs_inode);
184 	if (maybe_i_size > i_size) {
185 		spin_lock(&vnode->wb_lock);
186 		i_size = i_size_read(&vnode->vfs_inode);
187 		if (maybe_i_size > i_size)
188 			i_size_write(&vnode->vfs_inode, maybe_i_size);
189 		spin_unlock(&vnode->wb_lock);
190 	}
191 
192 	if (!PageUptodate(page)) {
193 		if (copied < len) {
194 			/* Try and load any missing data from the server.  The
195 			 * unmarshalling routine will take care of clearing any
196 			 * bits that are beyond the EOF.
197 			 */
198 			ret = afs_fill_page(vnode, key, pos + copied,
199 					    len - copied, page);
200 			if (ret < 0)
201 				return ret;
202 		}
203 		SetPageUptodate(page);
204 	}
205 
206 	set_page_dirty(page);
207 	if (PageDirty(page))
208 		_debug("dirtied");
209 	unlock_page(page);
210 	put_page(page);
211 
212 	return copied;
213 }
214 
215 /*
216  * kill all the pages in the given range
217  */
218 static void afs_kill_pages(struct address_space *mapping,
219 			   pgoff_t first, pgoff_t last)
220 {
221 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
222 	struct pagevec pv;
223 	unsigned count, loop;
224 
225 	_enter("{%x:%u},%lx-%lx",
226 	       vnode->fid.vid, vnode->fid.vnode, first, last);
227 
228 	pagevec_init(&pv);
229 
230 	do {
231 		_debug("kill %lx-%lx", first, last);
232 
233 		count = last - first + 1;
234 		if (count > PAGEVEC_SIZE)
235 			count = PAGEVEC_SIZE;
236 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
237 		ASSERTCMP(pv.nr, ==, count);
238 
239 		for (loop = 0; loop < count; loop++) {
240 			struct page *page = pv.pages[loop];
241 			ClearPageUptodate(page);
242 			SetPageError(page);
243 			end_page_writeback(page);
244 			if (page->index >= first)
245 				first = page->index + 1;
246 			lock_page(page);
247 			generic_error_remove_page(mapping, page);
248 		}
249 
250 		__pagevec_release(&pv);
251 	} while (first <= last);
252 
253 	_leave("");
254 }
255 
256 /*
257  * Redirty all the pages in a given range.
258  */
259 static void afs_redirty_pages(struct writeback_control *wbc,
260 			      struct address_space *mapping,
261 			      pgoff_t first, pgoff_t last)
262 {
263 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
264 	struct pagevec pv;
265 	unsigned count, loop;
266 
267 	_enter("{%x:%u},%lx-%lx",
268 	       vnode->fid.vid, vnode->fid.vnode, first, last);
269 
270 	pagevec_init(&pv);
271 
272 	do {
273 		_debug("redirty %lx-%lx", first, last);
274 
275 		count = last - first + 1;
276 		if (count > PAGEVEC_SIZE)
277 			count = PAGEVEC_SIZE;
278 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
279 		ASSERTCMP(pv.nr, ==, count);
280 
281 		for (loop = 0; loop < count; loop++) {
282 			struct page *page = pv.pages[loop];
283 
284 			redirty_page_for_writepage(wbc, page);
285 			end_page_writeback(page);
286 			if (page->index >= first)
287 				first = page->index + 1;
288 		}
289 
290 		__pagevec_release(&pv);
291 	} while (first <= last);
292 
293 	_leave("");
294 }
295 
296 /*
297  * write to a file
298  */
299 static int afs_store_data(struct address_space *mapping,
300 			  pgoff_t first, pgoff_t last,
301 			  unsigned offset, unsigned to)
302 {
303 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
304 	struct afs_fs_cursor fc;
305 	struct afs_wb_key *wbk = NULL;
306 	struct list_head *p;
307 	int ret = -ENOKEY, ret2;
308 
309 	_enter("%s{%x:%u.%u},%lx,%lx,%x,%x",
310 	       vnode->volume->name,
311 	       vnode->fid.vid,
312 	       vnode->fid.vnode,
313 	       vnode->fid.unique,
314 	       first, last, offset, to);
315 
316 	spin_lock(&vnode->wb_lock);
317 	p = vnode->wb_keys.next;
318 
319 	/* Iterate through the list looking for a valid key to use. */
320 try_next_key:
321 	while (p != &vnode->wb_keys) {
322 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
323 		_debug("wbk %u", key_serial(wbk->key));
324 		ret2 = key_validate(wbk->key);
325 		if (ret2 == 0)
326 			goto found_key;
327 		if (ret == -ENOKEY)
328 			ret = ret2;
329 		p = p->next;
330 	}
331 
332 	spin_unlock(&vnode->wb_lock);
333 	afs_put_wb_key(wbk);
334 	_leave(" = %d [no keys]", ret);
335 	return ret;
336 
337 found_key:
338 	refcount_inc(&wbk->usage);
339 	spin_unlock(&vnode->wb_lock);
340 
341 	_debug("USE WB KEY %u", key_serial(wbk->key));
342 
343 	ret = -ERESTARTSYS;
344 	if (afs_begin_vnode_operation(&fc, vnode, wbk->key)) {
345 		while (afs_select_fileserver(&fc)) {
346 			fc.cb_break = vnode->cb_break + vnode->cb_s_break;
347 			afs_fs_store_data(&fc, mapping, first, last, offset, to);
348 		}
349 
350 		afs_check_for_remote_deletion(&fc, fc.vnode);
351 		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
352 		ret = afs_end_vnode_operation(&fc);
353 	}
354 
355 	switch (ret) {
356 	case -EACCES:
357 	case -EPERM:
358 	case -ENOKEY:
359 	case -EKEYEXPIRED:
360 	case -EKEYREJECTED:
361 	case -EKEYREVOKED:
362 		_debug("next");
363 		spin_lock(&vnode->wb_lock);
364 		p = wbk->vnode_link.next;
365 		afs_put_wb_key(wbk);
366 		goto try_next_key;
367 	}
368 
369 	afs_put_wb_key(wbk);
370 	_leave(" = %d", ret);
371 	return ret;
372 }
373 
374 /*
375  * Synchronously write back the locked page and any subsequent non-locked dirty
376  * pages.
377  */
378 static int afs_write_back_from_locked_page(struct address_space *mapping,
379 					   struct writeback_control *wbc,
380 					   struct page *primary_page,
381 					   pgoff_t final_page)
382 {
383 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
384 	struct page *pages[8], *page;
385 	unsigned long count, priv;
386 	unsigned n, offset, to, f, t;
387 	pgoff_t start, first, last;
388 	int loop, ret;
389 
390 	_enter(",%lx", primary_page->index);
391 
392 	count = 1;
393 	if (test_set_page_writeback(primary_page))
394 		BUG();
395 
396 	/* Find all consecutive lockable dirty pages that have contiguous
397 	 * written regions, stopping when we find a page that is not
398 	 * immediately lockable, is not dirty or is missing, or we reach the
399 	 * end of the range.
400 	 */
401 	start = primary_page->index;
402 	priv = page_private(primary_page);
403 	offset = priv & AFS_PRIV_MAX;
404 	to = priv >> AFS_PRIV_SHIFT;
405 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
406 			     primary_page->index, priv);
407 
408 	WARN_ON(offset == to);
409 	if (offset == to)
410 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
411 				     primary_page->index, priv);
412 
413 	if (start >= final_page || to < PAGE_SIZE)
414 		goto no_more;
415 
416 	start++;
417 	do {
418 		_debug("more %lx [%lx]", start, count);
419 		n = final_page - start + 1;
420 		if (n > ARRAY_SIZE(pages))
421 			n = ARRAY_SIZE(pages);
422 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
423 		_debug("fgpc %u", n);
424 		if (n == 0)
425 			goto no_more;
426 		if (pages[0]->index != start) {
427 			do {
428 				put_page(pages[--n]);
429 			} while (n > 0);
430 			goto no_more;
431 		}
432 
433 		for (loop = 0; loop < n; loop++) {
434 			if (to != PAGE_SIZE)
435 				break;
436 			page = pages[loop];
437 			if (page->index > final_page)
438 				break;
439 			if (!trylock_page(page))
440 				break;
441 			if (!PageDirty(page) || PageWriteback(page)) {
442 				unlock_page(page);
443 				break;
444 			}
445 
446 			priv = page_private(page);
447 			f = priv & AFS_PRIV_MAX;
448 			t = priv >> AFS_PRIV_SHIFT;
449 			if (f != 0) {
450 				unlock_page(page);
451 				break;
452 			}
453 			to = t;
454 
455 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
456 					     page->index, priv);
457 
458 			if (!clear_page_dirty_for_io(page))
459 				BUG();
460 			if (test_set_page_writeback(page))
461 				BUG();
462 			unlock_page(page);
463 			put_page(page);
464 		}
465 		count += loop;
466 		if (loop < n) {
467 			for (; loop < n; loop++)
468 				put_page(pages[loop]);
469 			goto no_more;
470 		}
471 
472 		start += loop;
473 	} while (start <= final_page && count < 65536);
474 
475 no_more:
476 	/* We now have a contiguous set of dirty pages, each with writeback
477 	 * set; the first page is still locked at this point, but all the rest
478 	 * have been unlocked.
479 	 */
480 	unlock_page(primary_page);
481 
482 	first = primary_page->index;
483 	last = first + count - 1;
484 
485 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
486 
487 	ret = afs_store_data(mapping, first, last, offset, to);
488 	switch (ret) {
489 	case 0:
490 		ret = count;
491 		break;
492 
493 	default:
494 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
495 		/* Fall through */
496 	case -EACCES:
497 	case -EPERM:
498 	case -ENOKEY:
499 	case -EKEYEXPIRED:
500 	case -EKEYREJECTED:
501 	case -EKEYREVOKED:
502 		afs_redirty_pages(wbc, mapping, first, last);
503 		mapping_set_error(mapping, ret);
504 		break;
505 
506 	case -EDQUOT:
507 	case -ENOSPC:
508 		afs_redirty_pages(wbc, mapping, first, last);
509 		mapping_set_error(mapping, -ENOSPC);
510 		break;
511 
512 	case -EROFS:
513 	case -EIO:
514 	case -EREMOTEIO:
515 	case -EFBIG:
516 	case -ENOENT:
517 	case -ENOMEDIUM:
518 	case -ENXIO:
519 		afs_kill_pages(mapping, first, last);
520 		mapping_set_error(mapping, ret);
521 		break;
522 	}
523 
524 	_leave(" = %d", ret);
525 	return ret;
526 }
527 
528 /*
529  * write a page back to the server
530  * - the caller locked the page for us
531  */
532 int afs_writepage(struct page *page, struct writeback_control *wbc)
533 {
534 	int ret;
535 
536 	_enter("{%lx},", page->index);
537 
538 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
539 					      wbc->range_end >> PAGE_SHIFT);
540 	if (ret < 0) {
541 		_leave(" = %d", ret);
542 		return 0;
543 	}
544 
545 	wbc->nr_to_write -= ret;
546 
547 	_leave(" = 0");
548 	return 0;
549 }
550 
551 /*
552  * write a region of pages back to the server
553  */
554 static int afs_writepages_region(struct address_space *mapping,
555 				 struct writeback_control *wbc,
556 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
557 {
558 	struct page *page;
559 	int ret, n;
560 
561 	_enter(",,%lx,%lx,", index, end);
562 
563 	do {
564 		n = find_get_pages_range_tag(mapping, &index, end,
565 					PAGECACHE_TAG_DIRTY, 1, &page);
566 		if (!n)
567 			break;
568 
569 		_debug("wback %lx", page->index);
570 
571 		/* at this point we hold neither mapping->tree_lock nor lock on
572 		 * the page itself: the page may be truncated or invalidated
573 		 * (changing page->mapping to NULL), or even swizzled back from
574 		 * swapper_space to tmpfs file mapping
575 		 */
576 		ret = lock_page_killable(page);
577 		if (ret < 0) {
578 			put_page(page);
579 			_leave(" = %d", ret);
580 			return ret;
581 		}
582 
583 		if (page->mapping != mapping || !PageDirty(page)) {
584 			unlock_page(page);
585 			put_page(page);
586 			continue;
587 		}
588 
589 		if (PageWriteback(page)) {
590 			unlock_page(page);
591 			if (wbc->sync_mode != WB_SYNC_NONE)
592 				wait_on_page_writeback(page);
593 			put_page(page);
594 			continue;
595 		}
596 
597 		if (!clear_page_dirty_for_io(page))
598 			BUG();
599 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
600 		put_page(page);
601 		if (ret < 0) {
602 			_leave(" = %d", ret);
603 			return ret;
604 		}
605 
606 		wbc->nr_to_write -= ret;
607 
608 		cond_resched();
609 	} while (index < end && wbc->nr_to_write > 0);
610 
611 	*_next = index;
612 	_leave(" = 0 [%lx]", *_next);
613 	return 0;
614 }
615 
616 /*
617  * write some of the pending data back to the server
618  */
619 int afs_writepages(struct address_space *mapping,
620 		   struct writeback_control *wbc)
621 {
622 	pgoff_t start, end, next;
623 	int ret;
624 
625 	_enter("");
626 
627 	if (wbc->range_cyclic) {
628 		start = mapping->writeback_index;
629 		end = -1;
630 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
631 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
632 			ret = afs_writepages_region(mapping, wbc, 0, start,
633 						    &next);
634 		mapping->writeback_index = next;
635 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
636 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
637 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
638 		if (wbc->nr_to_write > 0)
639 			mapping->writeback_index = next;
640 	} else {
641 		start = wbc->range_start >> PAGE_SHIFT;
642 		end = wbc->range_end >> PAGE_SHIFT;
643 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
644 	}
645 
646 	_leave(" = %d", ret);
647 	return ret;
648 }
649 
650 /*
651  * completion of write to server
652  */
653 void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
654 {
655 	struct pagevec pv;
656 	unsigned long priv;
657 	unsigned count, loop;
658 	pgoff_t first = call->first, last = call->last;
659 
660 	_enter("{%x:%u},{%lx-%lx}",
661 	       vnode->fid.vid, vnode->fid.vnode, first, last);
662 
663 	pagevec_init(&pv);
664 
665 	do {
666 		_debug("done %lx-%lx", first, last);
667 
668 		count = last - first + 1;
669 		if (count > PAGEVEC_SIZE)
670 			count = PAGEVEC_SIZE;
671 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
672 					      first, count, pv.pages);
673 		ASSERTCMP(pv.nr, ==, count);
674 
675 		for (loop = 0; loop < count; loop++) {
676 			priv = page_private(pv.pages[loop]);
677 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
678 					     pv.pages[loop]->index, priv);
679 			set_page_private(pv.pages[loop], 0);
680 			end_page_writeback(pv.pages[loop]);
681 		}
682 		first += count;
683 		__pagevec_release(&pv);
684 	} while (first <= last);
685 
686 	afs_prune_wb_keys(vnode);
687 	_leave("");
688 }
689 
690 /*
691  * write to an AFS file
692  */
693 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
694 {
695 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
696 	ssize_t result;
697 	size_t count = iov_iter_count(from);
698 
699 	_enter("{%x.%u},{%zu},",
700 	       vnode->fid.vid, vnode->fid.vnode, count);
701 
702 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
703 		printk(KERN_INFO
704 		       "AFS: Attempt to write to active swap file!\n");
705 		return -EBUSY;
706 	}
707 
708 	if (!count)
709 		return 0;
710 
711 	result = generic_file_write_iter(iocb, from);
712 
713 	_leave(" = %zd", result);
714 	return result;
715 }
716 
717 /*
718  * flush any dirty pages for this process, and check for write errors.
719  * - the return status from this call provides a reliable indication of
720  *   whether any write errors occurred for this process.
721  */
722 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
723 {
724 	struct inode *inode = file_inode(file);
725 	struct afs_vnode *vnode = AFS_FS_I(inode);
726 
727 	_enter("{%x:%u},{n=%pD},%d",
728 	       vnode->fid.vid, vnode->fid.vnode, file,
729 	       datasync);
730 
731 	return file_write_and_wait_range(file, start, end);
732 }
733 
734 /*
735  * Flush out all outstanding writes on a file opened for writing when it is
736  * closed.
737  */
738 int afs_flush(struct file *file, fl_owner_t id)
739 {
740 	_enter("");
741 
742 	if ((file->f_mode & FMODE_WRITE) == 0)
743 		return 0;
744 
745 	return vfs_fsync(file, 0);
746 }
747 
748 /*
749  * notification that a previously read-only page is about to become writable
750  * - if it returns an error, the caller will deliver a bus error signal
751  */
752 int afs_page_mkwrite(struct vm_fault *vmf)
753 {
754 	struct file *file = vmf->vma->vm_file;
755 	struct inode *inode = file_inode(file);
756 	struct afs_vnode *vnode = AFS_FS_I(inode);
757 	unsigned long priv;
758 
759 	_enter("{{%x:%u}},{%lx}",
760 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
761 
762 	sb_start_pagefault(inode->i_sb);
763 
764 	/* Wait for the page to be written to the cache before we allow it to
765 	 * be modified.  We then assume the entire page will need writing back.
766 	 */
767 #ifdef CONFIG_AFS_FSCACHE
768 	fscache_wait_on_page_write(vnode->cache, vmf->page);
769 #endif
770 
771 	if (PageWriteback(vmf->page) &&
772 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
773 		return VM_FAULT_RETRY;
774 
775 	if (lock_page_killable(vmf->page) < 0)
776 		return VM_FAULT_RETRY;
777 
778 	/* We mustn't change page->private until writeback is complete as that
779 	 * details the portion of the page we need to write back and we might
780 	 * need to redirty the page if there's a problem.
781 	 */
782 	wait_on_page_writeback(vmf->page);
783 
784 	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
785 	priv |= 0; /* From */
786 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
787 			     vmf->page->index, priv);
788 	SetPagePrivate(vmf->page);
789 	set_page_private(vmf->page, priv);
790 
791 	sb_end_pagefault(inode->i_sb);
792 	return VM_FAULT_LOCKED;
793 }
794 
795 /*
796  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
797  */
798 void afs_prune_wb_keys(struct afs_vnode *vnode)
799 {
800 	LIST_HEAD(graveyard);
801 	struct afs_wb_key *wbk, *tmp;
802 
803 	/* Discard unused keys */
804 	spin_lock(&vnode->wb_lock);
805 
806 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
807 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
808 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
809 			if (refcount_read(&wbk->usage) == 1)
810 				list_move(&wbk->vnode_link, &graveyard);
811 		}
812 	}
813 
814 	spin_unlock(&vnode->wb_lock);
815 
816 	while (!list_empty(&graveyard)) {
817 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
818 		list_del(&wbk->vnode_link);
819 		afs_put_wb_key(wbk);
820 	}
821 }
822 
823 /*
824  * Clean up a page during invalidation.
825  */
826 int afs_launder_page(struct page *page)
827 {
828 	struct address_space *mapping = page->mapping;
829 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
830 	unsigned long priv;
831 	unsigned int f, t;
832 	int ret = 0;
833 
834 	_enter("{%lx}", page->index);
835 
836 	priv = page_private(page);
837 	if (clear_page_dirty_for_io(page)) {
838 		f = 0;
839 		t = PAGE_SIZE;
840 		if (PagePrivate(page)) {
841 			f = priv & AFS_PRIV_MAX;
842 			t = priv >> AFS_PRIV_SHIFT;
843 		}
844 
845 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
846 				     page->index, priv);
847 		ret = afs_store_data(mapping, page->index, page->index, t, f);
848 	}
849 
850 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
851 			     page->index, priv);
852 	set_page_private(page, 0);
853 	ClearPagePrivate(page);
854 
855 #ifdef CONFIG_AFS_FSCACHE
856 	if (PageFsCache(page)) {
857 		fscache_wait_on_page_write(vnode->cache, page);
858 		fscache_uncache_page(vnode->cache, page);
859 	}
860 #endif
861 	return ret;
862 }
863