xref: /openbmc/linux/fs/afs/write.c (revision 65dd2d60)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21 	_enter("");
22 	return __set_page_dirty_nobuffers(page);
23 }
24 
25 /*
26  * partly or wholly fill a page that's under preparation for writing
27  */
28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29 			 loff_t pos, unsigned int len, struct page *page)
30 {
31 	struct afs_read *req;
32 	size_t p;
33 	void *data;
34 	int ret;
35 
36 	_enter(",,%llu", (unsigned long long)pos);
37 
38 	if (pos >= vnode->vfs_inode.i_size) {
39 		p = pos & ~PAGE_MASK;
40 		ASSERTCMP(p + len, <=, PAGE_SIZE);
41 		data = kmap(page);
42 		memset(data + p, 0, len);
43 		kunmap(page);
44 		return 0;
45 	}
46 
47 	req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48 	if (!req)
49 		return -ENOMEM;
50 
51 	refcount_set(&req->usage, 1);
52 	req->pos = pos;
53 	req->len = len;
54 	req->nr_pages = 1;
55 	req->pages = req->array;
56 	req->pages[0] = page;
57 	get_page(page);
58 
59 	ret = afs_fetch_data(vnode, key, req);
60 	afs_put_read(req);
61 	if (ret < 0) {
62 		if (ret == -ENOENT) {
63 			_debug("got NOENT from server"
64 			       " - marking file deleted and stale");
65 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
66 			ret = -ESTALE;
67 		}
68 	}
69 
70 	_leave(" = %d", ret);
71 	return ret;
72 }
73 
74 /*
75  * prepare to perform part of a write to a page
76  */
77 int afs_write_begin(struct file *file, struct address_space *mapping,
78 		    loff_t pos, unsigned len, unsigned flags,
79 		    struct page **_page, void **fsdata)
80 {
81 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82 	struct page *page;
83 	struct key *key = afs_file_key(file);
84 	unsigned long priv;
85 	unsigned f, from = pos & (PAGE_SIZE - 1);
86 	unsigned t, to = from + len;
87 	pgoff_t index = pos >> PAGE_SHIFT;
88 	int ret;
89 
90 	_enter("{%llx:%llu},{%lx},%u,%u",
91 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
92 
93 	/* We want to store information about how much of a page is altered in
94 	 * page->private.
95 	 */
96 	BUILD_BUG_ON(PAGE_SIZE - 1 > __AFS_PAGE_PRIV_MASK && sizeof(page->private) < 8);
97 
98 	page = grab_cache_page_write_begin(mapping, index, flags);
99 	if (!page)
100 		return -ENOMEM;
101 
102 	if (!PageUptodate(page) && len != PAGE_SIZE) {
103 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
104 		if (ret < 0) {
105 			unlock_page(page);
106 			put_page(page);
107 			_leave(" = %d [prep]", ret);
108 			return ret;
109 		}
110 		SetPageUptodate(page);
111 	}
112 
113 try_again:
114 	/* See if this page is already partially written in a way that we can
115 	 * merge the new write with.
116 	 */
117 	t = f = 0;
118 	if (PagePrivate(page)) {
119 		priv = page_private(page);
120 		f = afs_page_dirty_from(priv);
121 		t = afs_page_dirty_to(priv);
122 		ASSERTCMP(f, <=, t);
123 	}
124 
125 	if (f != t) {
126 		if (PageWriteback(page)) {
127 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
128 					     page->index, priv);
129 			goto flush_conflicting_write;
130 		}
131 		/* If the file is being filled locally, allow inter-write
132 		 * spaces to be merged into writes.  If it's not, only write
133 		 * back what the user gives us.
134 		 */
135 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
136 		    (to < f || from > t))
137 			goto flush_conflicting_write;
138 	}
139 
140 	*_page = page;
141 	_leave(" = 0");
142 	return 0;
143 
144 	/* The previous write and this write aren't adjacent or overlapping, so
145 	 * flush the page out.
146 	 */
147 flush_conflicting_write:
148 	_debug("flush conflict");
149 	ret = write_one_page(page);
150 	if (ret < 0)
151 		goto error;
152 
153 	ret = lock_page_killable(page);
154 	if (ret < 0)
155 		goto error;
156 	goto try_again;
157 
158 error:
159 	put_page(page);
160 	_leave(" = %d", ret);
161 	return ret;
162 }
163 
164 /*
165  * finalise part of a write to a page
166  */
167 int afs_write_end(struct file *file, struct address_space *mapping,
168 		  loff_t pos, unsigned len, unsigned copied,
169 		  struct page *page, void *fsdata)
170 {
171 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
172 	struct key *key = afs_file_key(file);
173 	unsigned long priv;
174 	unsigned int f, from = pos & (PAGE_SIZE - 1);
175 	unsigned int t, to = from + copied;
176 	loff_t i_size, maybe_i_size;
177 	int ret;
178 
179 	_enter("{%llx:%llu},{%lx}",
180 	       vnode->fid.vid, vnode->fid.vnode, page->index);
181 
182 	maybe_i_size = pos + copied;
183 
184 	i_size = i_size_read(&vnode->vfs_inode);
185 	if (maybe_i_size > i_size) {
186 		write_seqlock(&vnode->cb_lock);
187 		i_size = i_size_read(&vnode->vfs_inode);
188 		if (maybe_i_size > i_size)
189 			i_size_write(&vnode->vfs_inode, maybe_i_size);
190 		write_sequnlock(&vnode->cb_lock);
191 	}
192 
193 	if (!PageUptodate(page)) {
194 		if (copied < len) {
195 			/* Try and load any missing data from the server.  The
196 			 * unmarshalling routine will take care of clearing any
197 			 * bits that are beyond the EOF.
198 			 */
199 			ret = afs_fill_page(vnode, key, pos + copied,
200 					    len - copied, page);
201 			if (ret < 0)
202 				goto out;
203 		}
204 		SetPageUptodate(page);
205 	}
206 
207 	if (PagePrivate(page)) {
208 		priv = page_private(page);
209 		f = afs_page_dirty_from(priv);
210 		t = afs_page_dirty_to(priv);
211 		if (from < f)
212 			f = from;
213 		if (to > t)
214 			t = to;
215 		priv = afs_page_dirty(f, t);
216 		set_page_private(page, priv);
217 		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"),
218 				     page->index, priv);
219 	} else {
220 		priv = afs_page_dirty(from, to);
221 		attach_page_private(page, (void *)priv);
222 		trace_afs_page_dirty(vnode, tracepoint_string("dirty"),
223 				     page->index, priv);
224 	}
225 
226 	set_page_dirty(page);
227 	if (PageDirty(page))
228 		_debug("dirtied");
229 	ret = copied;
230 
231 out:
232 	unlock_page(page);
233 	put_page(page);
234 	return ret;
235 }
236 
237 /*
238  * kill all the pages in the given range
239  */
240 static void afs_kill_pages(struct address_space *mapping,
241 			   pgoff_t first, pgoff_t last)
242 {
243 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
244 	struct pagevec pv;
245 	unsigned count, loop;
246 
247 	_enter("{%llx:%llu},%lx-%lx",
248 	       vnode->fid.vid, vnode->fid.vnode, first, last);
249 
250 	pagevec_init(&pv);
251 
252 	do {
253 		_debug("kill %lx-%lx", first, last);
254 
255 		count = last - first + 1;
256 		if (count > PAGEVEC_SIZE)
257 			count = PAGEVEC_SIZE;
258 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
259 		ASSERTCMP(pv.nr, ==, count);
260 
261 		for (loop = 0; loop < count; loop++) {
262 			struct page *page = pv.pages[loop];
263 			ClearPageUptodate(page);
264 			SetPageError(page);
265 			end_page_writeback(page);
266 			if (page->index >= first)
267 				first = page->index + 1;
268 			lock_page(page);
269 			generic_error_remove_page(mapping, page);
270 			unlock_page(page);
271 		}
272 
273 		__pagevec_release(&pv);
274 	} while (first <= last);
275 
276 	_leave("");
277 }
278 
279 /*
280  * Redirty all the pages in a given range.
281  */
282 static void afs_redirty_pages(struct writeback_control *wbc,
283 			      struct address_space *mapping,
284 			      pgoff_t first, pgoff_t last)
285 {
286 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
287 	struct pagevec pv;
288 	unsigned count, loop;
289 
290 	_enter("{%llx:%llu},%lx-%lx",
291 	       vnode->fid.vid, vnode->fid.vnode, first, last);
292 
293 	pagevec_init(&pv);
294 
295 	do {
296 		_debug("redirty %lx-%lx", first, last);
297 
298 		count = last - first + 1;
299 		if (count > PAGEVEC_SIZE)
300 			count = PAGEVEC_SIZE;
301 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
302 		ASSERTCMP(pv.nr, ==, count);
303 
304 		for (loop = 0; loop < count; loop++) {
305 			struct page *page = pv.pages[loop];
306 
307 			redirty_page_for_writepage(wbc, page);
308 			end_page_writeback(page);
309 			if (page->index >= first)
310 				first = page->index + 1;
311 		}
312 
313 		__pagevec_release(&pv);
314 	} while (first <= last);
315 
316 	_leave("");
317 }
318 
319 /*
320  * completion of write to server
321  */
322 static void afs_pages_written_back(struct afs_vnode *vnode,
323 				   pgoff_t first, pgoff_t last)
324 {
325 	struct pagevec pv;
326 	unsigned long priv;
327 	unsigned count, loop;
328 
329 	_enter("{%llx:%llu},{%lx-%lx}",
330 	       vnode->fid.vid, vnode->fid.vnode, first, last);
331 
332 	pagevec_init(&pv);
333 
334 	do {
335 		_debug("done %lx-%lx", first, last);
336 
337 		count = last - first + 1;
338 		if (count > PAGEVEC_SIZE)
339 			count = PAGEVEC_SIZE;
340 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
341 					      first, count, pv.pages);
342 		ASSERTCMP(pv.nr, ==, count);
343 
344 		for (loop = 0; loop < count; loop++) {
345 			priv = (unsigned long)detach_page_private(pv.pages[loop]);
346 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
347 					     pv.pages[loop]->index, priv);
348 			end_page_writeback(pv.pages[loop]);
349 		}
350 		first += count;
351 		__pagevec_release(&pv);
352 	} while (first <= last);
353 
354 	afs_prune_wb_keys(vnode);
355 	_leave("");
356 }
357 
358 /*
359  * Find a key to use for the writeback.  We cached the keys used to author the
360  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
361  * and we need to start from there if it's set.
362  */
363 static int afs_get_writeback_key(struct afs_vnode *vnode,
364 				 struct afs_wb_key **_wbk)
365 {
366 	struct afs_wb_key *wbk = NULL;
367 	struct list_head *p;
368 	int ret = -ENOKEY, ret2;
369 
370 	spin_lock(&vnode->wb_lock);
371 	if (*_wbk)
372 		p = (*_wbk)->vnode_link.next;
373 	else
374 		p = vnode->wb_keys.next;
375 
376 	while (p != &vnode->wb_keys) {
377 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
378 		_debug("wbk %u", key_serial(wbk->key));
379 		ret2 = key_validate(wbk->key);
380 		if (ret2 == 0) {
381 			refcount_inc(&wbk->usage);
382 			_debug("USE WB KEY %u", key_serial(wbk->key));
383 			break;
384 		}
385 
386 		wbk = NULL;
387 		if (ret == -ENOKEY)
388 			ret = ret2;
389 		p = p->next;
390 	}
391 
392 	spin_unlock(&vnode->wb_lock);
393 	if (*_wbk)
394 		afs_put_wb_key(*_wbk);
395 	*_wbk = wbk;
396 	return 0;
397 }
398 
399 static void afs_store_data_success(struct afs_operation *op)
400 {
401 	struct afs_vnode *vnode = op->file[0].vnode;
402 
403 	op->ctime = op->file[0].scb.status.mtime_client;
404 	afs_vnode_commit_status(op, &op->file[0]);
405 	if (op->error == 0) {
406 		if (!op->store.laundering)
407 			afs_pages_written_back(vnode, op->store.first, op->store.last);
408 		afs_stat_v(vnode, n_stores);
409 		atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
410 				(op->store.first * PAGE_SIZE + op->store.first_offset),
411 				&afs_v2net(vnode)->n_store_bytes);
412 	}
413 }
414 
415 static const struct afs_operation_ops afs_store_data_operation = {
416 	.issue_afs_rpc	= afs_fs_store_data,
417 	.issue_yfs_rpc	= yfs_fs_store_data,
418 	.success	= afs_store_data_success,
419 };
420 
421 /*
422  * write to a file
423  */
424 static int afs_store_data(struct address_space *mapping,
425 			  pgoff_t first, pgoff_t last,
426 			  unsigned offset, unsigned to, bool laundering)
427 {
428 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
429 	struct afs_operation *op;
430 	struct afs_wb_key *wbk = NULL;
431 	int ret;
432 
433 	_enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
434 	       vnode->volume->name,
435 	       vnode->fid.vid,
436 	       vnode->fid.vnode,
437 	       vnode->fid.unique,
438 	       first, last, offset, to);
439 
440 	ret = afs_get_writeback_key(vnode, &wbk);
441 	if (ret) {
442 		_leave(" = %d [no keys]", ret);
443 		return ret;
444 	}
445 
446 	op = afs_alloc_operation(wbk->key, vnode->volume);
447 	if (IS_ERR(op)) {
448 		afs_put_wb_key(wbk);
449 		return -ENOMEM;
450 	}
451 
452 	afs_op_set_vnode(op, 0, vnode);
453 	op->file[0].dv_delta = 1;
454 	op->store.mapping = mapping;
455 	op->store.first = first;
456 	op->store.last = last;
457 	op->store.first_offset = offset;
458 	op->store.last_to = to;
459 	op->store.laundering = laundering;
460 	op->mtime = vnode->vfs_inode.i_mtime;
461 	op->flags |= AFS_OPERATION_UNINTR;
462 	op->ops = &afs_store_data_operation;
463 
464 try_next_key:
465 	afs_begin_vnode_operation(op);
466 	afs_wait_for_operation(op);
467 
468 	switch (op->error) {
469 	case -EACCES:
470 	case -EPERM:
471 	case -ENOKEY:
472 	case -EKEYEXPIRED:
473 	case -EKEYREJECTED:
474 	case -EKEYREVOKED:
475 		_debug("next");
476 
477 		ret = afs_get_writeback_key(vnode, &wbk);
478 		if (ret == 0) {
479 			key_put(op->key);
480 			op->key = key_get(wbk->key);
481 			goto try_next_key;
482 		}
483 		break;
484 	}
485 
486 	afs_put_wb_key(wbk);
487 	_leave(" = %d", op->error);
488 	return afs_put_operation(op);
489 }
490 
491 /*
492  * Synchronously write back the locked page and any subsequent non-locked dirty
493  * pages.
494  */
495 static int afs_write_back_from_locked_page(struct address_space *mapping,
496 					   struct writeback_control *wbc,
497 					   struct page *primary_page,
498 					   pgoff_t final_page)
499 {
500 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
501 	struct page *pages[8], *page;
502 	unsigned long count, priv;
503 	unsigned n, offset, to, f, t;
504 	pgoff_t start, first, last;
505 	loff_t i_size, end;
506 	int loop, ret;
507 
508 	_enter(",%lx", primary_page->index);
509 
510 	count = 1;
511 	if (test_set_page_writeback(primary_page))
512 		BUG();
513 
514 	/* Find all consecutive lockable dirty pages that have contiguous
515 	 * written regions, stopping when we find a page that is not
516 	 * immediately lockable, is not dirty or is missing, or we reach the
517 	 * end of the range.
518 	 */
519 	start = primary_page->index;
520 	priv = page_private(primary_page);
521 	offset = afs_page_dirty_from(priv);
522 	to = afs_page_dirty_to(priv);
523 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
524 			     primary_page->index, priv);
525 
526 	WARN_ON(offset == to);
527 	if (offset == to)
528 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
529 				     primary_page->index, priv);
530 
531 	if (start >= final_page ||
532 	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
533 		goto no_more;
534 
535 	start++;
536 	do {
537 		_debug("more %lx [%lx]", start, count);
538 		n = final_page - start + 1;
539 		if (n > ARRAY_SIZE(pages))
540 			n = ARRAY_SIZE(pages);
541 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
542 		_debug("fgpc %u", n);
543 		if (n == 0)
544 			goto no_more;
545 		if (pages[0]->index != start) {
546 			do {
547 				put_page(pages[--n]);
548 			} while (n > 0);
549 			goto no_more;
550 		}
551 
552 		for (loop = 0; loop < n; loop++) {
553 			page = pages[loop];
554 			if (to != PAGE_SIZE &&
555 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
556 				break;
557 			if (page->index > final_page)
558 				break;
559 			if (!trylock_page(page))
560 				break;
561 			if (!PageDirty(page) || PageWriteback(page)) {
562 				unlock_page(page);
563 				break;
564 			}
565 
566 			priv = page_private(page);
567 			f = afs_page_dirty_from(priv);
568 			t = afs_page_dirty_to(priv);
569 			if (f != 0 &&
570 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
571 				unlock_page(page);
572 				break;
573 			}
574 			to = t;
575 
576 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
577 					     page->index, priv);
578 
579 			if (!clear_page_dirty_for_io(page))
580 				BUG();
581 			if (test_set_page_writeback(page))
582 				BUG();
583 			unlock_page(page);
584 			put_page(page);
585 		}
586 		count += loop;
587 		if (loop < n) {
588 			for (; loop < n; loop++)
589 				put_page(pages[loop]);
590 			goto no_more;
591 		}
592 
593 		start += loop;
594 	} while (start <= final_page && count < 65536);
595 
596 no_more:
597 	/* We now have a contiguous set of dirty pages, each with writeback
598 	 * set; the first page is still locked at this point, but all the rest
599 	 * have been unlocked.
600 	 */
601 	unlock_page(primary_page);
602 
603 	first = primary_page->index;
604 	last = first + count - 1;
605 
606 	end = (loff_t)last * PAGE_SIZE + to;
607 	i_size = i_size_read(&vnode->vfs_inode);
608 
609 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
610 	if (end > i_size)
611 		to = i_size & ~PAGE_MASK;
612 
613 	ret = afs_store_data(mapping, first, last, offset, to, false);
614 	switch (ret) {
615 	case 0:
616 		ret = count;
617 		break;
618 
619 	default:
620 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
621 		fallthrough;
622 	case -EACCES:
623 	case -EPERM:
624 	case -ENOKEY:
625 	case -EKEYEXPIRED:
626 	case -EKEYREJECTED:
627 	case -EKEYREVOKED:
628 		afs_redirty_pages(wbc, mapping, first, last);
629 		mapping_set_error(mapping, ret);
630 		break;
631 
632 	case -EDQUOT:
633 	case -ENOSPC:
634 		afs_redirty_pages(wbc, mapping, first, last);
635 		mapping_set_error(mapping, -ENOSPC);
636 		break;
637 
638 	case -EROFS:
639 	case -EIO:
640 	case -EREMOTEIO:
641 	case -EFBIG:
642 	case -ENOENT:
643 	case -ENOMEDIUM:
644 	case -ENXIO:
645 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
646 		afs_kill_pages(mapping, first, last);
647 		mapping_set_error(mapping, ret);
648 		break;
649 	}
650 
651 	_leave(" = %d", ret);
652 	return ret;
653 }
654 
655 /*
656  * write a page back to the server
657  * - the caller locked the page for us
658  */
659 int afs_writepage(struct page *page, struct writeback_control *wbc)
660 {
661 	int ret;
662 
663 	_enter("{%lx},", page->index);
664 
665 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
666 					      wbc->range_end >> PAGE_SHIFT);
667 	if (ret < 0) {
668 		_leave(" = %d", ret);
669 		return 0;
670 	}
671 
672 	wbc->nr_to_write -= ret;
673 
674 	_leave(" = 0");
675 	return 0;
676 }
677 
678 /*
679  * write a region of pages back to the server
680  */
681 static int afs_writepages_region(struct address_space *mapping,
682 				 struct writeback_control *wbc,
683 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
684 {
685 	struct page *page;
686 	int ret, n;
687 
688 	_enter(",,%lx,%lx,", index, end);
689 
690 	do {
691 		n = find_get_pages_range_tag(mapping, &index, end,
692 					PAGECACHE_TAG_DIRTY, 1, &page);
693 		if (!n)
694 			break;
695 
696 		_debug("wback %lx", page->index);
697 
698 		/*
699 		 * at this point we hold neither the i_pages lock nor the
700 		 * page lock: the page may be truncated or invalidated
701 		 * (changing page->mapping to NULL), or even swizzled
702 		 * back from swapper_space to tmpfs file mapping
703 		 */
704 		ret = lock_page_killable(page);
705 		if (ret < 0) {
706 			put_page(page);
707 			_leave(" = %d", ret);
708 			return ret;
709 		}
710 
711 		if (page->mapping != mapping || !PageDirty(page)) {
712 			unlock_page(page);
713 			put_page(page);
714 			continue;
715 		}
716 
717 		if (PageWriteback(page)) {
718 			unlock_page(page);
719 			if (wbc->sync_mode != WB_SYNC_NONE)
720 				wait_on_page_writeback(page);
721 			put_page(page);
722 			continue;
723 		}
724 
725 		if (!clear_page_dirty_for_io(page))
726 			BUG();
727 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
728 		put_page(page);
729 		if (ret < 0) {
730 			_leave(" = %d", ret);
731 			return ret;
732 		}
733 
734 		wbc->nr_to_write -= ret;
735 
736 		cond_resched();
737 	} while (index < end && wbc->nr_to_write > 0);
738 
739 	*_next = index;
740 	_leave(" = 0 [%lx]", *_next);
741 	return 0;
742 }
743 
744 /*
745  * write some of the pending data back to the server
746  */
747 int afs_writepages(struct address_space *mapping,
748 		   struct writeback_control *wbc)
749 {
750 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
751 	pgoff_t start, end, next;
752 	int ret;
753 
754 	_enter("");
755 
756 	/* We have to be careful as we can end up racing with setattr()
757 	 * truncating the pagecache since the caller doesn't take a lock here
758 	 * to prevent it.
759 	 */
760 	if (wbc->sync_mode == WB_SYNC_ALL)
761 		down_read(&vnode->validate_lock);
762 	else if (!down_read_trylock(&vnode->validate_lock))
763 		return 0;
764 
765 	if (wbc->range_cyclic) {
766 		start = mapping->writeback_index;
767 		end = -1;
768 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
769 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
770 			ret = afs_writepages_region(mapping, wbc, 0, start,
771 						    &next);
772 		mapping->writeback_index = next;
773 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
774 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
775 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
776 		if (wbc->nr_to_write > 0)
777 			mapping->writeback_index = next;
778 	} else {
779 		start = wbc->range_start >> PAGE_SHIFT;
780 		end = wbc->range_end >> PAGE_SHIFT;
781 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
782 	}
783 
784 	up_read(&vnode->validate_lock);
785 	_leave(" = %d", ret);
786 	return ret;
787 }
788 
789 /*
790  * write to an AFS file
791  */
792 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
793 {
794 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
795 	ssize_t result;
796 	size_t count = iov_iter_count(from);
797 
798 	_enter("{%llx:%llu},{%zu},",
799 	       vnode->fid.vid, vnode->fid.vnode, count);
800 
801 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
802 		printk(KERN_INFO
803 		       "AFS: Attempt to write to active swap file!\n");
804 		return -EBUSY;
805 	}
806 
807 	if (!count)
808 		return 0;
809 
810 	result = generic_file_write_iter(iocb, from);
811 
812 	_leave(" = %zd", result);
813 	return result;
814 }
815 
816 /*
817  * flush any dirty pages for this process, and check for write errors.
818  * - the return status from this call provides a reliable indication of
819  *   whether any write errors occurred for this process.
820  */
821 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
822 {
823 	struct inode *inode = file_inode(file);
824 	struct afs_vnode *vnode = AFS_FS_I(inode);
825 
826 	_enter("{%llx:%llu},{n=%pD},%d",
827 	       vnode->fid.vid, vnode->fid.vnode, file,
828 	       datasync);
829 
830 	return file_write_and_wait_range(file, start, end);
831 }
832 
833 /*
834  * notification that a previously read-only page is about to become writable
835  * - if it returns an error, the caller will deliver a bus error signal
836  */
837 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
838 {
839 	struct file *file = vmf->vma->vm_file;
840 	struct inode *inode = file_inode(file);
841 	struct afs_vnode *vnode = AFS_FS_I(inode);
842 	unsigned long priv;
843 
844 	_enter("{{%llx:%llu}},{%lx}",
845 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
846 
847 	sb_start_pagefault(inode->i_sb);
848 
849 	/* Wait for the page to be written to the cache before we allow it to
850 	 * be modified.  We then assume the entire page will need writing back.
851 	 */
852 #ifdef CONFIG_AFS_FSCACHE
853 	fscache_wait_on_page_write(vnode->cache, vmf->page);
854 #endif
855 
856 	if (PageWriteback(vmf->page) &&
857 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
858 		return VM_FAULT_RETRY;
859 
860 	if (lock_page_killable(vmf->page) < 0)
861 		return VM_FAULT_RETRY;
862 
863 	/* We mustn't change page->private until writeback is complete as that
864 	 * details the portion of the page we need to write back and we might
865 	 * need to redirty the page if there's a problem.
866 	 */
867 	wait_on_page_writeback(vmf->page);
868 
869 	priv = afs_page_dirty(0, PAGE_SIZE);
870 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
871 			     vmf->page->index, priv);
872 	if (PagePrivate(vmf->page))
873 		set_page_private(vmf->page, priv);
874 	else
875 		attach_page_private(vmf->page, (void *)priv);
876 	file_update_time(file);
877 
878 	sb_end_pagefault(inode->i_sb);
879 	return VM_FAULT_LOCKED;
880 }
881 
882 /*
883  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
884  */
885 void afs_prune_wb_keys(struct afs_vnode *vnode)
886 {
887 	LIST_HEAD(graveyard);
888 	struct afs_wb_key *wbk, *tmp;
889 
890 	/* Discard unused keys */
891 	spin_lock(&vnode->wb_lock);
892 
893 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
894 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
895 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
896 			if (refcount_read(&wbk->usage) == 1)
897 				list_move(&wbk->vnode_link, &graveyard);
898 		}
899 	}
900 
901 	spin_unlock(&vnode->wb_lock);
902 
903 	while (!list_empty(&graveyard)) {
904 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
905 		list_del(&wbk->vnode_link);
906 		afs_put_wb_key(wbk);
907 	}
908 }
909 
910 /*
911  * Clean up a page during invalidation.
912  */
913 int afs_launder_page(struct page *page)
914 {
915 	struct address_space *mapping = page->mapping;
916 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
917 	unsigned long priv;
918 	unsigned int f, t;
919 	int ret = 0;
920 
921 	_enter("{%lx}", page->index);
922 
923 	priv = page_private(page);
924 	if (clear_page_dirty_for_io(page)) {
925 		f = 0;
926 		t = PAGE_SIZE;
927 		if (PagePrivate(page)) {
928 			f = afs_page_dirty_from(priv);
929 			t = afs_page_dirty_to(priv);
930 		}
931 
932 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
933 				     page->index, priv);
934 		ret = afs_store_data(mapping, page->index, page->index, t, f, true);
935 	}
936 
937 	priv = (unsigned long)detach_page_private(page);
938 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
939 			     page->index, priv);
940 
941 #ifdef CONFIG_AFS_FSCACHE
942 	if (PageFsCache(page)) {
943 		fscache_wait_on_page_write(vnode->cache, page);
944 		fscache_uncache_page(vnode->cache, page);
945 	}
946 #endif
947 	return ret;
948 }
949