xref: /openbmc/linux/fs/afs/write.c (revision 630f5dda)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21 	_enter("");
22 	return __set_page_dirty_nobuffers(page);
23 }
24 
25 /*
26  * Handle completion of a read operation to fill a page.
27  */
28 static void afs_fill_hole(struct afs_read *req)
29 {
30 	if (iov_iter_count(req->iter) > 0)
31 		/* The read was short - clear the excess buffer. */
32 		iov_iter_zero(iov_iter_count(req->iter), req->iter);
33 }
34 
35 /*
36  * partly or wholly fill a page that's under preparation for writing
37  */
38 static int afs_fill_page(struct file *file,
39 			 loff_t pos, unsigned int len, struct page *page)
40 {
41 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
42 	struct afs_read *req;
43 	size_t p;
44 	void *data;
45 	int ret;
46 
47 	_enter(",,%llu", (unsigned long long)pos);
48 
49 	if (pos >= vnode->vfs_inode.i_size) {
50 		p = pos & ~PAGE_MASK;
51 		ASSERTCMP(p + len, <=, PAGE_SIZE);
52 		data = kmap(page);
53 		memset(data + p, 0, len);
54 		kunmap(page);
55 		return 0;
56 	}
57 
58 	req = kzalloc(sizeof(struct afs_read), GFP_KERNEL);
59 	if (!req)
60 		return -ENOMEM;
61 
62 	refcount_set(&req->usage, 1);
63 	req->vnode	= vnode;
64 	req->done	= afs_fill_hole;
65 	req->key	= key_get(afs_file_key(file));
66 	req->pos	= pos;
67 	req->len	= len;
68 	req->nr_pages	= 1;
69 	req->iter	= &req->def_iter;
70 	iov_iter_xarray(&req->def_iter, READ, &file->f_mapping->i_pages, pos, len);
71 
72 	ret = afs_fetch_data(vnode, req);
73 	afs_put_read(req);
74 	if (ret < 0) {
75 		if (ret == -ENOENT) {
76 			_debug("got NOENT from server"
77 			       " - marking file deleted and stale");
78 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
79 			ret = -ESTALE;
80 		}
81 	}
82 
83 	_leave(" = %d", ret);
84 	return ret;
85 }
86 
87 /*
88  * prepare to perform part of a write to a page
89  */
90 int afs_write_begin(struct file *file, struct address_space *mapping,
91 		    loff_t pos, unsigned len, unsigned flags,
92 		    struct page **_page, void **fsdata)
93 {
94 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
95 	struct page *page;
96 	unsigned long priv;
97 	unsigned f, from = pos & (PAGE_SIZE - 1);
98 	unsigned t, to = from + len;
99 	pgoff_t index = pos >> PAGE_SHIFT;
100 	int ret;
101 
102 	_enter("{%llx:%llu},{%lx},%u,%u",
103 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
104 
105 	page = grab_cache_page_write_begin(mapping, index, flags);
106 	if (!page)
107 		return -ENOMEM;
108 
109 	if (!PageUptodate(page) && len != PAGE_SIZE) {
110 		ret = afs_fill_page(file, pos & PAGE_MASK, PAGE_SIZE, page);
111 		if (ret < 0) {
112 			unlock_page(page);
113 			put_page(page);
114 			_leave(" = %d [prep]", ret);
115 			return ret;
116 		}
117 		SetPageUptodate(page);
118 	}
119 
120 #ifdef CONFIG_AFS_FSCACHE
121 	wait_on_page_fscache(page);
122 #endif
123 
124 try_again:
125 	/* See if this page is already partially written in a way that we can
126 	 * merge the new write with.
127 	 */
128 	t = f = 0;
129 	if (PagePrivate(page)) {
130 		priv = page_private(page);
131 		f = afs_page_dirty_from(page, priv);
132 		t = afs_page_dirty_to(page, priv);
133 		ASSERTCMP(f, <=, t);
134 	}
135 
136 	if (f != t) {
137 		if (PageWriteback(page)) {
138 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
139 			goto flush_conflicting_write;
140 		}
141 		/* If the file is being filled locally, allow inter-write
142 		 * spaces to be merged into writes.  If it's not, only write
143 		 * back what the user gives us.
144 		 */
145 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
146 		    (to < f || from > t))
147 			goto flush_conflicting_write;
148 	}
149 
150 	*_page = page;
151 	_leave(" = 0");
152 	return 0;
153 
154 	/* The previous write and this write aren't adjacent or overlapping, so
155 	 * flush the page out.
156 	 */
157 flush_conflicting_write:
158 	_debug("flush conflict");
159 	ret = write_one_page(page);
160 	if (ret < 0)
161 		goto error;
162 
163 	ret = lock_page_killable(page);
164 	if (ret < 0)
165 		goto error;
166 	goto try_again;
167 
168 error:
169 	put_page(page);
170 	_leave(" = %d", ret);
171 	return ret;
172 }
173 
174 /*
175  * finalise part of a write to a page
176  */
177 int afs_write_end(struct file *file, struct address_space *mapping,
178 		  loff_t pos, unsigned len, unsigned copied,
179 		  struct page *page, void *fsdata)
180 {
181 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
182 	unsigned long priv;
183 	unsigned int f, from = pos & (PAGE_SIZE - 1);
184 	unsigned int t, to = from + copied;
185 	loff_t i_size, maybe_i_size;
186 	int ret = 0;
187 
188 	_enter("{%llx:%llu},{%lx}",
189 	       vnode->fid.vid, vnode->fid.vnode, page->index);
190 
191 	if (copied == 0)
192 		goto out;
193 
194 	maybe_i_size = pos + copied;
195 
196 	i_size = i_size_read(&vnode->vfs_inode);
197 	if (maybe_i_size > i_size) {
198 		write_seqlock(&vnode->cb_lock);
199 		i_size = i_size_read(&vnode->vfs_inode);
200 		if (maybe_i_size > i_size)
201 			i_size_write(&vnode->vfs_inode, maybe_i_size);
202 		write_sequnlock(&vnode->cb_lock);
203 	}
204 
205 	if (!PageUptodate(page)) {
206 		if (copied < len) {
207 			/* Try and load any missing data from the server.  The
208 			 * unmarshalling routine will take care of clearing any
209 			 * bits that are beyond the EOF.
210 			 */
211 			ret = afs_fill_page(file, pos + copied,
212 					    len - copied, page);
213 			if (ret < 0)
214 				goto out;
215 		}
216 		SetPageUptodate(page);
217 	}
218 
219 	if (PagePrivate(page)) {
220 		priv = page_private(page);
221 		f = afs_page_dirty_from(page, priv);
222 		t = afs_page_dirty_to(page, priv);
223 		if (from < f)
224 			f = from;
225 		if (to > t)
226 			t = to;
227 		priv = afs_page_dirty(page, f, t);
228 		set_page_private(page, priv);
229 		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
230 	} else {
231 		priv = afs_page_dirty(page, from, to);
232 		attach_page_private(page, (void *)priv);
233 		trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
234 	}
235 
236 	set_page_dirty(page);
237 	if (PageDirty(page))
238 		_debug("dirtied");
239 	ret = copied;
240 
241 out:
242 	unlock_page(page);
243 	put_page(page);
244 	return ret;
245 }
246 
247 /*
248  * kill all the pages in the given range
249  */
250 static void afs_kill_pages(struct address_space *mapping,
251 			   pgoff_t first, pgoff_t last)
252 {
253 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
254 	struct pagevec pv;
255 	unsigned count, loop;
256 
257 	_enter("{%llx:%llu},%lx-%lx",
258 	       vnode->fid.vid, vnode->fid.vnode, first, last);
259 
260 	pagevec_init(&pv);
261 
262 	do {
263 		_debug("kill %lx-%lx", first, last);
264 
265 		count = last - first + 1;
266 		if (count > PAGEVEC_SIZE)
267 			count = PAGEVEC_SIZE;
268 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
269 		ASSERTCMP(pv.nr, ==, count);
270 
271 		for (loop = 0; loop < count; loop++) {
272 			struct page *page = pv.pages[loop];
273 			ClearPageUptodate(page);
274 			SetPageError(page);
275 			end_page_writeback(page);
276 			if (page->index >= first)
277 				first = page->index + 1;
278 			lock_page(page);
279 			generic_error_remove_page(mapping, page);
280 			unlock_page(page);
281 		}
282 
283 		__pagevec_release(&pv);
284 	} while (first <= last);
285 
286 	_leave("");
287 }
288 
289 /*
290  * Redirty all the pages in a given range.
291  */
292 static void afs_redirty_pages(struct writeback_control *wbc,
293 			      struct address_space *mapping,
294 			      pgoff_t first, pgoff_t last)
295 {
296 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
297 	struct pagevec pv;
298 	unsigned count, loop;
299 
300 	_enter("{%llx:%llu},%lx-%lx",
301 	       vnode->fid.vid, vnode->fid.vnode, first, last);
302 
303 	pagevec_init(&pv);
304 
305 	do {
306 		_debug("redirty %lx-%lx", first, last);
307 
308 		count = last - first + 1;
309 		if (count > PAGEVEC_SIZE)
310 			count = PAGEVEC_SIZE;
311 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
312 		ASSERTCMP(pv.nr, ==, count);
313 
314 		for (loop = 0; loop < count; loop++) {
315 			struct page *page = pv.pages[loop];
316 
317 			redirty_page_for_writepage(wbc, page);
318 			end_page_writeback(page);
319 			if (page->index >= first)
320 				first = page->index + 1;
321 		}
322 
323 		__pagevec_release(&pv);
324 	} while (first <= last);
325 
326 	_leave("");
327 }
328 
329 /*
330  * completion of write to server
331  */
332 static void afs_pages_written_back(struct afs_vnode *vnode, pgoff_t start, pgoff_t last)
333 {
334 	struct address_space *mapping = vnode->vfs_inode.i_mapping;
335 	struct page *page;
336 
337 	XA_STATE(xas, &mapping->i_pages, start);
338 
339 	_enter("{%llx:%llu},{%lx-%lx}",
340 	       vnode->fid.vid, vnode->fid.vnode, start, last);
341 
342 	rcu_read_lock();
343 
344 	xas_for_each(&xas, page, last) {
345 		ASSERT(PageWriteback(page));
346 
347 		detach_page_private(page);
348 		trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
349 		page_endio(page, true, 0);
350 	}
351 
352 	rcu_read_unlock();
353 
354 	afs_prune_wb_keys(vnode);
355 	_leave("");
356 }
357 
358 /*
359  * Find a key to use for the writeback.  We cached the keys used to author the
360  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
361  * and we need to start from there if it's set.
362  */
363 static int afs_get_writeback_key(struct afs_vnode *vnode,
364 				 struct afs_wb_key **_wbk)
365 {
366 	struct afs_wb_key *wbk = NULL;
367 	struct list_head *p;
368 	int ret = -ENOKEY, ret2;
369 
370 	spin_lock(&vnode->wb_lock);
371 	if (*_wbk)
372 		p = (*_wbk)->vnode_link.next;
373 	else
374 		p = vnode->wb_keys.next;
375 
376 	while (p != &vnode->wb_keys) {
377 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
378 		_debug("wbk %u", key_serial(wbk->key));
379 		ret2 = key_validate(wbk->key);
380 		if (ret2 == 0) {
381 			refcount_inc(&wbk->usage);
382 			_debug("USE WB KEY %u", key_serial(wbk->key));
383 			break;
384 		}
385 
386 		wbk = NULL;
387 		if (ret == -ENOKEY)
388 			ret = ret2;
389 		p = p->next;
390 	}
391 
392 	spin_unlock(&vnode->wb_lock);
393 	if (*_wbk)
394 		afs_put_wb_key(*_wbk);
395 	*_wbk = wbk;
396 	return 0;
397 }
398 
399 static void afs_store_data_success(struct afs_operation *op)
400 {
401 	struct afs_vnode *vnode = op->file[0].vnode;
402 
403 	op->ctime = op->file[0].scb.status.mtime_client;
404 	afs_vnode_commit_status(op, &op->file[0]);
405 	if (op->error == 0) {
406 		if (!op->store.laundering)
407 			afs_pages_written_back(vnode, op->store.first, op->store.last);
408 		afs_stat_v(vnode, n_stores);
409 		atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
410 	}
411 }
412 
413 static const struct afs_operation_ops afs_store_data_operation = {
414 	.issue_afs_rpc	= afs_fs_store_data,
415 	.issue_yfs_rpc	= yfs_fs_store_data,
416 	.success	= afs_store_data_success,
417 };
418 
419 /*
420  * write to a file
421  */
422 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter,
423 			  loff_t pos, pgoff_t first, pgoff_t last,
424 			  bool laundering)
425 {
426 	struct afs_operation *op;
427 	struct afs_wb_key *wbk = NULL;
428 	loff_t size = iov_iter_count(iter), i_size;
429 	int ret = -ENOKEY;
430 
431 	_enter("%s{%llx:%llu.%u},%llx,%llx",
432 	       vnode->volume->name,
433 	       vnode->fid.vid,
434 	       vnode->fid.vnode,
435 	       vnode->fid.unique,
436 	       size, pos);
437 
438 	ret = afs_get_writeback_key(vnode, &wbk);
439 	if (ret) {
440 		_leave(" = %d [no keys]", ret);
441 		return ret;
442 	}
443 
444 	op = afs_alloc_operation(wbk->key, vnode->volume);
445 	if (IS_ERR(op)) {
446 		afs_put_wb_key(wbk);
447 		return -ENOMEM;
448 	}
449 
450 	i_size = i_size_read(&vnode->vfs_inode);
451 
452 	afs_op_set_vnode(op, 0, vnode);
453 	op->file[0].dv_delta = 1;
454 	op->store.write_iter = iter;
455 	op->store.pos = pos;
456 	op->store.first = first;
457 	op->store.last = last;
458 	op->store.size = size;
459 	op->store.i_size = max(pos + size, i_size);
460 	op->store.laundering = laundering;
461 	op->mtime = vnode->vfs_inode.i_mtime;
462 	op->flags |= AFS_OPERATION_UNINTR;
463 	op->ops = &afs_store_data_operation;
464 
465 try_next_key:
466 	afs_begin_vnode_operation(op);
467 	afs_wait_for_operation(op);
468 
469 	switch (op->error) {
470 	case -EACCES:
471 	case -EPERM:
472 	case -ENOKEY:
473 	case -EKEYEXPIRED:
474 	case -EKEYREJECTED:
475 	case -EKEYREVOKED:
476 		_debug("next");
477 
478 		ret = afs_get_writeback_key(vnode, &wbk);
479 		if (ret == 0) {
480 			key_put(op->key);
481 			op->key = key_get(wbk->key);
482 			goto try_next_key;
483 		}
484 		break;
485 	}
486 
487 	afs_put_wb_key(wbk);
488 	_leave(" = %d", op->error);
489 	return afs_put_operation(op);
490 }
491 
492 /*
493  * Synchronously write back the locked page and any subsequent non-locked dirty
494  * pages.
495  */
496 static int afs_write_back_from_locked_page(struct address_space *mapping,
497 					   struct writeback_control *wbc,
498 					   struct page *primary_page,
499 					   pgoff_t final_page)
500 {
501 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
502 	struct iov_iter iter;
503 	struct page *pages[8], *page;
504 	unsigned long count, priv;
505 	unsigned n, offset, to, f, t;
506 	pgoff_t start, first, last;
507 	loff_t i_size, pos, end;
508 	int loop, ret;
509 
510 	_enter(",%lx", primary_page->index);
511 
512 	count = 1;
513 	if (test_set_page_writeback(primary_page))
514 		BUG();
515 
516 	/* Find all consecutive lockable dirty pages that have contiguous
517 	 * written regions, stopping when we find a page that is not
518 	 * immediately lockable, is not dirty or is missing, or we reach the
519 	 * end of the range.
520 	 */
521 	start = primary_page->index;
522 	priv = page_private(primary_page);
523 	offset = afs_page_dirty_from(primary_page, priv);
524 	to = afs_page_dirty_to(primary_page, priv);
525 	trace_afs_page_dirty(vnode, tracepoint_string("store"), primary_page);
526 
527 	WARN_ON(offset == to);
528 	if (offset == to)
529 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"), primary_page);
530 
531 	if (start >= final_page ||
532 	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
533 		goto no_more;
534 
535 	start++;
536 	do {
537 		_debug("more %lx [%lx]", start, count);
538 		n = final_page - start + 1;
539 		if (n > ARRAY_SIZE(pages))
540 			n = ARRAY_SIZE(pages);
541 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
542 		_debug("fgpc %u", n);
543 		if (n == 0)
544 			goto no_more;
545 		if (pages[0]->index != start) {
546 			do {
547 				put_page(pages[--n]);
548 			} while (n > 0);
549 			goto no_more;
550 		}
551 
552 		for (loop = 0; loop < n; loop++) {
553 			page = pages[loop];
554 			if (to != PAGE_SIZE &&
555 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
556 				break;
557 			if (page->index > final_page)
558 				break;
559 			if (!trylock_page(page))
560 				break;
561 			if (!PageDirty(page) || PageWriteback(page)) {
562 				unlock_page(page);
563 				break;
564 			}
565 
566 			priv = page_private(page);
567 			f = afs_page_dirty_from(page, priv);
568 			t = afs_page_dirty_to(page, priv);
569 			if (f != 0 &&
570 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
571 				unlock_page(page);
572 				break;
573 			}
574 			to = t;
575 
576 			trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
577 
578 			if (!clear_page_dirty_for_io(page))
579 				BUG();
580 			if (test_set_page_writeback(page))
581 				BUG();
582 			unlock_page(page);
583 			put_page(page);
584 		}
585 		count += loop;
586 		if (loop < n) {
587 			for (; loop < n; loop++)
588 				put_page(pages[loop]);
589 			goto no_more;
590 		}
591 
592 		start += loop;
593 	} while (start <= final_page && count < 65536);
594 
595 no_more:
596 	/* We now have a contiguous set of dirty pages, each with writeback
597 	 * set; the first page is still locked at this point, but all the rest
598 	 * have been unlocked.
599 	 */
600 	unlock_page(primary_page);
601 
602 	first = primary_page->index;
603 	last = first + count - 1;
604 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
605 
606 	pos = first;
607 	pos <<= PAGE_SHIFT;
608 	pos += offset;
609 	end = last;
610 	end <<= PAGE_SHIFT;
611 	end += to;
612 
613 	/* Trim the actual write down to the EOF */
614 	i_size = i_size_read(&vnode->vfs_inode);
615 	if (end > i_size)
616 		end = i_size;
617 
618 	if (pos < i_size) {
619 		iov_iter_xarray(&iter, WRITE, &mapping->i_pages, pos, end - pos);
620 		ret = afs_store_data(vnode, &iter, pos, first, last, false);
621 	} else {
622 		/* The dirty region was entirely beyond the EOF. */
623 		ret = 0;
624 	}
625 
626 	switch (ret) {
627 	case 0:
628 		ret = count;
629 		break;
630 
631 	default:
632 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
633 		fallthrough;
634 	case -EACCES:
635 	case -EPERM:
636 	case -ENOKEY:
637 	case -EKEYEXPIRED:
638 	case -EKEYREJECTED:
639 	case -EKEYREVOKED:
640 		afs_redirty_pages(wbc, mapping, first, last);
641 		mapping_set_error(mapping, ret);
642 		break;
643 
644 	case -EDQUOT:
645 	case -ENOSPC:
646 		afs_redirty_pages(wbc, mapping, first, last);
647 		mapping_set_error(mapping, -ENOSPC);
648 		break;
649 
650 	case -EROFS:
651 	case -EIO:
652 	case -EREMOTEIO:
653 	case -EFBIG:
654 	case -ENOENT:
655 	case -ENOMEDIUM:
656 	case -ENXIO:
657 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
658 		afs_kill_pages(mapping, first, last);
659 		mapping_set_error(mapping, ret);
660 		break;
661 	}
662 
663 	_leave(" = %d", ret);
664 	return ret;
665 }
666 
667 /*
668  * write a page back to the server
669  * - the caller locked the page for us
670  */
671 int afs_writepage(struct page *page, struct writeback_control *wbc)
672 {
673 	int ret;
674 
675 	_enter("{%lx},", page->index);
676 
677 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
678 					      wbc->range_end >> PAGE_SHIFT);
679 	if (ret < 0) {
680 		_leave(" = %d", ret);
681 		return 0;
682 	}
683 
684 	wbc->nr_to_write -= ret;
685 
686 	_leave(" = 0");
687 	return 0;
688 }
689 
690 /*
691  * write a region of pages back to the server
692  */
693 static int afs_writepages_region(struct address_space *mapping,
694 				 struct writeback_control *wbc,
695 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
696 {
697 	struct page *page;
698 	int ret, n;
699 
700 	_enter(",,%lx,%lx,", index, end);
701 
702 	do {
703 		n = find_get_pages_range_tag(mapping, &index, end,
704 					PAGECACHE_TAG_DIRTY, 1, &page);
705 		if (!n)
706 			break;
707 
708 		_debug("wback %lx", page->index);
709 
710 		/*
711 		 * at this point we hold neither the i_pages lock nor the
712 		 * page lock: the page may be truncated or invalidated
713 		 * (changing page->mapping to NULL), or even swizzled
714 		 * back from swapper_space to tmpfs file mapping
715 		 */
716 		ret = lock_page_killable(page);
717 		if (ret < 0) {
718 			put_page(page);
719 			_leave(" = %d", ret);
720 			return ret;
721 		}
722 
723 		if (page->mapping != mapping || !PageDirty(page)) {
724 			unlock_page(page);
725 			put_page(page);
726 			continue;
727 		}
728 
729 		if (PageWriteback(page)) {
730 			unlock_page(page);
731 			if (wbc->sync_mode != WB_SYNC_NONE)
732 				wait_on_page_writeback(page);
733 			put_page(page);
734 			continue;
735 		}
736 
737 		if (!clear_page_dirty_for_io(page))
738 			BUG();
739 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
740 		put_page(page);
741 		if (ret < 0) {
742 			_leave(" = %d", ret);
743 			return ret;
744 		}
745 
746 		wbc->nr_to_write -= ret;
747 
748 		cond_resched();
749 	} while (index < end && wbc->nr_to_write > 0);
750 
751 	*_next = index;
752 	_leave(" = 0 [%lx]", *_next);
753 	return 0;
754 }
755 
756 /*
757  * write some of the pending data back to the server
758  */
759 int afs_writepages(struct address_space *mapping,
760 		   struct writeback_control *wbc)
761 {
762 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
763 	pgoff_t start, end, next;
764 	int ret;
765 
766 	_enter("");
767 
768 	/* We have to be careful as we can end up racing with setattr()
769 	 * truncating the pagecache since the caller doesn't take a lock here
770 	 * to prevent it.
771 	 */
772 	if (wbc->sync_mode == WB_SYNC_ALL)
773 		down_read(&vnode->validate_lock);
774 	else if (!down_read_trylock(&vnode->validate_lock))
775 		return 0;
776 
777 	if (wbc->range_cyclic) {
778 		start = mapping->writeback_index;
779 		end = -1;
780 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
781 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
782 			ret = afs_writepages_region(mapping, wbc, 0, start,
783 						    &next);
784 		mapping->writeback_index = next;
785 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
786 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
787 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
788 		if (wbc->nr_to_write > 0)
789 			mapping->writeback_index = next;
790 	} else {
791 		start = wbc->range_start >> PAGE_SHIFT;
792 		end = wbc->range_end >> PAGE_SHIFT;
793 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
794 	}
795 
796 	up_read(&vnode->validate_lock);
797 	_leave(" = %d", ret);
798 	return ret;
799 }
800 
801 /*
802  * write to an AFS file
803  */
804 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
805 {
806 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
807 	ssize_t result;
808 	size_t count = iov_iter_count(from);
809 
810 	_enter("{%llx:%llu},{%zu},",
811 	       vnode->fid.vid, vnode->fid.vnode, count);
812 
813 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
814 		printk(KERN_INFO
815 		       "AFS: Attempt to write to active swap file!\n");
816 		return -EBUSY;
817 	}
818 
819 	if (!count)
820 		return 0;
821 
822 	result = generic_file_write_iter(iocb, from);
823 
824 	_leave(" = %zd", result);
825 	return result;
826 }
827 
828 /*
829  * flush any dirty pages for this process, and check for write errors.
830  * - the return status from this call provides a reliable indication of
831  *   whether any write errors occurred for this process.
832  */
833 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
834 {
835 	struct inode *inode = file_inode(file);
836 	struct afs_vnode *vnode = AFS_FS_I(inode);
837 
838 	_enter("{%llx:%llu},{n=%pD},%d",
839 	       vnode->fid.vid, vnode->fid.vnode, file,
840 	       datasync);
841 
842 	return file_write_and_wait_range(file, start, end);
843 }
844 
845 /*
846  * notification that a previously read-only page is about to become writable
847  * - if it returns an error, the caller will deliver a bus error signal
848  */
849 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
850 {
851 	struct file *file = vmf->vma->vm_file;
852 	struct inode *inode = file_inode(file);
853 	struct afs_vnode *vnode = AFS_FS_I(inode);
854 	unsigned long priv;
855 
856 	_enter("{{%llx:%llu}},{%lx}",
857 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
858 
859 	sb_start_pagefault(inode->i_sb);
860 
861 	/* Wait for the page to be written to the cache before we allow it to
862 	 * be modified.  We then assume the entire page will need writing back.
863 	 */
864 #ifdef CONFIG_AFS_FSCACHE
865 	if (PageFsCache(vmf->page) &&
866 	    wait_on_page_bit_killable(vmf->page, PG_fscache) < 0)
867 		return VM_FAULT_RETRY;
868 #endif
869 
870 	if (wait_on_page_writeback_killable(vmf->page))
871 		return VM_FAULT_RETRY;
872 
873 	if (lock_page_killable(vmf->page) < 0)
874 		return VM_FAULT_RETRY;
875 
876 	/* We mustn't change page->private until writeback is complete as that
877 	 * details the portion of the page we need to write back and we might
878 	 * need to redirty the page if there's a problem.
879 	 */
880 	wait_on_page_writeback(vmf->page);
881 
882 	priv = afs_page_dirty(vmf->page, 0, PAGE_SIZE);
883 	priv = afs_page_dirty_mmapped(priv);
884 	if (PagePrivate(vmf->page))
885 		set_page_private(vmf->page, priv);
886 	else
887 		attach_page_private(vmf->page, (void *)priv);
888 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), vmf->page);
889 	file_update_time(file);
890 
891 	sb_end_pagefault(inode->i_sb);
892 	return VM_FAULT_LOCKED;
893 }
894 
895 /*
896  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
897  */
898 void afs_prune_wb_keys(struct afs_vnode *vnode)
899 {
900 	LIST_HEAD(graveyard);
901 	struct afs_wb_key *wbk, *tmp;
902 
903 	/* Discard unused keys */
904 	spin_lock(&vnode->wb_lock);
905 
906 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
907 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
908 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
909 			if (refcount_read(&wbk->usage) == 1)
910 				list_move(&wbk->vnode_link, &graveyard);
911 		}
912 	}
913 
914 	spin_unlock(&vnode->wb_lock);
915 
916 	while (!list_empty(&graveyard)) {
917 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
918 		list_del(&wbk->vnode_link);
919 		afs_put_wb_key(wbk);
920 	}
921 }
922 
923 /*
924  * Clean up a page during invalidation.
925  */
926 int afs_launder_page(struct page *page)
927 {
928 	struct address_space *mapping = page->mapping;
929 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
930 	struct iov_iter iter;
931 	struct bio_vec bv[1];
932 	unsigned long priv;
933 	unsigned int f, t;
934 	int ret = 0;
935 
936 	_enter("{%lx}", page->index);
937 
938 	priv = page_private(page);
939 	if (clear_page_dirty_for_io(page)) {
940 		f = 0;
941 		t = PAGE_SIZE;
942 		if (PagePrivate(page)) {
943 			f = afs_page_dirty_from(page, priv);
944 			t = afs_page_dirty_to(page, priv);
945 		}
946 
947 		bv[0].bv_page = page;
948 		bv[0].bv_offset = f;
949 		bv[0].bv_len = t - f;
950 		iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
951 
952 		trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
953 		ret = afs_store_data(vnode, &iter, (loff_t)page->index << PAGE_SHIFT,
954 				     page->index, page->index, true);
955 	}
956 
957 	detach_page_private(page);
958 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
959 	wait_on_page_fscache(page);
960 	return ret;
961 }
962