xref: /openbmc/linux/fs/afs/write.c (revision 487e2c9f)
1 /* handling of writes to regular files and writing back to the server
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/backing-dev.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include "internal.h"
19 
20 /*
21  * mark a page as having been made dirty and thus needing writeback
22  */
23 int afs_set_page_dirty(struct page *page)
24 {
25 	_enter("");
26 	return __set_page_dirty_nobuffers(page);
27 }
28 
29 /*
30  * partly or wholly fill a page that's under preparation for writing
31  */
32 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
33 			 loff_t pos, unsigned int len, struct page *page)
34 {
35 	struct afs_read *req;
36 	int ret;
37 
38 	_enter(",,%llu", (unsigned long long)pos);
39 
40 	req = kzalloc(sizeof(struct afs_read) + sizeof(struct page *),
41 		      GFP_KERNEL);
42 	if (!req)
43 		return -ENOMEM;
44 
45 	atomic_set(&req->usage, 1);
46 	req->pos = pos;
47 	req->len = len;
48 	req->nr_pages = 1;
49 	req->pages[0] = page;
50 	get_page(page);
51 
52 	ret = afs_fetch_data(vnode, key, req);
53 	afs_put_read(req);
54 	if (ret < 0) {
55 		if (ret == -ENOENT) {
56 			_debug("got NOENT from server"
57 			       " - marking file deleted and stale");
58 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
59 			ret = -ESTALE;
60 		}
61 	}
62 
63 	_leave(" = %d", ret);
64 	return ret;
65 }
66 
67 /*
68  * prepare to perform part of a write to a page
69  */
70 int afs_write_begin(struct file *file, struct address_space *mapping,
71 		    loff_t pos, unsigned len, unsigned flags,
72 		    struct page **pagep, void **fsdata)
73 {
74 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
75 	struct page *page;
76 	struct key *key = afs_file_key(file);
77 	unsigned long priv;
78 	unsigned f, from = pos & (PAGE_SIZE - 1);
79 	unsigned t, to = from + len;
80 	pgoff_t index = pos >> PAGE_SHIFT;
81 	int ret;
82 
83 	_enter("{%x:%u},{%lx},%u,%u",
84 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
85 
86 	/* We want to store information about how much of a page is altered in
87 	 * page->private.
88 	 */
89 	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
90 
91 	page = grab_cache_page_write_begin(mapping, index, flags);
92 	if (!page)
93 		return -ENOMEM;
94 
95 	if (!PageUptodate(page) && len != PAGE_SIZE) {
96 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
97 		if (ret < 0) {
98 			unlock_page(page);
99 			put_page(page);
100 			_leave(" = %d [prep]", ret);
101 			return ret;
102 		}
103 		SetPageUptodate(page);
104 	}
105 
106 	/* page won't leak in error case: it eventually gets cleaned off LRU */
107 	*pagep = page;
108 
109 try_again:
110 	/* See if this page is already partially written in a way that we can
111 	 * merge the new write with.
112 	 */
113 	t = f = 0;
114 	if (PagePrivate(page)) {
115 		priv = page_private(page);
116 		f = priv & AFS_PRIV_MAX;
117 		t = priv >> AFS_PRIV_SHIFT;
118 		ASSERTCMP(f, <=, t);
119 	}
120 
121 	if (f != t) {
122 		if (to < f || from > t)
123 			goto flush_conflicting_write;
124 		if (from < f)
125 			f = from;
126 		if (to > t)
127 			t = to;
128 	} else {
129 		f = from;
130 		t = to;
131 	}
132 
133 	priv = (unsigned long)t << AFS_PRIV_SHIFT;
134 	priv |= f;
135 	trace_afs_page_dirty(vnode, tracepoint_string("begin"),
136 			     page->index, priv);
137 	SetPagePrivate(page);
138 	set_page_private(page, priv);
139 	_leave(" = 0");
140 	return 0;
141 
142 	/* The previous write and this write aren't adjacent or overlapping, so
143 	 * flush the page out.
144 	 */
145 flush_conflicting_write:
146 	_debug("flush conflict");
147 	ret = write_one_page(page);
148 	if (ret < 0) {
149 		_leave(" = %d", ret);
150 		return ret;
151 	}
152 
153 	ret = lock_page_killable(page);
154 	if (ret < 0) {
155 		_leave(" = %d", ret);
156 		return ret;
157 	}
158 	goto try_again;
159 }
160 
161 /*
162  * finalise part of a write to a page
163  */
164 int afs_write_end(struct file *file, struct address_space *mapping,
165 		  loff_t pos, unsigned len, unsigned copied,
166 		  struct page *page, void *fsdata)
167 {
168 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
169 	struct key *key = afs_file_key(file);
170 	loff_t i_size, maybe_i_size;
171 	int ret;
172 
173 	_enter("{%x:%u},{%lx}",
174 	       vnode->fid.vid, vnode->fid.vnode, page->index);
175 
176 	maybe_i_size = pos + copied;
177 
178 	i_size = i_size_read(&vnode->vfs_inode);
179 	if (maybe_i_size > i_size) {
180 		spin_lock(&vnode->wb_lock);
181 		i_size = i_size_read(&vnode->vfs_inode);
182 		if (maybe_i_size > i_size)
183 			i_size_write(&vnode->vfs_inode, maybe_i_size);
184 		spin_unlock(&vnode->wb_lock);
185 	}
186 
187 	if (!PageUptodate(page)) {
188 		if (copied < len) {
189 			/* Try and load any missing data from the server.  The
190 			 * unmarshalling routine will take care of clearing any
191 			 * bits that are beyond the EOF.
192 			 */
193 			ret = afs_fill_page(vnode, key, pos + copied,
194 					    len - copied, page);
195 			if (ret < 0)
196 				return ret;
197 		}
198 		SetPageUptodate(page);
199 	}
200 
201 	set_page_dirty(page);
202 	if (PageDirty(page))
203 		_debug("dirtied");
204 	unlock_page(page);
205 	put_page(page);
206 
207 	return copied;
208 }
209 
210 /*
211  * kill all the pages in the given range
212  */
213 static void afs_kill_pages(struct address_space *mapping,
214 			   pgoff_t first, pgoff_t last)
215 {
216 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
217 	struct pagevec pv;
218 	unsigned count, loop;
219 
220 	_enter("{%x:%u},%lx-%lx",
221 	       vnode->fid.vid, vnode->fid.vnode, first, last);
222 
223 	pagevec_init(&pv);
224 
225 	do {
226 		_debug("kill %lx-%lx", first, last);
227 
228 		count = last - first + 1;
229 		if (count > PAGEVEC_SIZE)
230 			count = PAGEVEC_SIZE;
231 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
232 		ASSERTCMP(pv.nr, ==, count);
233 
234 		for (loop = 0; loop < count; loop++) {
235 			struct page *page = pv.pages[loop];
236 			ClearPageUptodate(page);
237 			SetPageError(page);
238 			end_page_writeback(page);
239 			if (page->index >= first)
240 				first = page->index + 1;
241 			lock_page(page);
242 			generic_error_remove_page(mapping, page);
243 		}
244 
245 		__pagevec_release(&pv);
246 	} while (first <= last);
247 
248 	_leave("");
249 }
250 
251 /*
252  * Redirty all the pages in a given range.
253  */
254 static void afs_redirty_pages(struct writeback_control *wbc,
255 			      struct address_space *mapping,
256 			      pgoff_t first, pgoff_t last)
257 {
258 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
259 	struct pagevec pv;
260 	unsigned count, loop;
261 
262 	_enter("{%x:%u},%lx-%lx",
263 	       vnode->fid.vid, vnode->fid.vnode, first, last);
264 
265 	pagevec_init(&pv);
266 
267 	do {
268 		_debug("redirty %lx-%lx", first, last);
269 
270 		count = last - first + 1;
271 		if (count > PAGEVEC_SIZE)
272 			count = PAGEVEC_SIZE;
273 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
274 		ASSERTCMP(pv.nr, ==, count);
275 
276 		for (loop = 0; loop < count; loop++) {
277 			struct page *page = pv.pages[loop];
278 
279 			redirty_page_for_writepage(wbc, page);
280 			end_page_writeback(page);
281 			if (page->index >= first)
282 				first = page->index + 1;
283 		}
284 
285 		__pagevec_release(&pv);
286 	} while (first <= last);
287 
288 	_leave("");
289 }
290 
291 /*
292  * write to a file
293  */
294 static int afs_store_data(struct address_space *mapping,
295 			  pgoff_t first, pgoff_t last,
296 			  unsigned offset, unsigned to)
297 {
298 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
299 	struct afs_fs_cursor fc;
300 	struct afs_wb_key *wbk = NULL;
301 	struct list_head *p;
302 	int ret = -ENOKEY, ret2;
303 
304 	_enter("%s{%x:%u.%u},%lx,%lx,%x,%x",
305 	       vnode->volume->name,
306 	       vnode->fid.vid,
307 	       vnode->fid.vnode,
308 	       vnode->fid.unique,
309 	       first, last, offset, to);
310 
311 	spin_lock(&vnode->wb_lock);
312 	p = vnode->wb_keys.next;
313 
314 	/* Iterate through the list looking for a valid key to use. */
315 try_next_key:
316 	while (p != &vnode->wb_keys) {
317 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
318 		_debug("wbk %u", key_serial(wbk->key));
319 		ret2 = key_validate(wbk->key);
320 		if (ret2 == 0)
321 			goto found_key;
322 		if (ret == -ENOKEY)
323 			ret = ret2;
324 		p = p->next;
325 	}
326 
327 	spin_unlock(&vnode->wb_lock);
328 	afs_put_wb_key(wbk);
329 	_leave(" = %d [no keys]", ret);
330 	return ret;
331 
332 found_key:
333 	refcount_inc(&wbk->usage);
334 	spin_unlock(&vnode->wb_lock);
335 
336 	_debug("USE WB KEY %u", key_serial(wbk->key));
337 
338 	ret = -ERESTARTSYS;
339 	if (afs_begin_vnode_operation(&fc, vnode, wbk->key)) {
340 		while (afs_select_fileserver(&fc)) {
341 			fc.cb_break = vnode->cb_break + vnode->cb_s_break;
342 			afs_fs_store_data(&fc, mapping, first, last, offset, to);
343 		}
344 
345 		afs_check_for_remote_deletion(&fc, fc.vnode);
346 		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
347 		ret = afs_end_vnode_operation(&fc);
348 	}
349 
350 	switch (ret) {
351 	case -EACCES:
352 	case -EPERM:
353 	case -ENOKEY:
354 	case -EKEYEXPIRED:
355 	case -EKEYREJECTED:
356 	case -EKEYREVOKED:
357 		_debug("next");
358 		spin_lock(&vnode->wb_lock);
359 		p = wbk->vnode_link.next;
360 		afs_put_wb_key(wbk);
361 		goto try_next_key;
362 	}
363 
364 	afs_put_wb_key(wbk);
365 	_leave(" = %d", ret);
366 	return ret;
367 }
368 
369 /*
370  * Synchronously write back the locked page and any subsequent non-locked dirty
371  * pages.
372  */
373 static int afs_write_back_from_locked_page(struct address_space *mapping,
374 					   struct writeback_control *wbc,
375 					   struct page *primary_page,
376 					   pgoff_t final_page)
377 {
378 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
379 	struct page *pages[8], *page;
380 	unsigned long count, priv;
381 	unsigned n, offset, to, f, t;
382 	pgoff_t start, first, last;
383 	int loop, ret;
384 
385 	_enter(",%lx", primary_page->index);
386 
387 	count = 1;
388 	if (test_set_page_writeback(primary_page))
389 		BUG();
390 
391 	/* Find all consecutive lockable dirty pages that have contiguous
392 	 * written regions, stopping when we find a page that is not
393 	 * immediately lockable, is not dirty or is missing, or we reach the
394 	 * end of the range.
395 	 */
396 	start = primary_page->index;
397 	priv = page_private(primary_page);
398 	offset = priv & AFS_PRIV_MAX;
399 	to = priv >> AFS_PRIV_SHIFT;
400 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
401 			     primary_page->index, priv);
402 
403 	WARN_ON(offset == to);
404 	if (offset == to)
405 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
406 				     primary_page->index, priv);
407 
408 	if (start >= final_page || to < PAGE_SIZE)
409 		goto no_more;
410 
411 	start++;
412 	do {
413 		_debug("more %lx [%lx]", start, count);
414 		n = final_page - start + 1;
415 		if (n > ARRAY_SIZE(pages))
416 			n = ARRAY_SIZE(pages);
417 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
418 		_debug("fgpc %u", n);
419 		if (n == 0)
420 			goto no_more;
421 		if (pages[0]->index != start) {
422 			do {
423 				put_page(pages[--n]);
424 			} while (n > 0);
425 			goto no_more;
426 		}
427 
428 		for (loop = 0; loop < n; loop++) {
429 			if (to != PAGE_SIZE)
430 				break;
431 			page = pages[loop];
432 			if (page->index > final_page)
433 				break;
434 			if (!trylock_page(page))
435 				break;
436 			if (!PageDirty(page) || PageWriteback(page)) {
437 				unlock_page(page);
438 				break;
439 			}
440 
441 			priv = page_private(page);
442 			f = priv & AFS_PRIV_MAX;
443 			t = priv >> AFS_PRIV_SHIFT;
444 			if (f != 0) {
445 				unlock_page(page);
446 				break;
447 			}
448 			to = t;
449 
450 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
451 					     page->index, priv);
452 
453 			if (!clear_page_dirty_for_io(page))
454 				BUG();
455 			if (test_set_page_writeback(page))
456 				BUG();
457 			unlock_page(page);
458 			put_page(page);
459 		}
460 		count += loop;
461 		if (loop < n) {
462 			for (; loop < n; loop++)
463 				put_page(pages[loop]);
464 			goto no_more;
465 		}
466 
467 		start += loop;
468 	} while (start <= final_page && count < 65536);
469 
470 no_more:
471 	/* We now have a contiguous set of dirty pages, each with writeback
472 	 * set; the first page is still locked at this point, but all the rest
473 	 * have been unlocked.
474 	 */
475 	unlock_page(primary_page);
476 
477 	first = primary_page->index;
478 	last = first + count - 1;
479 
480 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
481 
482 	ret = afs_store_data(mapping, first, last, offset, to);
483 	switch (ret) {
484 	case 0:
485 		ret = count;
486 		break;
487 
488 	default:
489 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
490 		/* Fall through */
491 	case -EACCES:
492 	case -EPERM:
493 	case -ENOKEY:
494 	case -EKEYEXPIRED:
495 	case -EKEYREJECTED:
496 	case -EKEYREVOKED:
497 		afs_redirty_pages(wbc, mapping, first, last);
498 		mapping_set_error(mapping, ret);
499 		break;
500 
501 	case -EDQUOT:
502 	case -ENOSPC:
503 		afs_redirty_pages(wbc, mapping, first, last);
504 		mapping_set_error(mapping, -ENOSPC);
505 		break;
506 
507 	case -EROFS:
508 	case -EIO:
509 	case -EREMOTEIO:
510 	case -EFBIG:
511 	case -ENOENT:
512 	case -ENOMEDIUM:
513 	case -ENXIO:
514 		afs_kill_pages(mapping, first, last);
515 		mapping_set_error(mapping, ret);
516 		break;
517 	}
518 
519 	_leave(" = %d", ret);
520 	return ret;
521 }
522 
523 /*
524  * write a page back to the server
525  * - the caller locked the page for us
526  */
527 int afs_writepage(struct page *page, struct writeback_control *wbc)
528 {
529 	int ret;
530 
531 	_enter("{%lx},", page->index);
532 
533 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
534 					      wbc->range_end >> PAGE_SHIFT);
535 	if (ret < 0) {
536 		_leave(" = %d", ret);
537 		return 0;
538 	}
539 
540 	wbc->nr_to_write -= ret;
541 
542 	_leave(" = 0");
543 	return 0;
544 }
545 
546 /*
547  * write a region of pages back to the server
548  */
549 static int afs_writepages_region(struct address_space *mapping,
550 				 struct writeback_control *wbc,
551 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
552 {
553 	struct page *page;
554 	int ret, n;
555 
556 	_enter(",,%lx,%lx,", index, end);
557 
558 	do {
559 		n = find_get_pages_range_tag(mapping, &index, end,
560 					PAGECACHE_TAG_DIRTY, 1, &page);
561 		if (!n)
562 			break;
563 
564 		_debug("wback %lx", page->index);
565 
566 		/* at this point we hold neither mapping->tree_lock nor lock on
567 		 * the page itself: the page may be truncated or invalidated
568 		 * (changing page->mapping to NULL), or even swizzled back from
569 		 * swapper_space to tmpfs file mapping
570 		 */
571 		ret = lock_page_killable(page);
572 		if (ret < 0) {
573 			put_page(page);
574 			_leave(" = %d", ret);
575 			return ret;
576 		}
577 
578 		if (page->mapping != mapping || !PageDirty(page)) {
579 			unlock_page(page);
580 			put_page(page);
581 			continue;
582 		}
583 
584 		if (PageWriteback(page)) {
585 			unlock_page(page);
586 			if (wbc->sync_mode != WB_SYNC_NONE)
587 				wait_on_page_writeback(page);
588 			put_page(page);
589 			continue;
590 		}
591 
592 		if (!clear_page_dirty_for_io(page))
593 			BUG();
594 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
595 		put_page(page);
596 		if (ret < 0) {
597 			_leave(" = %d", ret);
598 			return ret;
599 		}
600 
601 		wbc->nr_to_write -= ret;
602 
603 		cond_resched();
604 	} while (index < end && wbc->nr_to_write > 0);
605 
606 	*_next = index;
607 	_leave(" = 0 [%lx]", *_next);
608 	return 0;
609 }
610 
611 /*
612  * write some of the pending data back to the server
613  */
614 int afs_writepages(struct address_space *mapping,
615 		   struct writeback_control *wbc)
616 {
617 	pgoff_t start, end, next;
618 	int ret;
619 
620 	_enter("");
621 
622 	if (wbc->range_cyclic) {
623 		start = mapping->writeback_index;
624 		end = -1;
625 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
626 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
627 			ret = afs_writepages_region(mapping, wbc, 0, start,
628 						    &next);
629 		mapping->writeback_index = next;
630 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
631 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
632 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
633 		if (wbc->nr_to_write > 0)
634 			mapping->writeback_index = next;
635 	} else {
636 		start = wbc->range_start >> PAGE_SHIFT;
637 		end = wbc->range_end >> PAGE_SHIFT;
638 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
639 	}
640 
641 	_leave(" = %d", ret);
642 	return ret;
643 }
644 
645 /*
646  * completion of write to server
647  */
648 void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
649 {
650 	struct pagevec pv;
651 	unsigned long priv;
652 	unsigned count, loop;
653 	pgoff_t first = call->first, last = call->last;
654 
655 	_enter("{%x:%u},{%lx-%lx}",
656 	       vnode->fid.vid, vnode->fid.vnode, first, last);
657 
658 	pagevec_init(&pv);
659 
660 	do {
661 		_debug("done %lx-%lx", first, last);
662 
663 		count = last - first + 1;
664 		if (count > PAGEVEC_SIZE)
665 			count = PAGEVEC_SIZE;
666 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
667 					      first, count, pv.pages);
668 		ASSERTCMP(pv.nr, ==, count);
669 
670 		for (loop = 0; loop < count; loop++) {
671 			priv = page_private(pv.pages[loop]);
672 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
673 					     pv.pages[loop]->index, priv);
674 			set_page_private(pv.pages[loop], 0);
675 			end_page_writeback(pv.pages[loop]);
676 		}
677 		first += count;
678 		__pagevec_release(&pv);
679 	} while (first <= last);
680 
681 	afs_prune_wb_keys(vnode);
682 	_leave("");
683 }
684 
685 /*
686  * write to an AFS file
687  */
688 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
689 {
690 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
691 	ssize_t result;
692 	size_t count = iov_iter_count(from);
693 
694 	_enter("{%x.%u},{%zu},",
695 	       vnode->fid.vid, vnode->fid.vnode, count);
696 
697 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
698 		printk(KERN_INFO
699 		       "AFS: Attempt to write to active swap file!\n");
700 		return -EBUSY;
701 	}
702 
703 	if (!count)
704 		return 0;
705 
706 	result = generic_file_write_iter(iocb, from);
707 
708 	_leave(" = %zd", result);
709 	return result;
710 }
711 
712 /*
713  * flush any dirty pages for this process, and check for write errors.
714  * - the return status from this call provides a reliable indication of
715  *   whether any write errors occurred for this process.
716  */
717 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
718 {
719 	struct inode *inode = file_inode(file);
720 	struct afs_vnode *vnode = AFS_FS_I(inode);
721 
722 	_enter("{%x:%u},{n=%pD},%d",
723 	       vnode->fid.vid, vnode->fid.vnode, file,
724 	       datasync);
725 
726 	return file_write_and_wait_range(file, start, end);
727 }
728 
729 /*
730  * Flush out all outstanding writes on a file opened for writing when it is
731  * closed.
732  */
733 int afs_flush(struct file *file, fl_owner_t id)
734 {
735 	_enter("");
736 
737 	if ((file->f_mode & FMODE_WRITE) == 0)
738 		return 0;
739 
740 	return vfs_fsync(file, 0);
741 }
742 
743 /*
744  * notification that a previously read-only page is about to become writable
745  * - if it returns an error, the caller will deliver a bus error signal
746  */
747 int afs_page_mkwrite(struct vm_fault *vmf)
748 {
749 	struct file *file = vmf->vma->vm_file;
750 	struct inode *inode = file_inode(file);
751 	struct afs_vnode *vnode = AFS_FS_I(inode);
752 	unsigned long priv;
753 
754 	_enter("{{%x:%u}},{%lx}",
755 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
756 
757 	sb_start_pagefault(inode->i_sb);
758 
759 	/* Wait for the page to be written to the cache before we allow it to
760 	 * be modified.  We then assume the entire page will need writing back.
761 	 */
762 #ifdef CONFIG_AFS_FSCACHE
763 	fscache_wait_on_page_write(vnode->cache, vmf->page);
764 #endif
765 
766 	if (PageWriteback(vmf->page) &&
767 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
768 		return VM_FAULT_RETRY;
769 
770 	if (lock_page_killable(vmf->page) < 0)
771 		return VM_FAULT_RETRY;
772 
773 	/* We mustn't change page->private until writeback is complete as that
774 	 * details the portion of the page we need to write back and we might
775 	 * need to redirty the page if there's a problem.
776 	 */
777 	wait_on_page_writeback(vmf->page);
778 
779 	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
780 	priv |= 0; /* From */
781 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
782 			     vmf->page->index, priv);
783 	SetPagePrivate(vmf->page);
784 	set_page_private(vmf->page, priv);
785 
786 	sb_end_pagefault(inode->i_sb);
787 	return VM_FAULT_LOCKED;
788 }
789 
790 /*
791  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
792  */
793 void afs_prune_wb_keys(struct afs_vnode *vnode)
794 {
795 	LIST_HEAD(graveyard);
796 	struct afs_wb_key *wbk, *tmp;
797 
798 	/* Discard unused keys */
799 	spin_lock(&vnode->wb_lock);
800 
801 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
802 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
803 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
804 			if (refcount_read(&wbk->usage) == 1)
805 				list_move(&wbk->vnode_link, &graveyard);
806 		}
807 	}
808 
809 	spin_unlock(&vnode->wb_lock);
810 
811 	while (!list_empty(&graveyard)) {
812 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
813 		list_del(&wbk->vnode_link);
814 		afs_put_wb_key(wbk);
815 	}
816 }
817 
818 /*
819  * Clean up a page during invalidation.
820  */
821 int afs_launder_page(struct page *page)
822 {
823 	struct address_space *mapping = page->mapping;
824 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
825 	unsigned long priv;
826 	unsigned int f, t;
827 	int ret = 0;
828 
829 	_enter("{%lx}", page->index);
830 
831 	priv = page_private(page);
832 	if (clear_page_dirty_for_io(page)) {
833 		f = 0;
834 		t = PAGE_SIZE;
835 		if (PagePrivate(page)) {
836 			f = priv & AFS_PRIV_MAX;
837 			t = priv >> AFS_PRIV_SHIFT;
838 		}
839 
840 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
841 				     page->index, priv);
842 		ret = afs_store_data(mapping, page->index, page->index, t, f);
843 	}
844 
845 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
846 			     page->index, priv);
847 	set_page_private(page, 0);
848 	ClearPagePrivate(page);
849 
850 #ifdef CONFIG_AFS_FSCACHE
851 	if (PageFsCache(page)) {
852 		fscache_wait_on_page_write(vnode->cache, page);
853 		fscache_uncache_page(vnode->cache, page);
854 	}
855 #endif
856 	return ret;
857 }
858