xref: /openbmc/linux/fs/afs/write.c (revision 3c8c1539)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include <linux/fscache.h>
16 #include "internal.h"
17 
18 /*
19  * mark a page as having been made dirty and thus needing writeback
20  */
21 int afs_set_page_dirty(struct page *page)
22 {
23 	_enter("");
24 	return __set_page_dirty_nobuffers(page);
25 }
26 
27 /*
28  * prepare to perform part of a write to a page
29  */
30 int afs_write_begin(struct file *file, struct address_space *mapping,
31 		    loff_t pos, unsigned len, unsigned flags,
32 		    struct page **_page, void **fsdata)
33 {
34 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
35 	struct page *page;
36 	unsigned long priv;
37 	unsigned f, from;
38 	unsigned t, to;
39 	pgoff_t index;
40 	int ret;
41 
42 	_enter("{%llx:%llu},%llx,%x",
43 	       vnode->fid.vid, vnode->fid.vnode, pos, len);
44 
45 	/* Prefetch area to be written into the cache if we're caching this
46 	 * file.  We need to do this before we get a lock on the page in case
47 	 * there's more than one writer competing for the same cache block.
48 	 */
49 	ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
50 				&afs_req_ops, NULL);
51 	if (ret < 0)
52 		return ret;
53 
54 	index = page->index;
55 	from = pos - index * PAGE_SIZE;
56 	to = from + len;
57 
58 try_again:
59 	/* See if this page is already partially written in a way that we can
60 	 * merge the new write with.
61 	 */
62 	if (PagePrivate(page)) {
63 		priv = page_private(page);
64 		f = afs_page_dirty_from(page, priv);
65 		t = afs_page_dirty_to(page, priv);
66 		ASSERTCMP(f, <=, t);
67 
68 		if (PageWriteback(page)) {
69 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
70 			goto flush_conflicting_write;
71 		}
72 		/* If the file is being filled locally, allow inter-write
73 		 * spaces to be merged into writes.  If it's not, only write
74 		 * back what the user gives us.
75 		 */
76 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
77 		    (to < f || from > t))
78 			goto flush_conflicting_write;
79 	}
80 
81 	*_page = page;
82 	_leave(" = 0");
83 	return 0;
84 
85 	/* The previous write and this write aren't adjacent or overlapping, so
86 	 * flush the page out.
87 	 */
88 flush_conflicting_write:
89 	_debug("flush conflict");
90 	ret = write_one_page(page);
91 	if (ret < 0)
92 		goto error;
93 
94 	ret = lock_page_killable(page);
95 	if (ret < 0)
96 		goto error;
97 	goto try_again;
98 
99 error:
100 	put_page(page);
101 	_leave(" = %d", ret);
102 	return ret;
103 }
104 
105 /*
106  * finalise part of a write to a page
107  */
108 int afs_write_end(struct file *file, struct address_space *mapping,
109 		  loff_t pos, unsigned len, unsigned copied,
110 		  struct page *page, void *fsdata)
111 {
112 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
113 	unsigned long priv;
114 	unsigned int f, from = pos & (thp_size(page) - 1);
115 	unsigned int t, to = from + copied;
116 	loff_t i_size, maybe_i_size;
117 
118 	_enter("{%llx:%llu},{%lx}",
119 	       vnode->fid.vid, vnode->fid.vnode, page->index);
120 
121 	if (!PageUptodate(page)) {
122 		if (copied < len) {
123 			copied = 0;
124 			goto out;
125 		}
126 
127 		SetPageUptodate(page);
128 	}
129 
130 	if (copied == 0)
131 		goto out;
132 
133 	maybe_i_size = pos + copied;
134 
135 	i_size = i_size_read(&vnode->vfs_inode);
136 	if (maybe_i_size > i_size) {
137 		write_seqlock(&vnode->cb_lock);
138 		i_size = i_size_read(&vnode->vfs_inode);
139 		if (maybe_i_size > i_size)
140 			afs_set_i_size(vnode, maybe_i_size);
141 		write_sequnlock(&vnode->cb_lock);
142 	}
143 
144 	if (PagePrivate(page)) {
145 		priv = page_private(page);
146 		f = afs_page_dirty_from(page, priv);
147 		t = afs_page_dirty_to(page, priv);
148 		if (from < f)
149 			f = from;
150 		if (to > t)
151 			t = to;
152 		priv = afs_page_dirty(page, f, t);
153 		set_page_private(page, priv);
154 		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
155 	} else {
156 		priv = afs_page_dirty(page, from, to);
157 		attach_page_private(page, (void *)priv);
158 		trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
159 	}
160 
161 	if (set_page_dirty(page))
162 		_debug("dirtied %lx", page->index);
163 
164 out:
165 	unlock_page(page);
166 	put_page(page);
167 	return copied;
168 }
169 
170 /*
171  * kill all the pages in the given range
172  */
173 static void afs_kill_pages(struct address_space *mapping,
174 			   loff_t start, loff_t len)
175 {
176 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
177 	struct pagevec pv;
178 	unsigned int loop, psize;
179 
180 	_enter("{%llx:%llu},%llx @%llx",
181 	       vnode->fid.vid, vnode->fid.vnode, len, start);
182 
183 	pagevec_init(&pv);
184 
185 	do {
186 		_debug("kill %llx @%llx", len, start);
187 
188 		pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
189 					      PAGEVEC_SIZE, pv.pages);
190 		if (pv.nr == 0)
191 			break;
192 
193 		for (loop = 0; loop < pv.nr; loop++) {
194 			struct page *page = pv.pages[loop];
195 
196 			if (page->index * PAGE_SIZE >= start + len)
197 				break;
198 
199 			psize = thp_size(page);
200 			start += psize;
201 			len -= psize;
202 			ClearPageUptodate(page);
203 			end_page_writeback(page);
204 			lock_page(page);
205 			generic_error_remove_page(mapping, page);
206 			unlock_page(page);
207 		}
208 
209 		__pagevec_release(&pv);
210 	} while (len > 0);
211 
212 	_leave("");
213 }
214 
215 /*
216  * Redirty all the pages in a given range.
217  */
218 static void afs_redirty_pages(struct writeback_control *wbc,
219 			      struct address_space *mapping,
220 			      loff_t start, loff_t len)
221 {
222 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
223 	struct pagevec pv;
224 	unsigned int loop, psize;
225 
226 	_enter("{%llx:%llu},%llx @%llx",
227 	       vnode->fid.vid, vnode->fid.vnode, len, start);
228 
229 	pagevec_init(&pv);
230 
231 	do {
232 		_debug("redirty %llx @%llx", len, start);
233 
234 		pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
235 					      PAGEVEC_SIZE, pv.pages);
236 		if (pv.nr == 0)
237 			break;
238 
239 		for (loop = 0; loop < pv.nr; loop++) {
240 			struct page *page = pv.pages[loop];
241 
242 			if (page->index * PAGE_SIZE >= start + len)
243 				break;
244 
245 			psize = thp_size(page);
246 			start += psize;
247 			len -= psize;
248 			redirty_page_for_writepage(wbc, page);
249 			end_page_writeback(page);
250 		}
251 
252 		__pagevec_release(&pv);
253 	} while (len > 0);
254 
255 	_leave("");
256 }
257 
258 /*
259  * completion of write to server
260  */
261 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
262 {
263 	struct address_space *mapping = vnode->vfs_inode.i_mapping;
264 	struct page *page;
265 	pgoff_t end;
266 
267 	XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
268 
269 	_enter("{%llx:%llu},{%x @%llx}",
270 	       vnode->fid.vid, vnode->fid.vnode, len, start);
271 
272 	rcu_read_lock();
273 
274 	end = (start + len - 1) / PAGE_SIZE;
275 	xas_for_each(&xas, page, end) {
276 		if (!PageWriteback(page)) {
277 			kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
278 			ASSERT(PageWriteback(page));
279 		}
280 
281 		trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
282 		detach_page_private(page);
283 		page_endio(page, true, 0);
284 	}
285 
286 	rcu_read_unlock();
287 
288 	afs_prune_wb_keys(vnode);
289 	_leave("");
290 }
291 
292 /*
293  * Find a key to use for the writeback.  We cached the keys used to author the
294  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
295  * and we need to start from there if it's set.
296  */
297 static int afs_get_writeback_key(struct afs_vnode *vnode,
298 				 struct afs_wb_key **_wbk)
299 {
300 	struct afs_wb_key *wbk = NULL;
301 	struct list_head *p;
302 	int ret = -ENOKEY, ret2;
303 
304 	spin_lock(&vnode->wb_lock);
305 	if (*_wbk)
306 		p = (*_wbk)->vnode_link.next;
307 	else
308 		p = vnode->wb_keys.next;
309 
310 	while (p != &vnode->wb_keys) {
311 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
312 		_debug("wbk %u", key_serial(wbk->key));
313 		ret2 = key_validate(wbk->key);
314 		if (ret2 == 0) {
315 			refcount_inc(&wbk->usage);
316 			_debug("USE WB KEY %u", key_serial(wbk->key));
317 			break;
318 		}
319 
320 		wbk = NULL;
321 		if (ret == -ENOKEY)
322 			ret = ret2;
323 		p = p->next;
324 	}
325 
326 	spin_unlock(&vnode->wb_lock);
327 	if (*_wbk)
328 		afs_put_wb_key(*_wbk);
329 	*_wbk = wbk;
330 	return 0;
331 }
332 
333 static void afs_store_data_success(struct afs_operation *op)
334 {
335 	struct afs_vnode *vnode = op->file[0].vnode;
336 
337 	op->ctime = op->file[0].scb.status.mtime_client;
338 	afs_vnode_commit_status(op, &op->file[0]);
339 	if (op->error == 0) {
340 		if (!op->store.laundering)
341 			afs_pages_written_back(vnode, op->store.pos, op->store.size);
342 		afs_stat_v(vnode, n_stores);
343 		atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
344 	}
345 }
346 
347 static const struct afs_operation_ops afs_store_data_operation = {
348 	.issue_afs_rpc	= afs_fs_store_data,
349 	.issue_yfs_rpc	= yfs_fs_store_data,
350 	.success	= afs_store_data_success,
351 };
352 
353 /*
354  * write to a file
355  */
356 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
357 			  bool laundering)
358 {
359 	struct afs_operation *op;
360 	struct afs_wb_key *wbk = NULL;
361 	loff_t size = iov_iter_count(iter), i_size;
362 	int ret = -ENOKEY;
363 
364 	_enter("%s{%llx:%llu.%u},%llx,%llx",
365 	       vnode->volume->name,
366 	       vnode->fid.vid,
367 	       vnode->fid.vnode,
368 	       vnode->fid.unique,
369 	       size, pos);
370 
371 	ret = afs_get_writeback_key(vnode, &wbk);
372 	if (ret) {
373 		_leave(" = %d [no keys]", ret);
374 		return ret;
375 	}
376 
377 	op = afs_alloc_operation(wbk->key, vnode->volume);
378 	if (IS_ERR(op)) {
379 		afs_put_wb_key(wbk);
380 		return -ENOMEM;
381 	}
382 
383 	i_size = i_size_read(&vnode->vfs_inode);
384 
385 	afs_op_set_vnode(op, 0, vnode);
386 	op->file[0].dv_delta = 1;
387 	op->file[0].modification = true;
388 	op->store.write_iter = iter;
389 	op->store.pos = pos;
390 	op->store.size = size;
391 	op->store.i_size = max(pos + size, i_size);
392 	op->store.laundering = laundering;
393 	op->mtime = vnode->vfs_inode.i_mtime;
394 	op->flags |= AFS_OPERATION_UNINTR;
395 	op->ops = &afs_store_data_operation;
396 
397 try_next_key:
398 	afs_begin_vnode_operation(op);
399 	afs_wait_for_operation(op);
400 
401 	switch (op->error) {
402 	case -EACCES:
403 	case -EPERM:
404 	case -ENOKEY:
405 	case -EKEYEXPIRED:
406 	case -EKEYREJECTED:
407 	case -EKEYREVOKED:
408 		_debug("next");
409 
410 		ret = afs_get_writeback_key(vnode, &wbk);
411 		if (ret == 0) {
412 			key_put(op->key);
413 			op->key = key_get(wbk->key);
414 			goto try_next_key;
415 		}
416 		break;
417 	}
418 
419 	afs_put_wb_key(wbk);
420 	_leave(" = %d", op->error);
421 	return afs_put_operation(op);
422 }
423 
424 /*
425  * Extend the region to be written back to include subsequent contiguously
426  * dirty pages if possible, but don't sleep while doing so.
427  *
428  * If this page holds new content, then we can include filler zeros in the
429  * writeback.
430  */
431 static void afs_extend_writeback(struct address_space *mapping,
432 				 struct afs_vnode *vnode,
433 				 long *_count,
434 				 loff_t start,
435 				 loff_t max_len,
436 				 bool new_content,
437 				 unsigned int *_len)
438 {
439 	struct pagevec pvec;
440 	struct page *page;
441 	unsigned long priv;
442 	unsigned int psize, filler = 0;
443 	unsigned int f, t;
444 	loff_t len = *_len;
445 	pgoff_t index = (start + len) / PAGE_SIZE;
446 	bool stop = true;
447 	unsigned int i;
448 
449 	XA_STATE(xas, &mapping->i_pages, index);
450 	pagevec_init(&pvec);
451 
452 	do {
453 		/* Firstly, we gather up a batch of contiguous dirty pages
454 		 * under the RCU read lock - but we can't clear the dirty flags
455 		 * there if any of those pages are mapped.
456 		 */
457 		rcu_read_lock();
458 
459 		xas_for_each(&xas, page, ULONG_MAX) {
460 			stop = true;
461 			if (xas_retry(&xas, page))
462 				continue;
463 			if (xa_is_value(page))
464 				break;
465 			if (page->index != index)
466 				break;
467 
468 			if (!page_cache_get_speculative(page)) {
469 				xas_reset(&xas);
470 				continue;
471 			}
472 
473 			/* Has the page moved or been split? */
474 			if (unlikely(page != xas_reload(&xas))) {
475 				put_page(page);
476 				break;
477 			}
478 
479 			if (!trylock_page(page)) {
480 				put_page(page);
481 				break;
482 			}
483 			if (!PageDirty(page) || PageWriteback(page)) {
484 				unlock_page(page);
485 				put_page(page);
486 				break;
487 			}
488 
489 			psize = thp_size(page);
490 			priv = page_private(page);
491 			f = afs_page_dirty_from(page, priv);
492 			t = afs_page_dirty_to(page, priv);
493 			if (f != 0 && !new_content) {
494 				unlock_page(page);
495 				put_page(page);
496 				break;
497 			}
498 
499 			len += filler + t;
500 			filler = psize - t;
501 			if (len >= max_len || *_count <= 0)
502 				stop = true;
503 			else if (t == psize || new_content)
504 				stop = false;
505 
506 			index += thp_nr_pages(page);
507 			if (!pagevec_add(&pvec, page))
508 				break;
509 			if (stop)
510 				break;
511 		}
512 
513 		if (!stop)
514 			xas_pause(&xas);
515 		rcu_read_unlock();
516 
517 		/* Now, if we obtained any pages, we can shift them to being
518 		 * writable and mark them for caching.
519 		 */
520 		if (!pagevec_count(&pvec))
521 			break;
522 
523 		for (i = 0; i < pagevec_count(&pvec); i++) {
524 			page = pvec.pages[i];
525 			trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
526 
527 			if (!clear_page_dirty_for_io(page))
528 				BUG();
529 			if (test_set_page_writeback(page))
530 				BUG();
531 
532 			*_count -= thp_nr_pages(page);
533 			unlock_page(page);
534 		}
535 
536 		pagevec_release(&pvec);
537 		cond_resched();
538 	} while (!stop);
539 
540 	*_len = len;
541 }
542 
543 /*
544  * Synchronously write back the locked page and any subsequent non-locked dirty
545  * pages.
546  */
547 static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
548 					       struct writeback_control *wbc,
549 					       struct page *page,
550 					       loff_t start, loff_t end)
551 {
552 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
553 	struct iov_iter iter;
554 	unsigned long priv;
555 	unsigned int offset, to, len, max_len;
556 	loff_t i_size = i_size_read(&vnode->vfs_inode);
557 	bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
558 	long count = wbc->nr_to_write;
559 	int ret;
560 
561 	_enter(",%lx,%llx-%llx", page->index, start, end);
562 
563 	if (test_set_page_writeback(page))
564 		BUG();
565 
566 	count -= thp_nr_pages(page);
567 
568 	/* Find all consecutive lockable dirty pages that have contiguous
569 	 * written regions, stopping when we find a page that is not
570 	 * immediately lockable, is not dirty or is missing, or we reach the
571 	 * end of the range.
572 	 */
573 	priv = page_private(page);
574 	offset = afs_page_dirty_from(page, priv);
575 	to = afs_page_dirty_to(page, priv);
576 	trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
577 
578 	len = to - offset;
579 	start += offset;
580 	if (start < i_size) {
581 		/* Trim the write to the EOF; the extra data is ignored.  Also
582 		 * put an upper limit on the size of a single storedata op.
583 		 */
584 		max_len = 65536 * 4096;
585 		max_len = min_t(unsigned long long, max_len, end - start + 1);
586 		max_len = min_t(unsigned long long, max_len, i_size - start);
587 
588 		if (len < max_len &&
589 		    (to == thp_size(page) || new_content))
590 			afs_extend_writeback(mapping, vnode, &count,
591 					     start, max_len, new_content, &len);
592 		len = min_t(loff_t, len, max_len);
593 	}
594 
595 	/* We now have a contiguous set of dirty pages, each with writeback
596 	 * set; the first page is still locked at this point, but all the rest
597 	 * have been unlocked.
598 	 */
599 	unlock_page(page);
600 
601 	if (start < i_size) {
602 		_debug("write back %x @%llx [%llx]", len, start, i_size);
603 
604 		iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
605 		ret = afs_store_data(vnode, &iter, start, false);
606 	} else {
607 		_debug("write discard %x @%llx [%llx]", len, start, i_size);
608 
609 		/* The dirty region was entirely beyond the EOF. */
610 		afs_pages_written_back(vnode, start, len);
611 		ret = 0;
612 	}
613 
614 	switch (ret) {
615 	case 0:
616 		wbc->nr_to_write = count;
617 		ret = len;
618 		break;
619 
620 	default:
621 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
622 		fallthrough;
623 	case -EACCES:
624 	case -EPERM:
625 	case -ENOKEY:
626 	case -EKEYEXPIRED:
627 	case -EKEYREJECTED:
628 	case -EKEYREVOKED:
629 		afs_redirty_pages(wbc, mapping, start, len);
630 		mapping_set_error(mapping, ret);
631 		break;
632 
633 	case -EDQUOT:
634 	case -ENOSPC:
635 		afs_redirty_pages(wbc, mapping, start, len);
636 		mapping_set_error(mapping, -ENOSPC);
637 		break;
638 
639 	case -EROFS:
640 	case -EIO:
641 	case -EREMOTEIO:
642 	case -EFBIG:
643 	case -ENOENT:
644 	case -ENOMEDIUM:
645 	case -ENXIO:
646 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
647 		afs_kill_pages(mapping, start, len);
648 		mapping_set_error(mapping, ret);
649 		break;
650 	}
651 
652 	_leave(" = %d", ret);
653 	return ret;
654 }
655 
656 /*
657  * write a page back to the server
658  * - the caller locked the page for us
659  */
660 int afs_writepage(struct page *page, struct writeback_control *wbc)
661 {
662 	ssize_t ret;
663 	loff_t start;
664 
665 	_enter("{%lx},", page->index);
666 
667 	start = page->index * PAGE_SIZE;
668 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
669 					      start, LLONG_MAX - start);
670 	if (ret < 0) {
671 		_leave(" = %zd", ret);
672 		return ret;
673 	}
674 
675 	_leave(" = 0");
676 	return 0;
677 }
678 
679 /*
680  * write a region of pages back to the server
681  */
682 static int afs_writepages_region(struct address_space *mapping,
683 				 struct writeback_control *wbc,
684 				 loff_t start, loff_t end, loff_t *_next)
685 {
686 	struct page *page;
687 	ssize_t ret;
688 	int n;
689 
690 	_enter("%llx,%llx,", start, end);
691 
692 	do {
693 		pgoff_t index = start / PAGE_SIZE;
694 
695 		n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
696 					     PAGECACHE_TAG_DIRTY, 1, &page);
697 		if (!n)
698 			break;
699 
700 		start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
701 
702 		_debug("wback %lx", page->index);
703 
704 		/* At this point we hold neither the i_pages lock nor the
705 		 * page lock: the page may be truncated or invalidated
706 		 * (changing page->mapping to NULL), or even swizzled
707 		 * back from swapper_space to tmpfs file mapping
708 		 */
709 		if (wbc->sync_mode != WB_SYNC_NONE) {
710 			ret = lock_page_killable(page);
711 			if (ret < 0) {
712 				put_page(page);
713 				return ret;
714 			}
715 		} else {
716 			if (!trylock_page(page)) {
717 				put_page(page);
718 				return 0;
719 			}
720 		}
721 
722 		if (page->mapping != mapping || !PageDirty(page)) {
723 			start += thp_size(page);
724 			unlock_page(page);
725 			put_page(page);
726 			continue;
727 		}
728 
729 		if (PageWriteback(page)) {
730 			unlock_page(page);
731 			if (wbc->sync_mode != WB_SYNC_NONE)
732 				wait_on_page_writeback(page);
733 			put_page(page);
734 			continue;
735 		}
736 
737 		if (!clear_page_dirty_for_io(page))
738 			BUG();
739 		ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
740 		put_page(page);
741 		if (ret < 0) {
742 			_leave(" = %zd", ret);
743 			return ret;
744 		}
745 
746 		start += ret;
747 
748 		cond_resched();
749 	} while (wbc->nr_to_write > 0);
750 
751 	*_next = start;
752 	_leave(" = 0 [%llx]", *_next);
753 	return 0;
754 }
755 
756 /*
757  * write some of the pending data back to the server
758  */
759 int afs_writepages(struct address_space *mapping,
760 		   struct writeback_control *wbc)
761 {
762 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
763 	loff_t start, next;
764 	int ret;
765 
766 	_enter("");
767 
768 	/* We have to be careful as we can end up racing with setattr()
769 	 * truncating the pagecache since the caller doesn't take a lock here
770 	 * to prevent it.
771 	 */
772 	if (wbc->sync_mode == WB_SYNC_ALL)
773 		down_read(&vnode->validate_lock);
774 	else if (!down_read_trylock(&vnode->validate_lock))
775 		return 0;
776 
777 	if (wbc->range_cyclic) {
778 		start = mapping->writeback_index * PAGE_SIZE;
779 		ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
780 		if (ret == 0) {
781 			mapping->writeback_index = next / PAGE_SIZE;
782 			if (start > 0 && wbc->nr_to_write > 0) {
783 				ret = afs_writepages_region(mapping, wbc, 0,
784 							    start, &next);
785 				if (ret == 0)
786 					mapping->writeback_index =
787 						next / PAGE_SIZE;
788 			}
789 		}
790 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
791 		ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
792 		if (wbc->nr_to_write > 0 && ret == 0)
793 			mapping->writeback_index = next / PAGE_SIZE;
794 	} else {
795 		ret = afs_writepages_region(mapping, wbc,
796 					    wbc->range_start, wbc->range_end, &next);
797 	}
798 
799 	up_read(&vnode->validate_lock);
800 	_leave(" = %d", ret);
801 	return ret;
802 }
803 
804 /*
805  * write to an AFS file
806  */
807 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
808 {
809 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
810 	struct afs_file *af = iocb->ki_filp->private_data;
811 	ssize_t result;
812 	size_t count = iov_iter_count(from);
813 
814 	_enter("{%llx:%llu},{%zu},",
815 	       vnode->fid.vid, vnode->fid.vnode, count);
816 
817 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
818 		printk(KERN_INFO
819 		       "AFS: Attempt to write to active swap file!\n");
820 		return -EBUSY;
821 	}
822 
823 	if (!count)
824 		return 0;
825 
826 	result = afs_validate(vnode, af->key);
827 	if (result < 0)
828 		return result;
829 
830 	result = generic_file_write_iter(iocb, from);
831 
832 	_leave(" = %zd", result);
833 	return result;
834 }
835 
836 /*
837  * flush any dirty pages for this process, and check for write errors.
838  * - the return status from this call provides a reliable indication of
839  *   whether any write errors occurred for this process.
840  */
841 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
842 {
843 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
844 	struct afs_file *af = file->private_data;
845 	int ret;
846 
847 	_enter("{%llx:%llu},{n=%pD},%d",
848 	       vnode->fid.vid, vnode->fid.vnode, file,
849 	       datasync);
850 
851 	ret = afs_validate(vnode, af->key);
852 	if (ret < 0)
853 		return ret;
854 
855 	return file_write_and_wait_range(file, start, end);
856 }
857 
858 /*
859  * notification that a previously read-only page is about to become writable
860  * - if it returns an error, the caller will deliver a bus error signal
861  */
862 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
863 {
864 	struct page *page = thp_head(vmf->page);
865 	struct file *file = vmf->vma->vm_file;
866 	struct inode *inode = file_inode(file);
867 	struct afs_vnode *vnode = AFS_FS_I(inode);
868 	struct afs_file *af = file->private_data;
869 	unsigned long priv;
870 	vm_fault_t ret = VM_FAULT_RETRY;
871 
872 	_enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
873 
874 	afs_validate(vnode, af->key);
875 
876 	sb_start_pagefault(inode->i_sb);
877 
878 	/* Wait for the page to be written to the cache before we allow it to
879 	 * be modified.  We then assume the entire page will need writing back.
880 	 */
881 #ifdef CONFIG_AFS_FSCACHE
882 	if (PageFsCache(page) &&
883 	    wait_on_page_fscache_killable(page) < 0)
884 		goto out;
885 #endif
886 
887 	if (wait_on_page_writeback_killable(page))
888 		goto out;
889 
890 	if (lock_page_killable(page) < 0)
891 		goto out;
892 
893 	/* We mustn't change page->private until writeback is complete as that
894 	 * details the portion of the page we need to write back and we might
895 	 * need to redirty the page if there's a problem.
896 	 */
897 	if (wait_on_page_writeback_killable(page) < 0) {
898 		unlock_page(page);
899 		goto out;
900 	}
901 
902 	priv = afs_page_dirty(page, 0, thp_size(page));
903 	priv = afs_page_dirty_mmapped(priv);
904 	if (PagePrivate(page)) {
905 		set_page_private(page, priv);
906 		trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
907 	} else {
908 		attach_page_private(page, (void *)priv);
909 		trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
910 	}
911 	file_update_time(file);
912 
913 	ret = VM_FAULT_LOCKED;
914 out:
915 	sb_end_pagefault(inode->i_sb);
916 	return ret;
917 }
918 
919 /*
920  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
921  */
922 void afs_prune_wb_keys(struct afs_vnode *vnode)
923 {
924 	LIST_HEAD(graveyard);
925 	struct afs_wb_key *wbk, *tmp;
926 
927 	/* Discard unused keys */
928 	spin_lock(&vnode->wb_lock);
929 
930 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
931 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
932 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
933 			if (refcount_read(&wbk->usage) == 1)
934 				list_move(&wbk->vnode_link, &graveyard);
935 		}
936 	}
937 
938 	spin_unlock(&vnode->wb_lock);
939 
940 	while (!list_empty(&graveyard)) {
941 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
942 		list_del(&wbk->vnode_link);
943 		afs_put_wb_key(wbk);
944 	}
945 }
946 
947 /*
948  * Clean up a page during invalidation.
949  */
950 int afs_launder_page(struct page *page)
951 {
952 	struct address_space *mapping = page->mapping;
953 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
954 	struct iov_iter iter;
955 	struct bio_vec bv[1];
956 	unsigned long priv;
957 	unsigned int f, t;
958 	int ret = 0;
959 
960 	_enter("{%lx}", page->index);
961 
962 	priv = page_private(page);
963 	if (clear_page_dirty_for_io(page)) {
964 		f = 0;
965 		t = thp_size(page);
966 		if (PagePrivate(page)) {
967 			f = afs_page_dirty_from(page, priv);
968 			t = afs_page_dirty_to(page, priv);
969 		}
970 
971 		bv[0].bv_page = page;
972 		bv[0].bv_offset = f;
973 		bv[0].bv_len = t - f;
974 		iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
975 
976 		trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
977 		ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE,
978 				     true);
979 	}
980 
981 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
982 	detach_page_private(page);
983 	wait_on_page_fscache(page);
984 	return ret;
985 }
986