xref: /openbmc/linux/fs/afs/write.c (revision 3003bbd0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include <linux/fscache.h>
16 #include "internal.h"
17 
18 /*
19  * mark a page as having been made dirty and thus needing writeback
20  */
21 int afs_set_page_dirty(struct page *page)
22 {
23 	_enter("");
24 	return __set_page_dirty_nobuffers(page);
25 }
26 
27 /*
28  * prepare to perform part of a write to a page
29  */
30 int afs_write_begin(struct file *file, struct address_space *mapping,
31 		    loff_t pos, unsigned len, unsigned flags,
32 		    struct page **_page, void **fsdata)
33 {
34 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
35 	struct page *page;
36 	unsigned long priv;
37 	unsigned f, from;
38 	unsigned t, to;
39 	pgoff_t index;
40 	int ret;
41 
42 	_enter("{%llx:%llu},%llx,%x",
43 	       vnode->fid.vid, vnode->fid.vnode, pos, len);
44 
45 	/* Prefetch area to be written into the cache if we're caching this
46 	 * file.  We need to do this before we get a lock on the page in case
47 	 * there's more than one writer competing for the same cache block.
48 	 */
49 	ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
50 				&afs_req_ops, NULL);
51 	if (ret < 0)
52 		return ret;
53 
54 	index = page->index;
55 	from = pos - index * PAGE_SIZE;
56 	to = from + len;
57 
58 try_again:
59 	/* See if this page is already partially written in a way that we can
60 	 * merge the new write with.
61 	 */
62 	if (PagePrivate(page)) {
63 		priv = page_private(page);
64 		f = afs_page_dirty_from(page, priv);
65 		t = afs_page_dirty_to(page, priv);
66 		ASSERTCMP(f, <=, t);
67 
68 		if (PageWriteback(page)) {
69 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
70 			goto flush_conflicting_write;
71 		}
72 		/* If the file is being filled locally, allow inter-write
73 		 * spaces to be merged into writes.  If it's not, only write
74 		 * back what the user gives us.
75 		 */
76 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
77 		    (to < f || from > t))
78 			goto flush_conflicting_write;
79 	}
80 
81 	*_page = page;
82 	_leave(" = 0");
83 	return 0;
84 
85 	/* The previous write and this write aren't adjacent or overlapping, so
86 	 * flush the page out.
87 	 */
88 flush_conflicting_write:
89 	_debug("flush conflict");
90 	ret = write_one_page(page);
91 	if (ret < 0)
92 		goto error;
93 
94 	ret = lock_page_killable(page);
95 	if (ret < 0)
96 		goto error;
97 	goto try_again;
98 
99 error:
100 	put_page(page);
101 	_leave(" = %d", ret);
102 	return ret;
103 }
104 
105 /*
106  * finalise part of a write to a page
107  */
108 int afs_write_end(struct file *file, struct address_space *mapping,
109 		  loff_t pos, unsigned len, unsigned copied,
110 		  struct page *page, void *fsdata)
111 {
112 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
113 	unsigned long priv;
114 	unsigned int f, from = pos & (thp_size(page) - 1);
115 	unsigned int t, to = from + copied;
116 	loff_t i_size, maybe_i_size;
117 
118 	_enter("{%llx:%llu},{%lx}",
119 	       vnode->fid.vid, vnode->fid.vnode, page->index);
120 
121 	if (copied == 0)
122 		goto out;
123 
124 	maybe_i_size = pos + copied;
125 
126 	i_size = i_size_read(&vnode->vfs_inode);
127 	if (maybe_i_size > i_size) {
128 		write_seqlock(&vnode->cb_lock);
129 		i_size = i_size_read(&vnode->vfs_inode);
130 		if (maybe_i_size > i_size)
131 			i_size_write(&vnode->vfs_inode, maybe_i_size);
132 		write_sequnlock(&vnode->cb_lock);
133 	}
134 
135 	ASSERT(PageUptodate(page));
136 
137 	if (PagePrivate(page)) {
138 		priv = page_private(page);
139 		f = afs_page_dirty_from(page, priv);
140 		t = afs_page_dirty_to(page, priv);
141 		if (from < f)
142 			f = from;
143 		if (to > t)
144 			t = to;
145 		priv = afs_page_dirty(page, f, t);
146 		set_page_private(page, priv);
147 		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
148 	} else {
149 		priv = afs_page_dirty(page, from, to);
150 		attach_page_private(page, (void *)priv);
151 		trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
152 	}
153 
154 	if (set_page_dirty(page))
155 		_debug("dirtied %lx", page->index);
156 
157 out:
158 	unlock_page(page);
159 	put_page(page);
160 	return copied;
161 }
162 
163 /*
164  * kill all the pages in the given range
165  */
166 static void afs_kill_pages(struct address_space *mapping,
167 			   loff_t start, loff_t len)
168 {
169 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
170 	struct pagevec pv;
171 	unsigned int loop, psize;
172 
173 	_enter("{%llx:%llu},%llx @%llx",
174 	       vnode->fid.vid, vnode->fid.vnode, len, start);
175 
176 	pagevec_init(&pv);
177 
178 	do {
179 		_debug("kill %llx @%llx", len, start);
180 
181 		pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
182 					      PAGEVEC_SIZE, pv.pages);
183 		if (pv.nr == 0)
184 			break;
185 
186 		for (loop = 0; loop < pv.nr; loop++) {
187 			struct page *page = pv.pages[loop];
188 
189 			if (page->index * PAGE_SIZE >= start + len)
190 				break;
191 
192 			psize = thp_size(page);
193 			start += psize;
194 			len -= psize;
195 			ClearPageUptodate(page);
196 			end_page_writeback(page);
197 			lock_page(page);
198 			generic_error_remove_page(mapping, page);
199 			unlock_page(page);
200 		}
201 
202 		__pagevec_release(&pv);
203 	} while (len > 0);
204 
205 	_leave("");
206 }
207 
208 /*
209  * Redirty all the pages in a given range.
210  */
211 static void afs_redirty_pages(struct writeback_control *wbc,
212 			      struct address_space *mapping,
213 			      loff_t start, loff_t len)
214 {
215 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
216 	struct pagevec pv;
217 	unsigned int loop, psize;
218 
219 	_enter("{%llx:%llu},%llx @%llx",
220 	       vnode->fid.vid, vnode->fid.vnode, len, start);
221 
222 	pagevec_init(&pv);
223 
224 	do {
225 		_debug("redirty %llx @%llx", len, start);
226 
227 		pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
228 					      PAGEVEC_SIZE, pv.pages);
229 		if (pv.nr == 0)
230 			break;
231 
232 		for (loop = 0; loop < pv.nr; loop++) {
233 			struct page *page = pv.pages[loop];
234 
235 			if (page->index * PAGE_SIZE >= start + len)
236 				break;
237 
238 			psize = thp_size(page);
239 			start += psize;
240 			len -= psize;
241 			redirty_page_for_writepage(wbc, page);
242 			end_page_writeback(page);
243 		}
244 
245 		__pagevec_release(&pv);
246 	} while (len > 0);
247 
248 	_leave("");
249 }
250 
251 /*
252  * completion of write to server
253  */
254 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
255 {
256 	struct address_space *mapping = vnode->vfs_inode.i_mapping;
257 	struct page *page;
258 	pgoff_t end;
259 
260 	XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
261 
262 	_enter("{%llx:%llu},{%x @%llx}",
263 	       vnode->fid.vid, vnode->fid.vnode, len, start);
264 
265 	rcu_read_lock();
266 
267 	end = (start + len - 1) / PAGE_SIZE;
268 	xas_for_each(&xas, page, end) {
269 		if (!PageWriteback(page)) {
270 			kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
271 			ASSERT(PageWriteback(page));
272 		}
273 
274 		trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
275 		detach_page_private(page);
276 		page_endio(page, true, 0);
277 	}
278 
279 	rcu_read_unlock();
280 
281 	afs_prune_wb_keys(vnode);
282 	_leave("");
283 }
284 
285 /*
286  * Find a key to use for the writeback.  We cached the keys used to author the
287  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
288  * and we need to start from there if it's set.
289  */
290 static int afs_get_writeback_key(struct afs_vnode *vnode,
291 				 struct afs_wb_key **_wbk)
292 {
293 	struct afs_wb_key *wbk = NULL;
294 	struct list_head *p;
295 	int ret = -ENOKEY, ret2;
296 
297 	spin_lock(&vnode->wb_lock);
298 	if (*_wbk)
299 		p = (*_wbk)->vnode_link.next;
300 	else
301 		p = vnode->wb_keys.next;
302 
303 	while (p != &vnode->wb_keys) {
304 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
305 		_debug("wbk %u", key_serial(wbk->key));
306 		ret2 = key_validate(wbk->key);
307 		if (ret2 == 0) {
308 			refcount_inc(&wbk->usage);
309 			_debug("USE WB KEY %u", key_serial(wbk->key));
310 			break;
311 		}
312 
313 		wbk = NULL;
314 		if (ret == -ENOKEY)
315 			ret = ret2;
316 		p = p->next;
317 	}
318 
319 	spin_unlock(&vnode->wb_lock);
320 	if (*_wbk)
321 		afs_put_wb_key(*_wbk);
322 	*_wbk = wbk;
323 	return 0;
324 }
325 
326 static void afs_store_data_success(struct afs_operation *op)
327 {
328 	struct afs_vnode *vnode = op->file[0].vnode;
329 
330 	op->ctime = op->file[0].scb.status.mtime_client;
331 	afs_vnode_commit_status(op, &op->file[0]);
332 	if (op->error == 0) {
333 		if (!op->store.laundering)
334 			afs_pages_written_back(vnode, op->store.pos, op->store.size);
335 		afs_stat_v(vnode, n_stores);
336 		atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
337 	}
338 }
339 
340 static const struct afs_operation_ops afs_store_data_operation = {
341 	.issue_afs_rpc	= afs_fs_store_data,
342 	.issue_yfs_rpc	= yfs_fs_store_data,
343 	.success	= afs_store_data_success,
344 };
345 
346 /*
347  * write to a file
348  */
349 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
350 			  bool laundering)
351 {
352 	struct afs_operation *op;
353 	struct afs_wb_key *wbk = NULL;
354 	loff_t size = iov_iter_count(iter), i_size;
355 	int ret = -ENOKEY;
356 
357 	_enter("%s{%llx:%llu.%u},%llx,%llx",
358 	       vnode->volume->name,
359 	       vnode->fid.vid,
360 	       vnode->fid.vnode,
361 	       vnode->fid.unique,
362 	       size, pos);
363 
364 	ret = afs_get_writeback_key(vnode, &wbk);
365 	if (ret) {
366 		_leave(" = %d [no keys]", ret);
367 		return ret;
368 	}
369 
370 	op = afs_alloc_operation(wbk->key, vnode->volume);
371 	if (IS_ERR(op)) {
372 		afs_put_wb_key(wbk);
373 		return -ENOMEM;
374 	}
375 
376 	i_size = i_size_read(&vnode->vfs_inode);
377 
378 	afs_op_set_vnode(op, 0, vnode);
379 	op->file[0].dv_delta = 1;
380 	op->store.write_iter = iter;
381 	op->store.pos = pos;
382 	op->store.size = size;
383 	op->store.i_size = max(pos + size, i_size);
384 	op->store.laundering = laundering;
385 	op->mtime = vnode->vfs_inode.i_mtime;
386 	op->flags |= AFS_OPERATION_UNINTR;
387 	op->ops = &afs_store_data_operation;
388 
389 try_next_key:
390 	afs_begin_vnode_operation(op);
391 	afs_wait_for_operation(op);
392 
393 	switch (op->error) {
394 	case -EACCES:
395 	case -EPERM:
396 	case -ENOKEY:
397 	case -EKEYEXPIRED:
398 	case -EKEYREJECTED:
399 	case -EKEYREVOKED:
400 		_debug("next");
401 
402 		ret = afs_get_writeback_key(vnode, &wbk);
403 		if (ret == 0) {
404 			key_put(op->key);
405 			op->key = key_get(wbk->key);
406 			goto try_next_key;
407 		}
408 		break;
409 	}
410 
411 	afs_put_wb_key(wbk);
412 	_leave(" = %d", op->error);
413 	return afs_put_operation(op);
414 }
415 
416 /*
417  * Extend the region to be written back to include subsequent contiguously
418  * dirty pages if possible, but don't sleep while doing so.
419  *
420  * If this page holds new content, then we can include filler zeros in the
421  * writeback.
422  */
423 static void afs_extend_writeback(struct address_space *mapping,
424 				 struct afs_vnode *vnode,
425 				 long *_count,
426 				 loff_t start,
427 				 loff_t max_len,
428 				 bool new_content,
429 				 unsigned int *_len)
430 {
431 	struct pagevec pvec;
432 	struct page *page;
433 	unsigned long priv;
434 	unsigned int psize, filler = 0;
435 	unsigned int f, t;
436 	loff_t len = *_len;
437 	pgoff_t index = (start + len) / PAGE_SIZE;
438 	bool stop = true;
439 	unsigned int i;
440 
441 	XA_STATE(xas, &mapping->i_pages, index);
442 	pagevec_init(&pvec);
443 
444 	do {
445 		/* Firstly, we gather up a batch of contiguous dirty pages
446 		 * under the RCU read lock - but we can't clear the dirty flags
447 		 * there if any of those pages are mapped.
448 		 */
449 		rcu_read_lock();
450 
451 		xas_for_each(&xas, page, ULONG_MAX) {
452 			stop = true;
453 			if (xas_retry(&xas, page))
454 				continue;
455 			if (xa_is_value(page))
456 				break;
457 			if (page->index != index)
458 				break;
459 
460 			if (!page_cache_get_speculative(page)) {
461 				xas_reset(&xas);
462 				continue;
463 			}
464 
465 			/* Has the page moved or been split? */
466 			if (unlikely(page != xas_reload(&xas)))
467 				break;
468 
469 			if (!trylock_page(page))
470 				break;
471 			if (!PageDirty(page) || PageWriteback(page)) {
472 				unlock_page(page);
473 				break;
474 			}
475 
476 			psize = thp_size(page);
477 			priv = page_private(page);
478 			f = afs_page_dirty_from(page, priv);
479 			t = afs_page_dirty_to(page, priv);
480 			if (f != 0 && !new_content) {
481 				unlock_page(page);
482 				break;
483 			}
484 
485 			len += filler + t;
486 			filler = psize - t;
487 			if (len >= max_len || *_count <= 0)
488 				stop = true;
489 			else if (t == psize || new_content)
490 				stop = false;
491 
492 			index += thp_nr_pages(page);
493 			if (!pagevec_add(&pvec, page))
494 				break;
495 			if (stop)
496 				break;
497 		}
498 
499 		if (!stop)
500 			xas_pause(&xas);
501 		rcu_read_unlock();
502 
503 		/* Now, if we obtained any pages, we can shift them to being
504 		 * writable and mark them for caching.
505 		 */
506 		if (!pagevec_count(&pvec))
507 			break;
508 
509 		for (i = 0; i < pagevec_count(&pvec); i++) {
510 			page = pvec.pages[i];
511 			trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
512 
513 			if (!clear_page_dirty_for_io(page))
514 				BUG();
515 			if (test_set_page_writeback(page))
516 				BUG();
517 
518 			*_count -= thp_nr_pages(page);
519 			unlock_page(page);
520 		}
521 
522 		pagevec_release(&pvec);
523 		cond_resched();
524 	} while (!stop);
525 
526 	*_len = len;
527 }
528 
529 /*
530  * Synchronously write back the locked page and any subsequent non-locked dirty
531  * pages.
532  */
533 static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
534 					       struct writeback_control *wbc,
535 					       struct page *page,
536 					       loff_t start, loff_t end)
537 {
538 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
539 	struct iov_iter iter;
540 	unsigned long priv;
541 	unsigned int offset, to, len, max_len;
542 	loff_t i_size = i_size_read(&vnode->vfs_inode);
543 	bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
544 	long count = wbc->nr_to_write;
545 	int ret;
546 
547 	_enter(",%lx,%llx-%llx", page->index, start, end);
548 
549 	if (test_set_page_writeback(page))
550 		BUG();
551 
552 	count -= thp_nr_pages(page);
553 
554 	/* Find all consecutive lockable dirty pages that have contiguous
555 	 * written regions, stopping when we find a page that is not
556 	 * immediately lockable, is not dirty or is missing, or we reach the
557 	 * end of the range.
558 	 */
559 	priv = page_private(page);
560 	offset = afs_page_dirty_from(page, priv);
561 	to = afs_page_dirty_to(page, priv);
562 	trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
563 
564 	len = to - offset;
565 	start += offset;
566 	if (start < i_size) {
567 		/* Trim the write to the EOF; the extra data is ignored.  Also
568 		 * put an upper limit on the size of a single storedata op.
569 		 */
570 		max_len = 65536 * 4096;
571 		max_len = min_t(unsigned long long, max_len, end - start + 1);
572 		max_len = min_t(unsigned long long, max_len, i_size - start);
573 
574 		if (len < max_len &&
575 		    (to == thp_size(page) || new_content))
576 			afs_extend_writeback(mapping, vnode, &count,
577 					     start, max_len, new_content, &len);
578 		len = min_t(loff_t, len, max_len);
579 	}
580 
581 	/* We now have a contiguous set of dirty pages, each with writeback
582 	 * set; the first page is still locked at this point, but all the rest
583 	 * have been unlocked.
584 	 */
585 	unlock_page(page);
586 
587 	if (start < i_size) {
588 		_debug("write back %x @%llx [%llx]", len, start, i_size);
589 
590 		iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
591 		ret = afs_store_data(vnode, &iter, start, false);
592 	} else {
593 		_debug("write discard %x @%llx [%llx]", len, start, i_size);
594 
595 		/* The dirty region was entirely beyond the EOF. */
596 		afs_pages_written_back(vnode, start, len);
597 		ret = 0;
598 	}
599 
600 	switch (ret) {
601 	case 0:
602 		wbc->nr_to_write = count;
603 		ret = len;
604 		break;
605 
606 	default:
607 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
608 		fallthrough;
609 	case -EACCES:
610 	case -EPERM:
611 	case -ENOKEY:
612 	case -EKEYEXPIRED:
613 	case -EKEYREJECTED:
614 	case -EKEYREVOKED:
615 		afs_redirty_pages(wbc, mapping, start, len);
616 		mapping_set_error(mapping, ret);
617 		break;
618 
619 	case -EDQUOT:
620 	case -ENOSPC:
621 		afs_redirty_pages(wbc, mapping, start, len);
622 		mapping_set_error(mapping, -ENOSPC);
623 		break;
624 
625 	case -EROFS:
626 	case -EIO:
627 	case -EREMOTEIO:
628 	case -EFBIG:
629 	case -ENOENT:
630 	case -ENOMEDIUM:
631 	case -ENXIO:
632 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
633 		afs_kill_pages(mapping, start, len);
634 		mapping_set_error(mapping, ret);
635 		break;
636 	}
637 
638 	_leave(" = %d", ret);
639 	return ret;
640 }
641 
642 /*
643  * write a page back to the server
644  * - the caller locked the page for us
645  */
646 int afs_writepage(struct page *page, struct writeback_control *wbc)
647 {
648 	ssize_t ret;
649 	loff_t start;
650 
651 	_enter("{%lx},", page->index);
652 
653 	start = page->index * PAGE_SIZE;
654 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
655 					      start, LLONG_MAX - start);
656 	if (ret < 0) {
657 		_leave(" = %zd", ret);
658 		return ret;
659 	}
660 
661 	_leave(" = 0");
662 	return 0;
663 }
664 
665 /*
666  * write a region of pages back to the server
667  */
668 static int afs_writepages_region(struct address_space *mapping,
669 				 struct writeback_control *wbc,
670 				 loff_t start, loff_t end, loff_t *_next)
671 {
672 	struct page *page;
673 	ssize_t ret;
674 	int n;
675 
676 	_enter("%llx,%llx,", start, end);
677 
678 	do {
679 		pgoff_t index = start / PAGE_SIZE;
680 
681 		n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
682 					     PAGECACHE_TAG_DIRTY, 1, &page);
683 		if (!n)
684 			break;
685 
686 		start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
687 
688 		_debug("wback %lx", page->index);
689 
690 		/* At this point we hold neither the i_pages lock nor the
691 		 * page lock: the page may be truncated or invalidated
692 		 * (changing page->mapping to NULL), or even swizzled
693 		 * back from swapper_space to tmpfs file mapping
694 		 */
695 		if (wbc->sync_mode != WB_SYNC_NONE) {
696 			ret = lock_page_killable(page);
697 			if (ret < 0) {
698 				put_page(page);
699 				return ret;
700 			}
701 		} else {
702 			if (!trylock_page(page)) {
703 				put_page(page);
704 				return 0;
705 			}
706 		}
707 
708 		if (page->mapping != mapping || !PageDirty(page)) {
709 			start += thp_size(page);
710 			unlock_page(page);
711 			put_page(page);
712 			continue;
713 		}
714 
715 		if (PageWriteback(page)) {
716 			unlock_page(page);
717 			if (wbc->sync_mode != WB_SYNC_NONE)
718 				wait_on_page_writeback(page);
719 			put_page(page);
720 			continue;
721 		}
722 
723 		if (!clear_page_dirty_for_io(page))
724 			BUG();
725 		ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
726 		put_page(page);
727 		if (ret < 0) {
728 			_leave(" = %zd", ret);
729 			return ret;
730 		}
731 
732 		start += ret * PAGE_SIZE;
733 
734 		cond_resched();
735 	} while (wbc->nr_to_write > 0);
736 
737 	*_next = start;
738 	_leave(" = 0 [%llx]", *_next);
739 	return 0;
740 }
741 
742 /*
743  * write some of the pending data back to the server
744  */
745 int afs_writepages(struct address_space *mapping,
746 		   struct writeback_control *wbc)
747 {
748 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
749 	loff_t start, next;
750 	int ret;
751 
752 	_enter("");
753 
754 	/* We have to be careful as we can end up racing with setattr()
755 	 * truncating the pagecache since the caller doesn't take a lock here
756 	 * to prevent it.
757 	 */
758 	if (wbc->sync_mode == WB_SYNC_ALL)
759 		down_read(&vnode->validate_lock);
760 	else if (!down_read_trylock(&vnode->validate_lock))
761 		return 0;
762 
763 	if (wbc->range_cyclic) {
764 		start = mapping->writeback_index * PAGE_SIZE;
765 		ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
766 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
767 			ret = afs_writepages_region(mapping, wbc, 0, start,
768 						    &next);
769 		mapping->writeback_index = next / PAGE_SIZE;
770 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
771 		ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
772 		if (wbc->nr_to_write > 0)
773 			mapping->writeback_index = next;
774 	} else {
775 		ret = afs_writepages_region(mapping, wbc,
776 					    wbc->range_start, wbc->range_end, &next);
777 	}
778 
779 	up_read(&vnode->validate_lock);
780 	_leave(" = %d", ret);
781 	return ret;
782 }
783 
784 /*
785  * write to an AFS file
786  */
787 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
788 {
789 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
790 	ssize_t result;
791 	size_t count = iov_iter_count(from);
792 
793 	_enter("{%llx:%llu},{%zu},",
794 	       vnode->fid.vid, vnode->fid.vnode, count);
795 
796 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
797 		printk(KERN_INFO
798 		       "AFS: Attempt to write to active swap file!\n");
799 		return -EBUSY;
800 	}
801 
802 	if (!count)
803 		return 0;
804 
805 	result = generic_file_write_iter(iocb, from);
806 
807 	_leave(" = %zd", result);
808 	return result;
809 }
810 
811 /*
812  * flush any dirty pages for this process, and check for write errors.
813  * - the return status from this call provides a reliable indication of
814  *   whether any write errors occurred for this process.
815  */
816 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
817 {
818 	struct inode *inode = file_inode(file);
819 	struct afs_vnode *vnode = AFS_FS_I(inode);
820 
821 	_enter("{%llx:%llu},{n=%pD},%d",
822 	       vnode->fid.vid, vnode->fid.vnode, file,
823 	       datasync);
824 
825 	return file_write_and_wait_range(file, start, end);
826 }
827 
828 /*
829  * notification that a previously read-only page is about to become writable
830  * - if it returns an error, the caller will deliver a bus error signal
831  */
832 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
833 {
834 	struct page *page = thp_head(vmf->page);
835 	struct file *file = vmf->vma->vm_file;
836 	struct inode *inode = file_inode(file);
837 	struct afs_vnode *vnode = AFS_FS_I(inode);
838 	unsigned long priv;
839 
840 	_enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
841 
842 	sb_start_pagefault(inode->i_sb);
843 
844 	/* Wait for the page to be written to the cache before we allow it to
845 	 * be modified.  We then assume the entire page will need writing back.
846 	 */
847 #ifdef CONFIG_AFS_FSCACHE
848 	if (PageFsCache(page) &&
849 	    wait_on_page_fscache_killable(page) < 0)
850 		return VM_FAULT_RETRY;
851 #endif
852 
853 	if (wait_on_page_writeback_killable(page))
854 		return VM_FAULT_RETRY;
855 
856 	if (lock_page_killable(page) < 0)
857 		return VM_FAULT_RETRY;
858 
859 	/* We mustn't change page->private until writeback is complete as that
860 	 * details the portion of the page we need to write back and we might
861 	 * need to redirty the page if there's a problem.
862 	 */
863 	if (wait_on_page_writeback_killable(page) < 0) {
864 		unlock_page(page);
865 		return VM_FAULT_RETRY;
866 	}
867 
868 	priv = afs_page_dirty(page, 0, thp_size(page));
869 	priv = afs_page_dirty_mmapped(priv);
870 	if (PagePrivate(page)) {
871 		set_page_private(page, priv);
872 		trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
873 	} else {
874 		attach_page_private(page, (void *)priv);
875 		trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
876 	}
877 	file_update_time(file);
878 
879 	sb_end_pagefault(inode->i_sb);
880 	return VM_FAULT_LOCKED;
881 }
882 
883 /*
884  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
885  */
886 void afs_prune_wb_keys(struct afs_vnode *vnode)
887 {
888 	LIST_HEAD(graveyard);
889 	struct afs_wb_key *wbk, *tmp;
890 
891 	/* Discard unused keys */
892 	spin_lock(&vnode->wb_lock);
893 
894 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
895 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
896 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
897 			if (refcount_read(&wbk->usage) == 1)
898 				list_move(&wbk->vnode_link, &graveyard);
899 		}
900 	}
901 
902 	spin_unlock(&vnode->wb_lock);
903 
904 	while (!list_empty(&graveyard)) {
905 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
906 		list_del(&wbk->vnode_link);
907 		afs_put_wb_key(wbk);
908 	}
909 }
910 
911 /*
912  * Clean up a page during invalidation.
913  */
914 int afs_launder_page(struct page *page)
915 {
916 	struct address_space *mapping = page->mapping;
917 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
918 	struct iov_iter iter;
919 	struct bio_vec bv[1];
920 	unsigned long priv;
921 	unsigned int f, t;
922 	int ret = 0;
923 
924 	_enter("{%lx}", page->index);
925 
926 	priv = page_private(page);
927 	if (clear_page_dirty_for_io(page)) {
928 		f = 0;
929 		t = thp_size(page);
930 		if (PagePrivate(page)) {
931 			f = afs_page_dirty_from(page, priv);
932 			t = afs_page_dirty_to(page, priv);
933 		}
934 
935 		bv[0].bv_page = page;
936 		bv[0].bv_offset = f;
937 		bv[0].bv_len = t - f;
938 		iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
939 
940 		trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
941 		ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE,
942 				     true);
943 	}
944 
945 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
946 	detach_page_private(page);
947 	wait_on_page_fscache(page);
948 	return ret;
949 }
950