xref: /openbmc/linux/fs/afs/write.c (revision 1cf7a151)
1 /* handling of writes to regular files and writing back to the server
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/backing-dev.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include "internal.h"
19 
20 /*
21  * We use page->private to hold the amount of the page that we've written to,
22  * splitting the field into two parts.  However, we need to represent a range
23  * 0...PAGE_SIZE inclusive, so we can't support 64K pages on a 32-bit system.
24  */
25 #if PAGE_SIZE > 32768
26 #define AFS_PRIV_MAX	0xffffffff
27 #define AFS_PRIV_SHIFT	32
28 #else
29 #define AFS_PRIV_MAX	0xffff
30 #define AFS_PRIV_SHIFT	16
31 #endif
32 
33 /*
34  * mark a page as having been made dirty and thus needing writeback
35  */
36 int afs_set_page_dirty(struct page *page)
37 {
38 	_enter("");
39 	return __set_page_dirty_nobuffers(page);
40 }
41 
42 /*
43  * partly or wholly fill a page that's under preparation for writing
44  */
45 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
46 			 loff_t pos, unsigned int len, struct page *page)
47 {
48 	struct afs_read *req;
49 	int ret;
50 
51 	_enter(",,%llu", (unsigned long long)pos);
52 
53 	req = kzalloc(sizeof(struct afs_read) + sizeof(struct page *),
54 		      GFP_KERNEL);
55 	if (!req)
56 		return -ENOMEM;
57 
58 	atomic_set(&req->usage, 1);
59 	req->pos = pos;
60 	req->len = len;
61 	req->nr_pages = 1;
62 	req->pages[0] = page;
63 	get_page(page);
64 
65 	ret = afs_fetch_data(vnode, key, req);
66 	afs_put_read(req);
67 	if (ret < 0) {
68 		if (ret == -ENOENT) {
69 			_debug("got NOENT from server"
70 			       " - marking file deleted and stale");
71 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
72 			ret = -ESTALE;
73 		}
74 	}
75 
76 	_leave(" = %d", ret);
77 	return ret;
78 }
79 
80 /*
81  * prepare to perform part of a write to a page
82  */
83 int afs_write_begin(struct file *file, struct address_space *mapping,
84 		    loff_t pos, unsigned len, unsigned flags,
85 		    struct page **pagep, void **fsdata)
86 {
87 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
88 	struct page *page;
89 	struct key *key = afs_file_key(file);
90 	unsigned long priv;
91 	unsigned f, from = pos & (PAGE_SIZE - 1);
92 	unsigned t, to = from + len;
93 	pgoff_t index = pos >> PAGE_SHIFT;
94 	int ret;
95 
96 	_enter("{%x:%u},{%lx},%u,%u",
97 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
98 
99 	/* We want to store information about how much of a page is altered in
100 	 * page->private.
101 	 */
102 	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
103 
104 	page = grab_cache_page_write_begin(mapping, index, flags);
105 	if (!page)
106 		return -ENOMEM;
107 
108 	if (!PageUptodate(page) && len != PAGE_SIZE) {
109 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
110 		if (ret < 0) {
111 			unlock_page(page);
112 			put_page(page);
113 			_leave(" = %d [prep]", ret);
114 			return ret;
115 		}
116 		SetPageUptodate(page);
117 	}
118 
119 	/* page won't leak in error case: it eventually gets cleaned off LRU */
120 	*pagep = page;
121 
122 try_again:
123 	/* See if this page is already partially written in a way that we can
124 	 * merge the new write with.
125 	 */
126 	t = f = 0;
127 	if (PagePrivate(page)) {
128 		priv = page_private(page);
129 		f = priv & AFS_PRIV_MAX;
130 		t = priv >> AFS_PRIV_SHIFT;
131 		ASSERTCMP(f, <=, t);
132 	}
133 
134 	if (f != t) {
135 		if (to < f || from > t)
136 			goto flush_conflicting_write;
137 		if (from < f)
138 			f = from;
139 		if (to > t)
140 			t = to;
141 	} else {
142 		f = from;
143 		t = to;
144 	}
145 
146 	priv = (unsigned long)t << AFS_PRIV_SHIFT;
147 	priv |= f;
148 	SetPagePrivate(page);
149 	set_page_private(page, priv);
150 	_leave(" = 0");
151 	return 0;
152 
153 	/* The previous write and this write aren't adjacent or overlapping, so
154 	 * flush the page out.
155 	 */
156 flush_conflicting_write:
157 	_debug("flush conflict");
158 	ret = write_one_page(page);
159 	if (ret < 0) {
160 		_leave(" = %d", ret);
161 		return ret;
162 	}
163 
164 	ret = lock_page_killable(page);
165 	if (ret < 0) {
166 		_leave(" = %d", ret);
167 		return ret;
168 	}
169 	goto try_again;
170 }
171 
172 /*
173  * finalise part of a write to a page
174  */
175 int afs_write_end(struct file *file, struct address_space *mapping,
176 		  loff_t pos, unsigned len, unsigned copied,
177 		  struct page *page, void *fsdata)
178 {
179 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
180 	struct key *key = afs_file_key(file);
181 	loff_t i_size, maybe_i_size;
182 	int ret;
183 
184 	_enter("{%x:%u},{%lx}",
185 	       vnode->fid.vid, vnode->fid.vnode, page->index);
186 
187 	maybe_i_size = pos + copied;
188 
189 	i_size = i_size_read(&vnode->vfs_inode);
190 	if (maybe_i_size > i_size) {
191 		spin_lock(&vnode->wb_lock);
192 		i_size = i_size_read(&vnode->vfs_inode);
193 		if (maybe_i_size > i_size)
194 			i_size_write(&vnode->vfs_inode, maybe_i_size);
195 		spin_unlock(&vnode->wb_lock);
196 	}
197 
198 	if (!PageUptodate(page)) {
199 		if (copied < len) {
200 			/* Try and load any missing data from the server.  The
201 			 * unmarshalling routine will take care of clearing any
202 			 * bits that are beyond the EOF.
203 			 */
204 			ret = afs_fill_page(vnode, key, pos + copied,
205 					    len - copied, page);
206 			if (ret < 0)
207 				return ret;
208 		}
209 		SetPageUptodate(page);
210 	}
211 
212 	set_page_dirty(page);
213 	if (PageDirty(page))
214 		_debug("dirtied");
215 	unlock_page(page);
216 	put_page(page);
217 
218 	return copied;
219 }
220 
221 /*
222  * kill all the pages in the given range
223  */
224 static void afs_kill_pages(struct address_space *mapping,
225 			   pgoff_t first, pgoff_t last)
226 {
227 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
228 	struct pagevec pv;
229 	unsigned count, loop;
230 
231 	_enter("{%x:%u},%lx-%lx",
232 	       vnode->fid.vid, vnode->fid.vnode, first, last);
233 
234 	pagevec_init(&pv, 0);
235 
236 	do {
237 		_debug("kill %lx-%lx", first, last);
238 
239 		count = last - first + 1;
240 		if (count > PAGEVEC_SIZE)
241 			count = PAGEVEC_SIZE;
242 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
243 		ASSERTCMP(pv.nr, ==, count);
244 
245 		for (loop = 0; loop < count; loop++) {
246 			struct page *page = pv.pages[loop];
247 			ClearPageUptodate(page);
248 			SetPageError(page);
249 			end_page_writeback(page);
250 			if (page->index >= first)
251 				first = page->index + 1;
252 			lock_page(page);
253 			generic_error_remove_page(mapping, page);
254 		}
255 
256 		__pagevec_release(&pv);
257 	} while (first <= last);
258 
259 	_leave("");
260 }
261 
262 /*
263  * Redirty all the pages in a given range.
264  */
265 static void afs_redirty_pages(struct writeback_control *wbc,
266 			      struct address_space *mapping,
267 			      pgoff_t first, pgoff_t last)
268 {
269 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
270 	struct pagevec pv;
271 	unsigned count, loop;
272 
273 	_enter("{%x:%u},%lx-%lx",
274 	       vnode->fid.vid, vnode->fid.vnode, first, last);
275 
276 	pagevec_init(&pv, 0);
277 
278 	do {
279 		_debug("redirty %lx-%lx", first, last);
280 
281 		count = last - first + 1;
282 		if (count > PAGEVEC_SIZE)
283 			count = PAGEVEC_SIZE;
284 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
285 		ASSERTCMP(pv.nr, ==, count);
286 
287 		for (loop = 0; loop < count; loop++) {
288 			struct page *page = pv.pages[loop];
289 
290 			redirty_page_for_writepage(wbc, page);
291 			end_page_writeback(page);
292 			if (page->index >= first)
293 				first = page->index + 1;
294 		}
295 
296 		__pagevec_release(&pv);
297 	} while (first <= last);
298 
299 	_leave("");
300 }
301 
302 /*
303  * write to a file
304  */
305 static int afs_store_data(struct address_space *mapping,
306 			  pgoff_t first, pgoff_t last,
307 			  unsigned offset, unsigned to)
308 {
309 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
310 	struct afs_fs_cursor fc;
311 	struct afs_wb_key *wbk = NULL;
312 	struct list_head *p;
313 	int ret = -ENOKEY, ret2;
314 
315 	_enter("%s{%x:%u.%u},%lx,%lx,%x,%x",
316 	       vnode->volume->name,
317 	       vnode->fid.vid,
318 	       vnode->fid.vnode,
319 	       vnode->fid.unique,
320 	       first, last, offset, to);
321 
322 	spin_lock(&vnode->wb_lock);
323 	p = vnode->wb_keys.next;
324 
325 	/* Iterate through the list looking for a valid key to use. */
326 try_next_key:
327 	while (p != &vnode->wb_keys) {
328 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
329 		_debug("wbk %u", key_serial(wbk->key));
330 		ret2 = key_validate(wbk->key);
331 		if (ret2 == 0)
332 			goto found_key;
333 		if (ret == -ENOKEY)
334 			ret = ret2;
335 		p = p->next;
336 	}
337 
338 	spin_unlock(&vnode->wb_lock);
339 	afs_put_wb_key(wbk);
340 	_leave(" = %d [no keys]", ret);
341 	return ret;
342 
343 found_key:
344 	refcount_inc(&wbk->usage);
345 	spin_unlock(&vnode->wb_lock);
346 
347 	_debug("USE WB KEY %u", key_serial(wbk->key));
348 
349 	ret = -ERESTARTSYS;
350 	if (afs_begin_vnode_operation(&fc, vnode, wbk->key)) {
351 		while (afs_select_fileserver(&fc)) {
352 			fc.cb_break = vnode->cb_break + vnode->cb_s_break;
353 			afs_fs_store_data(&fc, mapping, first, last, offset, to);
354 		}
355 
356 		afs_check_for_remote_deletion(&fc, fc.vnode);
357 		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
358 		ret = afs_end_vnode_operation(&fc);
359 	}
360 
361 	switch (ret) {
362 	case -EACCES:
363 	case -EPERM:
364 	case -ENOKEY:
365 	case -EKEYEXPIRED:
366 	case -EKEYREJECTED:
367 	case -EKEYREVOKED:
368 		_debug("next");
369 		spin_lock(&vnode->wb_lock);
370 		p = wbk->vnode_link.next;
371 		afs_put_wb_key(wbk);
372 		goto try_next_key;
373 	}
374 
375 	afs_put_wb_key(wbk);
376 	_leave(" = %d", ret);
377 	return ret;
378 }
379 
380 /*
381  * Synchronously write back the locked page and any subsequent non-locked dirty
382  * pages.
383  */
384 static int afs_write_back_from_locked_page(struct address_space *mapping,
385 					   struct writeback_control *wbc,
386 					   struct page *primary_page,
387 					   pgoff_t final_page)
388 {
389 	struct page *pages[8], *page;
390 	unsigned long count, priv;
391 	unsigned n, offset, to, f, t;
392 	pgoff_t start, first, last;
393 	int loop, ret;
394 
395 	_enter(",%lx", primary_page->index);
396 
397 	count = 1;
398 	if (test_set_page_writeback(primary_page))
399 		BUG();
400 
401 	/* Find all consecutive lockable dirty pages that have contiguous
402 	 * written regions, stopping when we find a page that is not
403 	 * immediately lockable, is not dirty or is missing, or we reach the
404 	 * end of the range.
405 	 */
406 	start = primary_page->index;
407 	priv = page_private(primary_page);
408 	offset = priv & AFS_PRIV_MAX;
409 	to = priv >> AFS_PRIV_SHIFT;
410 
411 	WARN_ON(offset == to);
412 
413 	if (start >= final_page || to < PAGE_SIZE)
414 		goto no_more;
415 
416 	start++;
417 	do {
418 		_debug("more %lx [%lx]", start, count);
419 		n = final_page - start + 1;
420 		if (n > ARRAY_SIZE(pages))
421 			n = ARRAY_SIZE(pages);
422 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
423 		_debug("fgpc %u", n);
424 		if (n == 0)
425 			goto no_more;
426 		if (pages[0]->index != start) {
427 			do {
428 				put_page(pages[--n]);
429 			} while (n > 0);
430 			goto no_more;
431 		}
432 
433 		for (loop = 0; loop < n; loop++) {
434 			if (to != PAGE_SIZE)
435 				break;
436 			page = pages[loop];
437 			if (page->index > final_page)
438 				break;
439 			if (!trylock_page(page))
440 				break;
441 			if (!PageDirty(page) || PageWriteback(page)) {
442 				unlock_page(page);
443 				break;
444 			}
445 
446 			priv = page_private(page);
447 			f = priv & AFS_PRIV_MAX;
448 			t = priv >> AFS_PRIV_SHIFT;
449 			if (f != 0) {
450 				unlock_page(page);
451 				break;
452 			}
453 			to = t;
454 
455 			if (!clear_page_dirty_for_io(page))
456 				BUG();
457 			if (test_set_page_writeback(page))
458 				BUG();
459 			unlock_page(page);
460 			put_page(page);
461 		}
462 		count += loop;
463 		if (loop < n) {
464 			for (; loop < n; loop++)
465 				put_page(pages[loop]);
466 			goto no_more;
467 		}
468 
469 		start += loop;
470 	} while (start <= final_page && count < 65536);
471 
472 no_more:
473 	/* We now have a contiguous set of dirty pages, each with writeback
474 	 * set; the first page is still locked at this point, but all the rest
475 	 * have been unlocked.
476 	 */
477 	unlock_page(primary_page);
478 
479 	first = primary_page->index;
480 	last = first + count - 1;
481 
482 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
483 
484 	ret = afs_store_data(mapping, first, last, offset, to);
485 	switch (ret) {
486 	case 0:
487 		ret = count;
488 		break;
489 
490 	default:
491 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
492 		/* Fall through */
493 	case -EACCES:
494 	case -EPERM:
495 	case -ENOKEY:
496 	case -EKEYEXPIRED:
497 	case -EKEYREJECTED:
498 	case -EKEYREVOKED:
499 		afs_redirty_pages(wbc, mapping, first, last);
500 		mapping_set_error(mapping, ret);
501 		break;
502 
503 	case -EDQUOT:
504 	case -ENOSPC:
505 		afs_redirty_pages(wbc, mapping, first, last);
506 		mapping_set_error(mapping, -ENOSPC);
507 		break;
508 
509 	case -EROFS:
510 	case -EIO:
511 	case -EREMOTEIO:
512 	case -EFBIG:
513 	case -ENOENT:
514 	case -ENOMEDIUM:
515 	case -ENXIO:
516 		afs_kill_pages(mapping, first, last);
517 		mapping_set_error(mapping, ret);
518 		break;
519 	}
520 
521 	_leave(" = %d", ret);
522 	return ret;
523 }
524 
525 /*
526  * write a page back to the server
527  * - the caller locked the page for us
528  */
529 int afs_writepage(struct page *page, struct writeback_control *wbc)
530 {
531 	int ret;
532 
533 	_enter("{%lx},", page->index);
534 
535 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
536 					      wbc->range_end >> PAGE_SHIFT);
537 	if (ret < 0) {
538 		_leave(" = %d", ret);
539 		return 0;
540 	}
541 
542 	wbc->nr_to_write -= ret;
543 
544 	_leave(" = 0");
545 	return 0;
546 }
547 
548 /*
549  * write a region of pages back to the server
550  */
551 static int afs_writepages_region(struct address_space *mapping,
552 				 struct writeback_control *wbc,
553 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
554 {
555 	struct page *page;
556 	int ret, n;
557 
558 	_enter(",,%lx,%lx,", index, end);
559 
560 	do {
561 		n = find_get_pages_tag(mapping, &index, PAGECACHE_TAG_DIRTY,
562 				       1, &page);
563 		if (!n)
564 			break;
565 
566 		_debug("wback %lx", page->index);
567 
568 		if (page->index > end) {
569 			*_next = index;
570 			put_page(page);
571 			_leave(" = 0 [%lx]", *_next);
572 			return 0;
573 		}
574 
575 		/* at this point we hold neither mapping->tree_lock nor lock on
576 		 * the page itself: the page may be truncated or invalidated
577 		 * (changing page->mapping to NULL), or even swizzled back from
578 		 * swapper_space to tmpfs file mapping
579 		 */
580 		ret = lock_page_killable(page);
581 		if (ret < 0) {
582 			put_page(page);
583 			_leave(" = %d", ret);
584 			return ret;
585 		}
586 
587 		if (page->mapping != mapping || !PageDirty(page)) {
588 			unlock_page(page);
589 			put_page(page);
590 			continue;
591 		}
592 
593 		if (PageWriteback(page)) {
594 			unlock_page(page);
595 			if (wbc->sync_mode != WB_SYNC_NONE)
596 				wait_on_page_writeback(page);
597 			put_page(page);
598 			continue;
599 		}
600 
601 		if (!clear_page_dirty_for_io(page))
602 			BUG();
603 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
604 		put_page(page);
605 		if (ret < 0) {
606 			_leave(" = %d", ret);
607 			return ret;
608 		}
609 
610 		wbc->nr_to_write -= ret;
611 
612 		cond_resched();
613 	} while (index < end && wbc->nr_to_write > 0);
614 
615 	*_next = index;
616 	_leave(" = 0 [%lx]", *_next);
617 	return 0;
618 }
619 
620 /*
621  * write some of the pending data back to the server
622  */
623 int afs_writepages(struct address_space *mapping,
624 		   struct writeback_control *wbc)
625 {
626 	pgoff_t start, end, next;
627 	int ret;
628 
629 	_enter("");
630 
631 	if (wbc->range_cyclic) {
632 		start = mapping->writeback_index;
633 		end = -1;
634 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
635 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
636 			ret = afs_writepages_region(mapping, wbc, 0, start,
637 						    &next);
638 		mapping->writeback_index = next;
639 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
640 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
641 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
642 		if (wbc->nr_to_write > 0)
643 			mapping->writeback_index = next;
644 	} else {
645 		start = wbc->range_start >> PAGE_SHIFT;
646 		end = wbc->range_end >> PAGE_SHIFT;
647 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
648 	}
649 
650 	_leave(" = %d", ret);
651 	return ret;
652 }
653 
654 /*
655  * completion of write to server
656  */
657 void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
658 {
659 	struct pagevec pv;
660 	unsigned count, loop;
661 	pgoff_t first = call->first, last = call->last;
662 
663 	_enter("{%x:%u},{%lx-%lx}",
664 	       vnode->fid.vid, vnode->fid.vnode, first, last);
665 
666 	pagevec_init(&pv, 0);
667 
668 	do {
669 		_debug("done %lx-%lx", first, last);
670 
671 		count = last - first + 1;
672 		if (count > PAGEVEC_SIZE)
673 			count = PAGEVEC_SIZE;
674 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
675 					      first, count, pv.pages);
676 		ASSERTCMP(pv.nr, ==, count);
677 
678 		for (loop = 0; loop < count; loop++) {
679 			set_page_private(pv.pages[loop], 0);
680 			end_page_writeback(pv.pages[loop]);
681 		}
682 		first += count;
683 		__pagevec_release(&pv);
684 	} while (first <= last);
685 
686 	afs_prune_wb_keys(vnode);
687 	_leave("");
688 }
689 
690 /*
691  * write to an AFS file
692  */
693 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
694 {
695 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
696 	ssize_t result;
697 	size_t count = iov_iter_count(from);
698 
699 	_enter("{%x.%u},{%zu},",
700 	       vnode->fid.vid, vnode->fid.vnode, count);
701 
702 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
703 		printk(KERN_INFO
704 		       "AFS: Attempt to write to active swap file!\n");
705 		return -EBUSY;
706 	}
707 
708 	if (!count)
709 		return 0;
710 
711 	result = generic_file_write_iter(iocb, from);
712 
713 	_leave(" = %zd", result);
714 	return result;
715 }
716 
717 /*
718  * flush any dirty pages for this process, and check for write errors.
719  * - the return status from this call provides a reliable indication of
720  *   whether any write errors occurred for this process.
721  */
722 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
723 {
724 	struct inode *inode = file_inode(file);
725 	struct afs_vnode *vnode = AFS_FS_I(inode);
726 
727 	_enter("{%x:%u},{n=%pD},%d",
728 	       vnode->fid.vid, vnode->fid.vnode, file,
729 	       datasync);
730 
731 	return file_write_and_wait_range(file, start, end);
732 }
733 
734 /*
735  * Flush out all outstanding writes on a file opened for writing when it is
736  * closed.
737  */
738 int afs_flush(struct file *file, fl_owner_t id)
739 {
740 	_enter("");
741 
742 	if ((file->f_mode & FMODE_WRITE) == 0)
743 		return 0;
744 
745 	return vfs_fsync(file, 0);
746 }
747 
748 /*
749  * notification that a previously read-only page is about to become writable
750  * - if it returns an error, the caller will deliver a bus error signal
751  */
752 int afs_page_mkwrite(struct vm_fault *vmf)
753 {
754 	struct file *file = vmf->vma->vm_file;
755 	struct inode *inode = file_inode(file);
756 	struct afs_vnode *vnode = AFS_FS_I(inode);
757 	unsigned long priv;
758 
759 	_enter("{{%x:%u}},{%lx}",
760 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
761 
762 	sb_start_pagefault(inode->i_sb);
763 
764 	/* Wait for the page to be written to the cache before we allow it to
765 	 * be modified.  We then assume the entire page will need writing back.
766 	 */
767 #ifdef CONFIG_AFS_FSCACHE
768 	fscache_wait_on_page_write(vnode->cache, vmf->page);
769 #endif
770 
771 	if (PageWriteback(vmf->page) &&
772 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
773 		return VM_FAULT_RETRY;
774 
775 	if (lock_page_killable(vmf->page) < 0)
776 		return VM_FAULT_RETRY;
777 
778 	/* We mustn't change page->private until writeback is complete as that
779 	 * details the portion of the page we need to write back and we might
780 	 * need to redirty the page if there's a problem.
781 	 */
782 	wait_on_page_writeback(vmf->page);
783 
784 	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
785 	priv |= 0; /* From */
786 	SetPagePrivate(vmf->page);
787 	set_page_private(vmf->page, priv);
788 
789 	sb_end_pagefault(inode->i_sb);
790 	return VM_FAULT_LOCKED;
791 }
792 
793 /*
794  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
795  */
796 void afs_prune_wb_keys(struct afs_vnode *vnode)
797 {
798 	LIST_HEAD(graveyard);
799 	struct afs_wb_key *wbk, *tmp;
800 
801 	/* Discard unused keys */
802 	spin_lock(&vnode->wb_lock);
803 
804 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
805 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
806 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
807 			if (refcount_read(&wbk->usage) == 1)
808 				list_move(&wbk->vnode_link, &graveyard);
809 		}
810 	}
811 
812 	spin_unlock(&vnode->wb_lock);
813 
814 	while (!list_empty(&graveyard)) {
815 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
816 		list_del(&wbk->vnode_link);
817 		afs_put_wb_key(wbk);
818 	}
819 }
820 
821 /*
822  * Clean up a page during invalidation.
823  */
824 int afs_launder_page(struct page *page)
825 {
826 	struct address_space *mapping = page->mapping;
827 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
828 	unsigned long priv;
829 	unsigned int f, t;
830 	int ret = 0;
831 
832 	_enter("{%lx}", page->index);
833 
834 	priv = page_private(page);
835 	if (clear_page_dirty_for_io(page)) {
836 		f = 0;
837 		t = PAGE_SIZE;
838 		if (PagePrivate(page)) {
839 			f = priv & AFS_PRIV_MAX;
840 			t = priv >> AFS_PRIV_SHIFT;
841 		}
842 
843 		ret = afs_store_data(mapping, page->index, page->index, t, f);
844 	}
845 
846 	set_page_private(page, 0);
847 	ClearPagePrivate(page);
848 
849 #ifdef CONFIG_AFS_FSCACHE
850 	if (PageFsCache(page)) {
851 		fscache_wait_on_page_write(vnode->cache, page);
852 		fscache_uncache_page(vnode->cache, page);
853 	}
854 #endif
855 	return ret;
856 }
857