xref: /openbmc/linux/fs/afs/write.c (revision 1802d0beecafe581ad584634ba92f8a471d8a63a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21 	_enter("");
22 	return __set_page_dirty_nobuffers(page);
23 }
24 
25 /*
26  * partly or wholly fill a page that's under preparation for writing
27  */
28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29 			 loff_t pos, unsigned int len, struct page *page)
30 {
31 	struct afs_read *req;
32 	size_t p;
33 	void *data;
34 	int ret;
35 
36 	_enter(",,%llu", (unsigned long long)pos);
37 
38 	if (pos >= vnode->vfs_inode.i_size) {
39 		p = pos & ~PAGE_MASK;
40 		ASSERTCMP(p + len, <=, PAGE_SIZE);
41 		data = kmap(page);
42 		memset(data + p, 0, len);
43 		kunmap(page);
44 		return 0;
45 	}
46 
47 	req = kzalloc(sizeof(struct afs_read) + sizeof(struct page *),
48 		      GFP_KERNEL);
49 	if (!req)
50 		return -ENOMEM;
51 
52 	refcount_set(&req->usage, 1);
53 	req->pos = pos;
54 	req->len = len;
55 	req->nr_pages = 1;
56 	req->pages = req->array;
57 	req->pages[0] = page;
58 	get_page(page);
59 
60 	ret = afs_fetch_data(vnode, key, req);
61 	afs_put_read(req);
62 	if (ret < 0) {
63 		if (ret == -ENOENT) {
64 			_debug("got NOENT from server"
65 			       " - marking file deleted and stale");
66 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
67 			ret = -ESTALE;
68 		}
69 	}
70 
71 	_leave(" = %d", ret);
72 	return ret;
73 }
74 
75 /*
76  * prepare to perform part of a write to a page
77  */
78 int afs_write_begin(struct file *file, struct address_space *mapping,
79 		    loff_t pos, unsigned len, unsigned flags,
80 		    struct page **pagep, void **fsdata)
81 {
82 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
83 	struct page *page;
84 	struct key *key = afs_file_key(file);
85 	unsigned long priv;
86 	unsigned f, from = pos & (PAGE_SIZE - 1);
87 	unsigned t, to = from + len;
88 	pgoff_t index = pos >> PAGE_SHIFT;
89 	int ret;
90 
91 	_enter("{%llx:%llu},{%lx},%u,%u",
92 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
93 
94 	/* We want to store information about how much of a page is altered in
95 	 * page->private.
96 	 */
97 	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
98 
99 	page = grab_cache_page_write_begin(mapping, index, flags);
100 	if (!page)
101 		return -ENOMEM;
102 
103 	if (!PageUptodate(page) && len != PAGE_SIZE) {
104 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
105 		if (ret < 0) {
106 			unlock_page(page);
107 			put_page(page);
108 			_leave(" = %d [prep]", ret);
109 			return ret;
110 		}
111 		SetPageUptodate(page);
112 	}
113 
114 	/* page won't leak in error case: it eventually gets cleaned off LRU */
115 	*pagep = page;
116 
117 try_again:
118 	/* See if this page is already partially written in a way that we can
119 	 * merge the new write with.
120 	 */
121 	t = f = 0;
122 	if (PagePrivate(page)) {
123 		priv = page_private(page);
124 		f = priv & AFS_PRIV_MAX;
125 		t = priv >> AFS_PRIV_SHIFT;
126 		ASSERTCMP(f, <=, t);
127 	}
128 
129 	if (f != t) {
130 		if (PageWriteback(page)) {
131 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
132 					     page->index, priv);
133 			goto flush_conflicting_write;
134 		}
135 		/* If the file is being filled locally, allow inter-write
136 		 * spaces to be merged into writes.  If it's not, only write
137 		 * back what the user gives us.
138 		 */
139 		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
140 		    (to < f || from > t))
141 			goto flush_conflicting_write;
142 		if (from < f)
143 			f = from;
144 		if (to > t)
145 			t = to;
146 	} else {
147 		f = from;
148 		t = to;
149 	}
150 
151 	priv = (unsigned long)t << AFS_PRIV_SHIFT;
152 	priv |= f;
153 	trace_afs_page_dirty(vnode, tracepoint_string("begin"),
154 			     page->index, priv);
155 	SetPagePrivate(page);
156 	set_page_private(page, priv);
157 	_leave(" = 0");
158 	return 0;
159 
160 	/* The previous write and this write aren't adjacent or overlapping, so
161 	 * flush the page out.
162 	 */
163 flush_conflicting_write:
164 	_debug("flush conflict");
165 	ret = write_one_page(page);
166 	if (ret < 0) {
167 		_leave(" = %d", ret);
168 		return ret;
169 	}
170 
171 	ret = lock_page_killable(page);
172 	if (ret < 0) {
173 		_leave(" = %d", ret);
174 		return ret;
175 	}
176 	goto try_again;
177 }
178 
179 /*
180  * finalise part of a write to a page
181  */
182 int afs_write_end(struct file *file, struct address_space *mapping,
183 		  loff_t pos, unsigned len, unsigned copied,
184 		  struct page *page, void *fsdata)
185 {
186 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
187 	struct key *key = afs_file_key(file);
188 	loff_t i_size, maybe_i_size;
189 	int ret;
190 
191 	_enter("{%llx:%llu},{%lx}",
192 	       vnode->fid.vid, vnode->fid.vnode, page->index);
193 
194 	maybe_i_size = pos + copied;
195 
196 	i_size = i_size_read(&vnode->vfs_inode);
197 	if (maybe_i_size > i_size) {
198 		spin_lock(&vnode->wb_lock);
199 		i_size = i_size_read(&vnode->vfs_inode);
200 		if (maybe_i_size > i_size)
201 			i_size_write(&vnode->vfs_inode, maybe_i_size);
202 		spin_unlock(&vnode->wb_lock);
203 	}
204 
205 	if (!PageUptodate(page)) {
206 		if (copied < len) {
207 			/* Try and load any missing data from the server.  The
208 			 * unmarshalling routine will take care of clearing any
209 			 * bits that are beyond the EOF.
210 			 */
211 			ret = afs_fill_page(vnode, key, pos + copied,
212 					    len - copied, page);
213 			if (ret < 0)
214 				goto out;
215 		}
216 		SetPageUptodate(page);
217 	}
218 
219 	set_page_dirty(page);
220 	if (PageDirty(page))
221 		_debug("dirtied");
222 	ret = copied;
223 
224 out:
225 	unlock_page(page);
226 	put_page(page);
227 	return ret;
228 }
229 
230 /*
231  * kill all the pages in the given range
232  */
233 static void afs_kill_pages(struct address_space *mapping,
234 			   pgoff_t first, pgoff_t last)
235 {
236 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
237 	struct pagevec pv;
238 	unsigned count, loop;
239 
240 	_enter("{%llx:%llu},%lx-%lx",
241 	       vnode->fid.vid, vnode->fid.vnode, first, last);
242 
243 	pagevec_init(&pv);
244 
245 	do {
246 		_debug("kill %lx-%lx", first, last);
247 
248 		count = last - first + 1;
249 		if (count > PAGEVEC_SIZE)
250 			count = PAGEVEC_SIZE;
251 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
252 		ASSERTCMP(pv.nr, ==, count);
253 
254 		for (loop = 0; loop < count; loop++) {
255 			struct page *page = pv.pages[loop];
256 			ClearPageUptodate(page);
257 			SetPageError(page);
258 			end_page_writeback(page);
259 			if (page->index >= first)
260 				first = page->index + 1;
261 			lock_page(page);
262 			generic_error_remove_page(mapping, page);
263 			unlock_page(page);
264 		}
265 
266 		__pagevec_release(&pv);
267 	} while (first <= last);
268 
269 	_leave("");
270 }
271 
272 /*
273  * Redirty all the pages in a given range.
274  */
275 static void afs_redirty_pages(struct writeback_control *wbc,
276 			      struct address_space *mapping,
277 			      pgoff_t first, pgoff_t last)
278 {
279 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
280 	struct pagevec pv;
281 	unsigned count, loop;
282 
283 	_enter("{%llx:%llu},%lx-%lx",
284 	       vnode->fid.vid, vnode->fid.vnode, first, last);
285 
286 	pagevec_init(&pv);
287 
288 	do {
289 		_debug("redirty %lx-%lx", first, last);
290 
291 		count = last - first + 1;
292 		if (count > PAGEVEC_SIZE)
293 			count = PAGEVEC_SIZE;
294 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
295 		ASSERTCMP(pv.nr, ==, count);
296 
297 		for (loop = 0; loop < count; loop++) {
298 			struct page *page = pv.pages[loop];
299 
300 			redirty_page_for_writepage(wbc, page);
301 			end_page_writeback(page);
302 			if (page->index >= first)
303 				first = page->index + 1;
304 		}
305 
306 		__pagevec_release(&pv);
307 	} while (first <= last);
308 
309 	_leave("");
310 }
311 
312 /*
313  * completion of write to server
314  */
315 static void afs_pages_written_back(struct afs_vnode *vnode,
316 				   pgoff_t first, pgoff_t last)
317 {
318 	struct pagevec pv;
319 	unsigned long priv;
320 	unsigned count, loop;
321 
322 	_enter("{%llx:%llu},{%lx-%lx}",
323 	       vnode->fid.vid, vnode->fid.vnode, first, last);
324 
325 	pagevec_init(&pv);
326 
327 	do {
328 		_debug("done %lx-%lx", first, last);
329 
330 		count = last - first + 1;
331 		if (count > PAGEVEC_SIZE)
332 			count = PAGEVEC_SIZE;
333 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
334 					      first, count, pv.pages);
335 		ASSERTCMP(pv.nr, ==, count);
336 
337 		for (loop = 0; loop < count; loop++) {
338 			priv = page_private(pv.pages[loop]);
339 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
340 					     pv.pages[loop]->index, priv);
341 			set_page_private(pv.pages[loop], 0);
342 			end_page_writeback(pv.pages[loop]);
343 		}
344 		first += count;
345 		__pagevec_release(&pv);
346 	} while (first <= last);
347 
348 	afs_prune_wb_keys(vnode);
349 	_leave("");
350 }
351 
352 /*
353  * write to a file
354  */
355 static int afs_store_data(struct address_space *mapping,
356 			  pgoff_t first, pgoff_t last,
357 			  unsigned offset, unsigned to)
358 {
359 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
360 	struct afs_fs_cursor fc;
361 	struct afs_status_cb *scb;
362 	struct afs_wb_key *wbk = NULL;
363 	struct list_head *p;
364 	int ret = -ENOKEY, ret2;
365 
366 	_enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
367 	       vnode->volume->name,
368 	       vnode->fid.vid,
369 	       vnode->fid.vnode,
370 	       vnode->fid.unique,
371 	       first, last, offset, to);
372 
373 	scb = kzalloc(sizeof(struct afs_status_cb), GFP_NOFS);
374 	if (!scb)
375 		return -ENOMEM;
376 
377 	spin_lock(&vnode->wb_lock);
378 	p = vnode->wb_keys.next;
379 
380 	/* Iterate through the list looking for a valid key to use. */
381 try_next_key:
382 	while (p != &vnode->wb_keys) {
383 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
384 		_debug("wbk %u", key_serial(wbk->key));
385 		ret2 = key_validate(wbk->key);
386 		if (ret2 == 0)
387 			goto found_key;
388 		if (ret == -ENOKEY)
389 			ret = ret2;
390 		p = p->next;
391 	}
392 
393 	spin_unlock(&vnode->wb_lock);
394 	afs_put_wb_key(wbk);
395 	kfree(scb);
396 	_leave(" = %d [no keys]", ret);
397 	return ret;
398 
399 found_key:
400 	refcount_inc(&wbk->usage);
401 	spin_unlock(&vnode->wb_lock);
402 
403 	_debug("USE WB KEY %u", key_serial(wbk->key));
404 
405 	ret = -ERESTARTSYS;
406 	if (afs_begin_vnode_operation(&fc, vnode, wbk->key, false)) {
407 		afs_dataversion_t data_version = vnode->status.data_version + 1;
408 
409 		while (afs_select_fileserver(&fc)) {
410 			fc.cb_break = afs_calc_vnode_cb_break(vnode);
411 			afs_fs_store_data(&fc, mapping, first, last, offset, to, scb);
412 		}
413 
414 		afs_check_for_remote_deletion(&fc, vnode);
415 		afs_vnode_commit_status(&fc, vnode, fc.cb_break,
416 					&data_version, scb);
417 		if (fc.ac.error == 0)
418 			afs_pages_written_back(vnode, first, last);
419 		ret = afs_end_vnode_operation(&fc);
420 	}
421 
422 	switch (ret) {
423 	case 0:
424 		afs_stat_v(vnode, n_stores);
425 		atomic_long_add((last * PAGE_SIZE + to) -
426 				(first * PAGE_SIZE + offset),
427 				&afs_v2net(vnode)->n_store_bytes);
428 		break;
429 	case -EACCES:
430 	case -EPERM:
431 	case -ENOKEY:
432 	case -EKEYEXPIRED:
433 	case -EKEYREJECTED:
434 	case -EKEYREVOKED:
435 		_debug("next");
436 		spin_lock(&vnode->wb_lock);
437 		p = wbk->vnode_link.next;
438 		afs_put_wb_key(wbk);
439 		goto try_next_key;
440 	}
441 
442 	afs_put_wb_key(wbk);
443 	kfree(scb);
444 	_leave(" = %d", ret);
445 	return ret;
446 }
447 
448 /*
449  * Synchronously write back the locked page and any subsequent non-locked dirty
450  * pages.
451  */
452 static int afs_write_back_from_locked_page(struct address_space *mapping,
453 					   struct writeback_control *wbc,
454 					   struct page *primary_page,
455 					   pgoff_t final_page)
456 {
457 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
458 	struct page *pages[8], *page;
459 	unsigned long count, priv;
460 	unsigned n, offset, to, f, t;
461 	pgoff_t start, first, last;
462 	int loop, ret;
463 
464 	_enter(",%lx", primary_page->index);
465 
466 	count = 1;
467 	if (test_set_page_writeback(primary_page))
468 		BUG();
469 
470 	/* Find all consecutive lockable dirty pages that have contiguous
471 	 * written regions, stopping when we find a page that is not
472 	 * immediately lockable, is not dirty or is missing, or we reach the
473 	 * end of the range.
474 	 */
475 	start = primary_page->index;
476 	priv = page_private(primary_page);
477 	offset = priv & AFS_PRIV_MAX;
478 	to = priv >> AFS_PRIV_SHIFT;
479 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
480 			     primary_page->index, priv);
481 
482 	WARN_ON(offset == to);
483 	if (offset == to)
484 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
485 				     primary_page->index, priv);
486 
487 	if (start >= final_page ||
488 	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
489 		goto no_more;
490 
491 	start++;
492 	do {
493 		_debug("more %lx [%lx]", start, count);
494 		n = final_page - start + 1;
495 		if (n > ARRAY_SIZE(pages))
496 			n = ARRAY_SIZE(pages);
497 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
498 		_debug("fgpc %u", n);
499 		if (n == 0)
500 			goto no_more;
501 		if (pages[0]->index != start) {
502 			do {
503 				put_page(pages[--n]);
504 			} while (n > 0);
505 			goto no_more;
506 		}
507 
508 		for (loop = 0; loop < n; loop++) {
509 			page = pages[loop];
510 			if (to != PAGE_SIZE &&
511 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
512 				break;
513 			if (page->index > final_page)
514 				break;
515 			if (!trylock_page(page))
516 				break;
517 			if (!PageDirty(page) || PageWriteback(page)) {
518 				unlock_page(page);
519 				break;
520 			}
521 
522 			priv = page_private(page);
523 			f = priv & AFS_PRIV_MAX;
524 			t = priv >> AFS_PRIV_SHIFT;
525 			if (f != 0 &&
526 			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
527 				unlock_page(page);
528 				break;
529 			}
530 			to = t;
531 
532 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
533 					     page->index, priv);
534 
535 			if (!clear_page_dirty_for_io(page))
536 				BUG();
537 			if (test_set_page_writeback(page))
538 				BUG();
539 			unlock_page(page);
540 			put_page(page);
541 		}
542 		count += loop;
543 		if (loop < n) {
544 			for (; loop < n; loop++)
545 				put_page(pages[loop]);
546 			goto no_more;
547 		}
548 
549 		start += loop;
550 	} while (start <= final_page && count < 65536);
551 
552 no_more:
553 	/* We now have a contiguous set of dirty pages, each with writeback
554 	 * set; the first page is still locked at this point, but all the rest
555 	 * have been unlocked.
556 	 */
557 	unlock_page(primary_page);
558 
559 	first = primary_page->index;
560 	last = first + count - 1;
561 
562 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
563 
564 	ret = afs_store_data(mapping, first, last, offset, to);
565 	switch (ret) {
566 	case 0:
567 		ret = count;
568 		break;
569 
570 	default:
571 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
572 		/* Fall through */
573 	case -EACCES:
574 	case -EPERM:
575 	case -ENOKEY:
576 	case -EKEYEXPIRED:
577 	case -EKEYREJECTED:
578 	case -EKEYREVOKED:
579 		afs_redirty_pages(wbc, mapping, first, last);
580 		mapping_set_error(mapping, ret);
581 		break;
582 
583 	case -EDQUOT:
584 	case -ENOSPC:
585 		afs_redirty_pages(wbc, mapping, first, last);
586 		mapping_set_error(mapping, -ENOSPC);
587 		break;
588 
589 	case -EROFS:
590 	case -EIO:
591 	case -EREMOTEIO:
592 	case -EFBIG:
593 	case -ENOENT:
594 	case -ENOMEDIUM:
595 	case -ENXIO:
596 		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
597 		afs_kill_pages(mapping, first, last);
598 		mapping_set_error(mapping, ret);
599 		break;
600 	}
601 
602 	_leave(" = %d", ret);
603 	return ret;
604 }
605 
606 /*
607  * write a page back to the server
608  * - the caller locked the page for us
609  */
610 int afs_writepage(struct page *page, struct writeback_control *wbc)
611 {
612 	int ret;
613 
614 	_enter("{%lx},", page->index);
615 
616 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
617 					      wbc->range_end >> PAGE_SHIFT);
618 	if (ret < 0) {
619 		_leave(" = %d", ret);
620 		return 0;
621 	}
622 
623 	wbc->nr_to_write -= ret;
624 
625 	_leave(" = 0");
626 	return 0;
627 }
628 
629 /*
630  * write a region of pages back to the server
631  */
632 static int afs_writepages_region(struct address_space *mapping,
633 				 struct writeback_control *wbc,
634 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
635 {
636 	struct page *page;
637 	int ret, n;
638 
639 	_enter(",,%lx,%lx,", index, end);
640 
641 	do {
642 		n = find_get_pages_range_tag(mapping, &index, end,
643 					PAGECACHE_TAG_DIRTY, 1, &page);
644 		if (!n)
645 			break;
646 
647 		_debug("wback %lx", page->index);
648 
649 		/*
650 		 * at this point we hold neither the i_pages lock nor the
651 		 * page lock: the page may be truncated or invalidated
652 		 * (changing page->mapping to NULL), or even swizzled
653 		 * back from swapper_space to tmpfs file mapping
654 		 */
655 		ret = lock_page_killable(page);
656 		if (ret < 0) {
657 			put_page(page);
658 			_leave(" = %d", ret);
659 			return ret;
660 		}
661 
662 		if (page->mapping != mapping || !PageDirty(page)) {
663 			unlock_page(page);
664 			put_page(page);
665 			continue;
666 		}
667 
668 		if (PageWriteback(page)) {
669 			unlock_page(page);
670 			if (wbc->sync_mode != WB_SYNC_NONE)
671 				wait_on_page_writeback(page);
672 			put_page(page);
673 			continue;
674 		}
675 
676 		if (!clear_page_dirty_for_io(page))
677 			BUG();
678 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
679 		put_page(page);
680 		if (ret < 0) {
681 			_leave(" = %d", ret);
682 			return ret;
683 		}
684 
685 		wbc->nr_to_write -= ret;
686 
687 		cond_resched();
688 	} while (index < end && wbc->nr_to_write > 0);
689 
690 	*_next = index;
691 	_leave(" = 0 [%lx]", *_next);
692 	return 0;
693 }
694 
695 /*
696  * write some of the pending data back to the server
697  */
698 int afs_writepages(struct address_space *mapping,
699 		   struct writeback_control *wbc)
700 {
701 	pgoff_t start, end, next;
702 	int ret;
703 
704 	_enter("");
705 
706 	if (wbc->range_cyclic) {
707 		start = mapping->writeback_index;
708 		end = -1;
709 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
710 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
711 			ret = afs_writepages_region(mapping, wbc, 0, start,
712 						    &next);
713 		mapping->writeback_index = next;
714 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
715 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
716 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
717 		if (wbc->nr_to_write > 0)
718 			mapping->writeback_index = next;
719 	} else {
720 		start = wbc->range_start >> PAGE_SHIFT;
721 		end = wbc->range_end >> PAGE_SHIFT;
722 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
723 	}
724 
725 	_leave(" = %d", ret);
726 	return ret;
727 }
728 
729 /*
730  * write to an AFS file
731  */
732 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
733 {
734 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
735 	ssize_t result;
736 	size_t count = iov_iter_count(from);
737 
738 	_enter("{%llx:%llu},{%zu},",
739 	       vnode->fid.vid, vnode->fid.vnode, count);
740 
741 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
742 		printk(KERN_INFO
743 		       "AFS: Attempt to write to active swap file!\n");
744 		return -EBUSY;
745 	}
746 
747 	if (!count)
748 		return 0;
749 
750 	result = generic_file_write_iter(iocb, from);
751 
752 	_leave(" = %zd", result);
753 	return result;
754 }
755 
756 /*
757  * flush any dirty pages for this process, and check for write errors.
758  * - the return status from this call provides a reliable indication of
759  *   whether any write errors occurred for this process.
760  */
761 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
762 {
763 	struct inode *inode = file_inode(file);
764 	struct afs_vnode *vnode = AFS_FS_I(inode);
765 
766 	_enter("{%llx:%llu},{n=%pD},%d",
767 	       vnode->fid.vid, vnode->fid.vnode, file,
768 	       datasync);
769 
770 	return file_write_and_wait_range(file, start, end);
771 }
772 
773 /*
774  * notification that a previously read-only page is about to become writable
775  * - if it returns an error, the caller will deliver a bus error signal
776  */
777 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
778 {
779 	struct file *file = vmf->vma->vm_file;
780 	struct inode *inode = file_inode(file);
781 	struct afs_vnode *vnode = AFS_FS_I(inode);
782 	unsigned long priv;
783 
784 	_enter("{{%llx:%llu}},{%lx}",
785 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
786 
787 	sb_start_pagefault(inode->i_sb);
788 
789 	/* Wait for the page to be written to the cache before we allow it to
790 	 * be modified.  We then assume the entire page will need writing back.
791 	 */
792 #ifdef CONFIG_AFS_FSCACHE
793 	fscache_wait_on_page_write(vnode->cache, vmf->page);
794 #endif
795 
796 	if (PageWriteback(vmf->page) &&
797 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
798 		return VM_FAULT_RETRY;
799 
800 	if (lock_page_killable(vmf->page) < 0)
801 		return VM_FAULT_RETRY;
802 
803 	/* We mustn't change page->private until writeback is complete as that
804 	 * details the portion of the page we need to write back and we might
805 	 * need to redirty the page if there's a problem.
806 	 */
807 	wait_on_page_writeback(vmf->page);
808 
809 	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
810 	priv |= 0; /* From */
811 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
812 			     vmf->page->index, priv);
813 	SetPagePrivate(vmf->page);
814 	set_page_private(vmf->page, priv);
815 
816 	sb_end_pagefault(inode->i_sb);
817 	return VM_FAULT_LOCKED;
818 }
819 
820 /*
821  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
822  */
823 void afs_prune_wb_keys(struct afs_vnode *vnode)
824 {
825 	LIST_HEAD(graveyard);
826 	struct afs_wb_key *wbk, *tmp;
827 
828 	/* Discard unused keys */
829 	spin_lock(&vnode->wb_lock);
830 
831 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
832 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
833 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
834 			if (refcount_read(&wbk->usage) == 1)
835 				list_move(&wbk->vnode_link, &graveyard);
836 		}
837 	}
838 
839 	spin_unlock(&vnode->wb_lock);
840 
841 	while (!list_empty(&graveyard)) {
842 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
843 		list_del(&wbk->vnode_link);
844 		afs_put_wb_key(wbk);
845 	}
846 }
847 
848 /*
849  * Clean up a page during invalidation.
850  */
851 int afs_launder_page(struct page *page)
852 {
853 	struct address_space *mapping = page->mapping;
854 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
855 	unsigned long priv;
856 	unsigned int f, t;
857 	int ret = 0;
858 
859 	_enter("{%lx}", page->index);
860 
861 	priv = page_private(page);
862 	if (clear_page_dirty_for_io(page)) {
863 		f = 0;
864 		t = PAGE_SIZE;
865 		if (PagePrivate(page)) {
866 			f = priv & AFS_PRIV_MAX;
867 			t = priv >> AFS_PRIV_SHIFT;
868 		}
869 
870 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
871 				     page->index, priv);
872 		ret = afs_store_data(mapping, page->index, page->index, t, f);
873 	}
874 
875 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
876 			     page->index, priv);
877 	set_page_private(page, 0);
878 	ClearPagePrivate(page);
879 
880 #ifdef CONFIG_AFS_FSCACHE
881 	if (PageFsCache(page)) {
882 		fscache_wait_on_page_write(vnode->cache, page);
883 		fscache_uncache_page(vnode->cache, page);
884 	}
885 #endif
886 	return ret;
887 }
888