xref: /openbmc/linux/fs/afs/write.c (revision 13524ab3)
1 /* handling of writes to regular files and writing back to the server
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/backing-dev.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include "internal.h"
19 
20 /*
21  * mark a page as having been made dirty and thus needing writeback
22  */
23 int afs_set_page_dirty(struct page *page)
24 {
25 	_enter("");
26 	return __set_page_dirty_nobuffers(page);
27 }
28 
29 /*
30  * partly or wholly fill a page that's under preparation for writing
31  */
32 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
33 			 loff_t pos, unsigned int len, struct page *page)
34 {
35 	struct afs_read *req;
36 	int ret;
37 
38 	_enter(",,%llu", (unsigned long long)pos);
39 
40 	req = kzalloc(sizeof(struct afs_read) + sizeof(struct page *),
41 		      GFP_KERNEL);
42 	if (!req)
43 		return -ENOMEM;
44 
45 	atomic_set(&req->usage, 1);
46 	req->pos = pos;
47 	req->len = len;
48 	req->nr_pages = 1;
49 	req->pages[0] = page;
50 	get_page(page);
51 
52 	ret = afs_fetch_data(vnode, key, req);
53 	afs_put_read(req);
54 	if (ret < 0) {
55 		if (ret == -ENOENT) {
56 			_debug("got NOENT from server"
57 			       " - marking file deleted and stale");
58 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
59 			ret = -ESTALE;
60 		}
61 	}
62 
63 	_leave(" = %d", ret);
64 	return ret;
65 }
66 
67 /*
68  * prepare to perform part of a write to a page
69  */
70 int afs_write_begin(struct file *file, struct address_space *mapping,
71 		    loff_t pos, unsigned len, unsigned flags,
72 		    struct page **pagep, void **fsdata)
73 {
74 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
75 	struct page *page;
76 	struct key *key = afs_file_key(file);
77 	unsigned long priv;
78 	unsigned f, from = pos & (PAGE_SIZE - 1);
79 	unsigned t, to = from + len;
80 	pgoff_t index = pos >> PAGE_SHIFT;
81 	int ret;
82 
83 	_enter("{%x:%u},{%lx},%u,%u",
84 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
85 
86 	/* We want to store information about how much of a page is altered in
87 	 * page->private.
88 	 */
89 	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
90 
91 	page = grab_cache_page_write_begin(mapping, index, flags);
92 	if (!page)
93 		return -ENOMEM;
94 
95 	if (!PageUptodate(page) && len != PAGE_SIZE) {
96 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
97 		if (ret < 0) {
98 			unlock_page(page);
99 			put_page(page);
100 			_leave(" = %d [prep]", ret);
101 			return ret;
102 		}
103 		SetPageUptodate(page);
104 	}
105 
106 	/* page won't leak in error case: it eventually gets cleaned off LRU */
107 	*pagep = page;
108 
109 try_again:
110 	/* See if this page is already partially written in a way that we can
111 	 * merge the new write with.
112 	 */
113 	t = f = 0;
114 	if (PagePrivate(page)) {
115 		priv = page_private(page);
116 		f = priv & AFS_PRIV_MAX;
117 		t = priv >> AFS_PRIV_SHIFT;
118 		ASSERTCMP(f, <=, t);
119 	}
120 
121 	if (f != t) {
122 		if (to < f || from > t)
123 			goto flush_conflicting_write;
124 		if (from < f)
125 			f = from;
126 		if (to > t)
127 			t = to;
128 	} else {
129 		f = from;
130 		t = to;
131 	}
132 
133 	priv = (unsigned long)t << AFS_PRIV_SHIFT;
134 	priv |= f;
135 	trace_afs_page_dirty(vnode, tracepoint_string("begin"),
136 			     page->index, priv);
137 	SetPagePrivate(page);
138 	set_page_private(page, priv);
139 	_leave(" = 0");
140 	return 0;
141 
142 	/* The previous write and this write aren't adjacent or overlapping, so
143 	 * flush the page out.
144 	 */
145 flush_conflicting_write:
146 	_debug("flush conflict");
147 	ret = write_one_page(page);
148 	if (ret < 0) {
149 		_leave(" = %d", ret);
150 		return ret;
151 	}
152 
153 	ret = lock_page_killable(page);
154 	if (ret < 0) {
155 		_leave(" = %d", ret);
156 		return ret;
157 	}
158 	goto try_again;
159 }
160 
161 /*
162  * finalise part of a write to a page
163  */
164 int afs_write_end(struct file *file, struct address_space *mapping,
165 		  loff_t pos, unsigned len, unsigned copied,
166 		  struct page *page, void *fsdata)
167 {
168 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
169 	struct key *key = afs_file_key(file);
170 	loff_t i_size, maybe_i_size;
171 	int ret;
172 
173 	_enter("{%x:%u},{%lx}",
174 	       vnode->fid.vid, vnode->fid.vnode, page->index);
175 
176 	maybe_i_size = pos + copied;
177 
178 	i_size = i_size_read(&vnode->vfs_inode);
179 	if (maybe_i_size > i_size) {
180 		spin_lock(&vnode->wb_lock);
181 		i_size = i_size_read(&vnode->vfs_inode);
182 		if (maybe_i_size > i_size)
183 			i_size_write(&vnode->vfs_inode, maybe_i_size);
184 		spin_unlock(&vnode->wb_lock);
185 	}
186 
187 	if (!PageUptodate(page)) {
188 		if (copied < len) {
189 			/* Try and load any missing data from the server.  The
190 			 * unmarshalling routine will take care of clearing any
191 			 * bits that are beyond the EOF.
192 			 */
193 			ret = afs_fill_page(vnode, key, pos + copied,
194 					    len - copied, page);
195 			if (ret < 0)
196 				return ret;
197 		}
198 		SetPageUptodate(page);
199 	}
200 
201 	set_page_dirty(page);
202 	if (PageDirty(page))
203 		_debug("dirtied");
204 	unlock_page(page);
205 	put_page(page);
206 
207 	return copied;
208 }
209 
210 /*
211  * kill all the pages in the given range
212  */
213 static void afs_kill_pages(struct address_space *mapping,
214 			   pgoff_t first, pgoff_t last)
215 {
216 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
217 	struct pagevec pv;
218 	unsigned count, loop;
219 
220 	_enter("{%x:%u},%lx-%lx",
221 	       vnode->fid.vid, vnode->fid.vnode, first, last);
222 
223 	pagevec_init(&pv, 0);
224 
225 	do {
226 		_debug("kill %lx-%lx", first, last);
227 
228 		count = last - first + 1;
229 		if (count > PAGEVEC_SIZE)
230 			count = PAGEVEC_SIZE;
231 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
232 		ASSERTCMP(pv.nr, ==, count);
233 
234 		for (loop = 0; loop < count; loop++) {
235 			struct page *page = pv.pages[loop];
236 			ClearPageUptodate(page);
237 			SetPageError(page);
238 			end_page_writeback(page);
239 			if (page->index >= first)
240 				first = page->index + 1;
241 			lock_page(page);
242 			generic_error_remove_page(mapping, page);
243 		}
244 
245 		__pagevec_release(&pv);
246 	} while (first <= last);
247 
248 	_leave("");
249 }
250 
251 /*
252  * Redirty all the pages in a given range.
253  */
254 static void afs_redirty_pages(struct writeback_control *wbc,
255 			      struct address_space *mapping,
256 			      pgoff_t first, pgoff_t last)
257 {
258 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
259 	struct pagevec pv;
260 	unsigned count, loop;
261 
262 	_enter("{%x:%u},%lx-%lx",
263 	       vnode->fid.vid, vnode->fid.vnode, first, last);
264 
265 	pagevec_init(&pv, 0);
266 
267 	do {
268 		_debug("redirty %lx-%lx", first, last);
269 
270 		count = last - first + 1;
271 		if (count > PAGEVEC_SIZE)
272 			count = PAGEVEC_SIZE;
273 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
274 		ASSERTCMP(pv.nr, ==, count);
275 
276 		for (loop = 0; loop < count; loop++) {
277 			struct page *page = pv.pages[loop];
278 
279 			redirty_page_for_writepage(wbc, page);
280 			end_page_writeback(page);
281 			if (page->index >= first)
282 				first = page->index + 1;
283 		}
284 
285 		__pagevec_release(&pv);
286 	} while (first <= last);
287 
288 	_leave("");
289 }
290 
291 /*
292  * write to a file
293  */
294 static int afs_store_data(struct address_space *mapping,
295 			  pgoff_t first, pgoff_t last,
296 			  unsigned offset, unsigned to)
297 {
298 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
299 	struct afs_fs_cursor fc;
300 	struct afs_wb_key *wbk = NULL;
301 	struct list_head *p;
302 	int ret = -ENOKEY, ret2;
303 
304 	_enter("%s{%x:%u.%u},%lx,%lx,%x,%x",
305 	       vnode->volume->name,
306 	       vnode->fid.vid,
307 	       vnode->fid.vnode,
308 	       vnode->fid.unique,
309 	       first, last, offset, to);
310 
311 	spin_lock(&vnode->wb_lock);
312 	p = vnode->wb_keys.next;
313 
314 	/* Iterate through the list looking for a valid key to use. */
315 try_next_key:
316 	while (p != &vnode->wb_keys) {
317 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
318 		_debug("wbk %u", key_serial(wbk->key));
319 		ret2 = key_validate(wbk->key);
320 		if (ret2 == 0)
321 			goto found_key;
322 		if (ret == -ENOKEY)
323 			ret = ret2;
324 		p = p->next;
325 	}
326 
327 	spin_unlock(&vnode->wb_lock);
328 	afs_put_wb_key(wbk);
329 	_leave(" = %d [no keys]", ret);
330 	return ret;
331 
332 found_key:
333 	refcount_inc(&wbk->usage);
334 	spin_unlock(&vnode->wb_lock);
335 
336 	_debug("USE WB KEY %u", key_serial(wbk->key));
337 
338 	ret = -ERESTARTSYS;
339 	if (afs_begin_vnode_operation(&fc, vnode, wbk->key)) {
340 		while (afs_select_fileserver(&fc)) {
341 			fc.cb_break = vnode->cb_break + vnode->cb_s_break;
342 			afs_fs_store_data(&fc, mapping, first, last, offset, to);
343 		}
344 
345 		afs_check_for_remote_deletion(&fc, fc.vnode);
346 		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
347 		ret = afs_end_vnode_operation(&fc);
348 	}
349 
350 	switch (ret) {
351 	case -EACCES:
352 	case -EPERM:
353 	case -ENOKEY:
354 	case -EKEYEXPIRED:
355 	case -EKEYREJECTED:
356 	case -EKEYREVOKED:
357 		_debug("next");
358 		spin_lock(&vnode->wb_lock);
359 		p = wbk->vnode_link.next;
360 		afs_put_wb_key(wbk);
361 		goto try_next_key;
362 	}
363 
364 	afs_put_wb_key(wbk);
365 	_leave(" = %d", ret);
366 	return ret;
367 }
368 
369 /*
370  * Synchronously write back the locked page and any subsequent non-locked dirty
371  * pages.
372  */
373 static int afs_write_back_from_locked_page(struct address_space *mapping,
374 					   struct writeback_control *wbc,
375 					   struct page *primary_page,
376 					   pgoff_t final_page)
377 {
378 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
379 	struct page *pages[8], *page;
380 	unsigned long count, priv;
381 	unsigned n, offset, to, f, t;
382 	pgoff_t start, first, last;
383 	int loop, ret;
384 
385 	_enter(",%lx", primary_page->index);
386 
387 	count = 1;
388 	if (test_set_page_writeback(primary_page))
389 		BUG();
390 
391 	/* Find all consecutive lockable dirty pages that have contiguous
392 	 * written regions, stopping when we find a page that is not
393 	 * immediately lockable, is not dirty or is missing, or we reach the
394 	 * end of the range.
395 	 */
396 	start = primary_page->index;
397 	priv = page_private(primary_page);
398 	offset = priv & AFS_PRIV_MAX;
399 	to = priv >> AFS_PRIV_SHIFT;
400 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
401 			     primary_page->index, priv);
402 
403 	WARN_ON(offset == to);
404 	if (offset == to)
405 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
406 				     primary_page->index, priv);
407 
408 	if (start >= final_page || to < PAGE_SIZE)
409 		goto no_more;
410 
411 	start++;
412 	do {
413 		_debug("more %lx [%lx]", start, count);
414 		n = final_page - start + 1;
415 		if (n > ARRAY_SIZE(pages))
416 			n = ARRAY_SIZE(pages);
417 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
418 		_debug("fgpc %u", n);
419 		if (n == 0)
420 			goto no_more;
421 		if (pages[0]->index != start) {
422 			do {
423 				put_page(pages[--n]);
424 			} while (n > 0);
425 			goto no_more;
426 		}
427 
428 		for (loop = 0; loop < n; loop++) {
429 			if (to != PAGE_SIZE)
430 				break;
431 			page = pages[loop];
432 			if (page->index > final_page)
433 				break;
434 			if (!trylock_page(page))
435 				break;
436 			if (!PageDirty(page) || PageWriteback(page)) {
437 				unlock_page(page);
438 				break;
439 			}
440 
441 			priv = page_private(page);
442 			f = priv & AFS_PRIV_MAX;
443 			t = priv >> AFS_PRIV_SHIFT;
444 			if (f != 0) {
445 				unlock_page(page);
446 				break;
447 			}
448 			to = t;
449 
450 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
451 					     page->index, priv);
452 
453 			if (!clear_page_dirty_for_io(page))
454 				BUG();
455 			if (test_set_page_writeback(page))
456 				BUG();
457 			unlock_page(page);
458 			put_page(page);
459 		}
460 		count += loop;
461 		if (loop < n) {
462 			for (; loop < n; loop++)
463 				put_page(pages[loop]);
464 			goto no_more;
465 		}
466 
467 		start += loop;
468 	} while (start <= final_page && count < 65536);
469 
470 no_more:
471 	/* We now have a contiguous set of dirty pages, each with writeback
472 	 * set; the first page is still locked at this point, but all the rest
473 	 * have been unlocked.
474 	 */
475 	unlock_page(primary_page);
476 
477 	first = primary_page->index;
478 	last = first + count - 1;
479 
480 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
481 
482 	ret = afs_store_data(mapping, first, last, offset, to);
483 	switch (ret) {
484 	case 0:
485 		ret = count;
486 		break;
487 
488 	default:
489 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
490 		/* Fall through */
491 	case -EACCES:
492 	case -EPERM:
493 	case -ENOKEY:
494 	case -EKEYEXPIRED:
495 	case -EKEYREJECTED:
496 	case -EKEYREVOKED:
497 		afs_redirty_pages(wbc, mapping, first, last);
498 		mapping_set_error(mapping, ret);
499 		break;
500 
501 	case -EDQUOT:
502 	case -ENOSPC:
503 		afs_redirty_pages(wbc, mapping, first, last);
504 		mapping_set_error(mapping, -ENOSPC);
505 		break;
506 
507 	case -EROFS:
508 	case -EIO:
509 	case -EREMOTEIO:
510 	case -EFBIG:
511 	case -ENOENT:
512 	case -ENOMEDIUM:
513 	case -ENXIO:
514 		afs_kill_pages(mapping, first, last);
515 		mapping_set_error(mapping, ret);
516 		break;
517 	}
518 
519 	_leave(" = %d", ret);
520 	return ret;
521 }
522 
523 /*
524  * write a page back to the server
525  * - the caller locked the page for us
526  */
527 int afs_writepage(struct page *page, struct writeback_control *wbc)
528 {
529 	int ret;
530 
531 	_enter("{%lx},", page->index);
532 
533 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
534 					      wbc->range_end >> PAGE_SHIFT);
535 	if (ret < 0) {
536 		_leave(" = %d", ret);
537 		return 0;
538 	}
539 
540 	wbc->nr_to_write -= ret;
541 
542 	_leave(" = 0");
543 	return 0;
544 }
545 
546 /*
547  * write a region of pages back to the server
548  */
549 static int afs_writepages_region(struct address_space *mapping,
550 				 struct writeback_control *wbc,
551 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
552 {
553 	struct page *page;
554 	int ret, n;
555 
556 	_enter(",,%lx,%lx,", index, end);
557 
558 	do {
559 		n = find_get_pages_tag(mapping, &index, PAGECACHE_TAG_DIRTY,
560 				       1, &page);
561 		if (!n)
562 			break;
563 
564 		_debug("wback %lx", page->index);
565 
566 		if (page->index > end) {
567 			*_next = index;
568 			put_page(page);
569 			_leave(" = 0 [%lx]", *_next);
570 			return 0;
571 		}
572 
573 		/* at this point we hold neither mapping->tree_lock nor lock on
574 		 * the page itself: the page may be truncated or invalidated
575 		 * (changing page->mapping to NULL), or even swizzled back from
576 		 * swapper_space to tmpfs file mapping
577 		 */
578 		ret = lock_page_killable(page);
579 		if (ret < 0) {
580 			put_page(page);
581 			_leave(" = %d", ret);
582 			return ret;
583 		}
584 
585 		if (page->mapping != mapping || !PageDirty(page)) {
586 			unlock_page(page);
587 			put_page(page);
588 			continue;
589 		}
590 
591 		if (PageWriteback(page)) {
592 			unlock_page(page);
593 			if (wbc->sync_mode != WB_SYNC_NONE)
594 				wait_on_page_writeback(page);
595 			put_page(page);
596 			continue;
597 		}
598 
599 		if (!clear_page_dirty_for_io(page))
600 			BUG();
601 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
602 		put_page(page);
603 		if (ret < 0) {
604 			_leave(" = %d", ret);
605 			return ret;
606 		}
607 
608 		wbc->nr_to_write -= ret;
609 
610 		cond_resched();
611 	} while (index < end && wbc->nr_to_write > 0);
612 
613 	*_next = index;
614 	_leave(" = 0 [%lx]", *_next);
615 	return 0;
616 }
617 
618 /*
619  * write some of the pending data back to the server
620  */
621 int afs_writepages(struct address_space *mapping,
622 		   struct writeback_control *wbc)
623 {
624 	pgoff_t start, end, next;
625 	int ret;
626 
627 	_enter("");
628 
629 	if (wbc->range_cyclic) {
630 		start = mapping->writeback_index;
631 		end = -1;
632 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
633 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
634 			ret = afs_writepages_region(mapping, wbc, 0, start,
635 						    &next);
636 		mapping->writeback_index = next;
637 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
638 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
639 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
640 		if (wbc->nr_to_write > 0)
641 			mapping->writeback_index = next;
642 	} else {
643 		start = wbc->range_start >> PAGE_SHIFT;
644 		end = wbc->range_end >> PAGE_SHIFT;
645 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
646 	}
647 
648 	_leave(" = %d", ret);
649 	return ret;
650 }
651 
652 /*
653  * completion of write to server
654  */
655 void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
656 {
657 	struct pagevec pv;
658 	unsigned long priv;
659 	unsigned count, loop;
660 	pgoff_t first = call->first, last = call->last;
661 
662 	_enter("{%x:%u},{%lx-%lx}",
663 	       vnode->fid.vid, vnode->fid.vnode, first, last);
664 
665 	pagevec_init(&pv, 0);
666 
667 	do {
668 		_debug("done %lx-%lx", first, last);
669 
670 		count = last - first + 1;
671 		if (count > PAGEVEC_SIZE)
672 			count = PAGEVEC_SIZE;
673 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
674 					      first, count, pv.pages);
675 		ASSERTCMP(pv.nr, ==, count);
676 
677 		for (loop = 0; loop < count; loop++) {
678 			priv = page_private(pv.pages[loop]);
679 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
680 					     pv.pages[loop]->index, priv);
681 			set_page_private(pv.pages[loop], 0);
682 			end_page_writeback(pv.pages[loop]);
683 		}
684 		first += count;
685 		__pagevec_release(&pv);
686 	} while (first <= last);
687 
688 	afs_prune_wb_keys(vnode);
689 	_leave("");
690 }
691 
692 /*
693  * write to an AFS file
694  */
695 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
696 {
697 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
698 	ssize_t result;
699 	size_t count = iov_iter_count(from);
700 
701 	_enter("{%x.%u},{%zu},",
702 	       vnode->fid.vid, vnode->fid.vnode, count);
703 
704 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
705 		printk(KERN_INFO
706 		       "AFS: Attempt to write to active swap file!\n");
707 		return -EBUSY;
708 	}
709 
710 	if (!count)
711 		return 0;
712 
713 	result = generic_file_write_iter(iocb, from);
714 
715 	_leave(" = %zd", result);
716 	return result;
717 }
718 
719 /*
720  * flush any dirty pages for this process, and check for write errors.
721  * - the return status from this call provides a reliable indication of
722  *   whether any write errors occurred for this process.
723  */
724 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
725 {
726 	struct inode *inode = file_inode(file);
727 	struct afs_vnode *vnode = AFS_FS_I(inode);
728 
729 	_enter("{%x:%u},{n=%pD},%d",
730 	       vnode->fid.vid, vnode->fid.vnode, file,
731 	       datasync);
732 
733 	return file_write_and_wait_range(file, start, end);
734 }
735 
736 /*
737  * Flush out all outstanding writes on a file opened for writing when it is
738  * closed.
739  */
740 int afs_flush(struct file *file, fl_owner_t id)
741 {
742 	_enter("");
743 
744 	if ((file->f_mode & FMODE_WRITE) == 0)
745 		return 0;
746 
747 	return vfs_fsync(file, 0);
748 }
749 
750 /*
751  * notification that a previously read-only page is about to become writable
752  * - if it returns an error, the caller will deliver a bus error signal
753  */
754 int afs_page_mkwrite(struct vm_fault *vmf)
755 {
756 	struct file *file = vmf->vma->vm_file;
757 	struct inode *inode = file_inode(file);
758 	struct afs_vnode *vnode = AFS_FS_I(inode);
759 	unsigned long priv;
760 
761 	_enter("{{%x:%u}},{%lx}",
762 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
763 
764 	sb_start_pagefault(inode->i_sb);
765 
766 	/* Wait for the page to be written to the cache before we allow it to
767 	 * be modified.  We then assume the entire page will need writing back.
768 	 */
769 #ifdef CONFIG_AFS_FSCACHE
770 	fscache_wait_on_page_write(vnode->cache, vmf->page);
771 #endif
772 
773 	if (PageWriteback(vmf->page) &&
774 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
775 		return VM_FAULT_RETRY;
776 
777 	if (lock_page_killable(vmf->page) < 0)
778 		return VM_FAULT_RETRY;
779 
780 	/* We mustn't change page->private until writeback is complete as that
781 	 * details the portion of the page we need to write back and we might
782 	 * need to redirty the page if there's a problem.
783 	 */
784 	wait_on_page_writeback(vmf->page);
785 
786 	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
787 	priv |= 0; /* From */
788 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
789 			     vmf->page->index, priv);
790 	SetPagePrivate(vmf->page);
791 	set_page_private(vmf->page, priv);
792 
793 	sb_end_pagefault(inode->i_sb);
794 	return VM_FAULT_LOCKED;
795 }
796 
797 /*
798  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
799  */
800 void afs_prune_wb_keys(struct afs_vnode *vnode)
801 {
802 	LIST_HEAD(graveyard);
803 	struct afs_wb_key *wbk, *tmp;
804 
805 	/* Discard unused keys */
806 	spin_lock(&vnode->wb_lock);
807 
808 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
809 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
810 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
811 			if (refcount_read(&wbk->usage) == 1)
812 				list_move(&wbk->vnode_link, &graveyard);
813 		}
814 	}
815 
816 	spin_unlock(&vnode->wb_lock);
817 
818 	while (!list_empty(&graveyard)) {
819 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
820 		list_del(&wbk->vnode_link);
821 		afs_put_wb_key(wbk);
822 	}
823 }
824 
825 /*
826  * Clean up a page during invalidation.
827  */
828 int afs_launder_page(struct page *page)
829 {
830 	struct address_space *mapping = page->mapping;
831 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
832 	unsigned long priv;
833 	unsigned int f, t;
834 	int ret = 0;
835 
836 	_enter("{%lx}", page->index);
837 
838 	priv = page_private(page);
839 	if (clear_page_dirty_for_io(page)) {
840 		f = 0;
841 		t = PAGE_SIZE;
842 		if (PagePrivate(page)) {
843 			f = priv & AFS_PRIV_MAX;
844 			t = priv >> AFS_PRIV_SHIFT;
845 		}
846 
847 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
848 				     page->index, priv);
849 		ret = afs_store_data(mapping, page->index, page->index, t, f);
850 	}
851 
852 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
853 			     page->index, priv);
854 	set_page_private(page, 0);
855 	ClearPagePrivate(page);
856 
857 #ifdef CONFIG_AFS_FSCACHE
858 	if (PageFsCache(page)) {
859 		fscache_wait_on_page_write(vnode->cache, page);
860 		fscache_uncache_page(vnode->cache, page);
861 	}
862 #endif
863 	return ret;
864 }
865