xref: /openbmc/linux/fs/afs/vlclient.c (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* AFS Volume Location Service client
3  *
4  * Copyright (C) 2002 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/gfp.h>
9 #include <linux/init.h>
10 #include <linux/sched.h>
11 #include "afs_fs.h"
12 #include "internal.h"
13 
14 /*
15  * Deliver reply data to a VL.GetEntryByNameU call.
16  */
17 static int afs_deliver_vl_get_entry_by_name_u(struct afs_call *call)
18 {
19 	struct afs_uvldbentry__xdr *uvldb;
20 	struct afs_vldb_entry *entry;
21 	bool new_only = false;
22 	u32 tmp, nr_servers, vlflags;
23 	int i, ret;
24 
25 	_enter("");
26 
27 	ret = afs_transfer_reply(call);
28 	if (ret < 0)
29 		return ret;
30 
31 	/* unmarshall the reply once we've received all of it */
32 	uvldb = call->buffer;
33 	entry = call->ret_vldb;
34 
35 	nr_servers = ntohl(uvldb->nServers);
36 	if (nr_servers > AFS_NMAXNSERVERS)
37 		nr_servers = AFS_NMAXNSERVERS;
38 
39 	for (i = 0; i < ARRAY_SIZE(uvldb->name) - 1; i++)
40 		entry->name[i] = (u8)ntohl(uvldb->name[i]);
41 	entry->name[i] = 0;
42 	entry->name_len = strlen(entry->name);
43 
44 	/* If there is a new replication site that we can use, ignore all the
45 	 * sites that aren't marked as new.
46 	 */
47 	for (i = 0; i < nr_servers; i++) {
48 		tmp = ntohl(uvldb->serverFlags[i]);
49 		if (!(tmp & AFS_VLSF_DONTUSE) &&
50 		    (tmp & AFS_VLSF_NEWREPSITE))
51 			new_only = true;
52 	}
53 
54 	vlflags = ntohl(uvldb->flags);
55 	for (i = 0; i < nr_servers; i++) {
56 		struct afs_uuid__xdr *xdr;
57 		struct afs_uuid *uuid;
58 		int j;
59 		int n = entry->nr_servers;
60 
61 		tmp = ntohl(uvldb->serverFlags[i]);
62 		if (tmp & AFS_VLSF_DONTUSE ||
63 		    (new_only && !(tmp & AFS_VLSF_NEWREPSITE)))
64 			continue;
65 		if (tmp & AFS_VLSF_RWVOL) {
66 			entry->fs_mask[n] |= AFS_VOL_VTM_RW;
67 			if (vlflags & AFS_VLF_BACKEXISTS)
68 				entry->fs_mask[n] |= AFS_VOL_VTM_BAK;
69 		}
70 		if (tmp & AFS_VLSF_ROVOL)
71 			entry->fs_mask[n] |= AFS_VOL_VTM_RO;
72 		if (!entry->fs_mask[n])
73 			continue;
74 
75 		xdr = &uvldb->serverNumber[i];
76 		uuid = (struct afs_uuid *)&entry->fs_server[n];
77 		uuid->time_low			= xdr->time_low;
78 		uuid->time_mid			= htons(ntohl(xdr->time_mid));
79 		uuid->time_hi_and_version	= htons(ntohl(xdr->time_hi_and_version));
80 		uuid->clock_seq_hi_and_reserved	= (u8)ntohl(xdr->clock_seq_hi_and_reserved);
81 		uuid->clock_seq_low		= (u8)ntohl(xdr->clock_seq_low);
82 		for (j = 0; j < 6; j++)
83 			uuid->node[j] = (u8)ntohl(xdr->node[j]);
84 
85 		entry->addr_version[n] = ntohl(uvldb->serverUnique[i]);
86 		entry->nr_servers++;
87 	}
88 
89 	for (i = 0; i < AFS_MAXTYPES; i++)
90 		entry->vid[i] = ntohl(uvldb->volumeId[i]);
91 
92 	if (vlflags & AFS_VLF_RWEXISTS)
93 		__set_bit(AFS_VLDB_HAS_RW, &entry->flags);
94 	if (vlflags & AFS_VLF_ROEXISTS)
95 		__set_bit(AFS_VLDB_HAS_RO, &entry->flags);
96 	if (vlflags & AFS_VLF_BACKEXISTS)
97 		__set_bit(AFS_VLDB_HAS_BAK, &entry->flags);
98 
99 	if (!(vlflags & (AFS_VLF_RWEXISTS | AFS_VLF_ROEXISTS | AFS_VLF_BACKEXISTS))) {
100 		entry->error = -ENOMEDIUM;
101 		__set_bit(AFS_VLDB_QUERY_ERROR, &entry->flags);
102 	}
103 
104 	__set_bit(AFS_VLDB_QUERY_VALID, &entry->flags);
105 	_leave(" = 0 [done]");
106 	return 0;
107 }
108 
109 static void afs_destroy_vl_get_entry_by_name_u(struct afs_call *call)
110 {
111 	kfree(call->ret_vldb);
112 	afs_flat_call_destructor(call);
113 }
114 
115 /*
116  * VL.GetEntryByNameU operation type.
117  */
118 static const struct afs_call_type afs_RXVLGetEntryByNameU = {
119 	.name		= "VL.GetEntryByNameU",
120 	.op		= afs_VL_GetEntryByNameU,
121 	.deliver	= afs_deliver_vl_get_entry_by_name_u,
122 	.destructor	= afs_destroy_vl_get_entry_by_name_u,
123 };
124 
125 /*
126  * Dispatch a get volume entry by name or ID operation (uuid variant).  If the
127  * volname is a decimal number then it's a volume ID not a volume name.
128  */
129 struct afs_vldb_entry *afs_vl_get_entry_by_name_u(struct afs_vl_cursor *vc,
130 						  const char *volname,
131 						  int volnamesz)
132 {
133 	struct afs_vldb_entry *entry;
134 	struct afs_call *call;
135 	struct afs_net *net = vc->cell->net;
136 	size_t reqsz, padsz;
137 	__be32 *bp;
138 
139 	_enter("");
140 
141 	padsz = (4 - (volnamesz & 3)) & 3;
142 	reqsz = 8 + volnamesz + padsz;
143 
144 	entry = kzalloc(sizeof(struct afs_vldb_entry), GFP_KERNEL);
145 	if (!entry)
146 		return ERR_PTR(-ENOMEM);
147 
148 	call = afs_alloc_flat_call(net, &afs_RXVLGetEntryByNameU, reqsz,
149 				   sizeof(struct afs_uvldbentry__xdr));
150 	if (!call) {
151 		kfree(entry);
152 		return ERR_PTR(-ENOMEM);
153 	}
154 
155 	call->key = vc->key;
156 	call->ret_vldb = entry;
157 	call->max_lifespan = AFS_VL_MAX_LIFESPAN;
158 
159 	/* Marshall the parameters */
160 	bp = call->request;
161 	*bp++ = htonl(VLGETENTRYBYNAMEU);
162 	*bp++ = htonl(volnamesz);
163 	memcpy(bp, volname, volnamesz);
164 	if (padsz > 0)
165 		memset((void *)bp + volnamesz, 0, padsz);
166 
167 	trace_afs_make_vl_call(call);
168 	afs_make_call(&vc->ac, call, GFP_KERNEL);
169 	return (struct afs_vldb_entry *)afs_wait_for_call_to_complete(call, &vc->ac);
170 }
171 
172 /*
173  * Deliver reply data to a VL.GetAddrsU call.
174  *
175  *	GetAddrsU(IN ListAddrByAttributes *inaddr,
176  *		  OUT afsUUID *uuidp1,
177  *		  OUT uint32_t *uniquifier,
178  *		  OUT uint32_t *nentries,
179  *		  OUT bulkaddrs *blkaddrs);
180  */
181 static int afs_deliver_vl_get_addrs_u(struct afs_call *call)
182 {
183 	struct afs_addr_list *alist;
184 	__be32 *bp;
185 	u32 uniquifier, nentries, count;
186 	int i, ret;
187 
188 	_enter("{%u,%zu/%u}",
189 	       call->unmarshall, iov_iter_count(call->iter), call->count);
190 
191 	switch (call->unmarshall) {
192 	case 0:
193 		afs_extract_to_buf(call,
194 				   sizeof(struct afs_uuid__xdr) + 3 * sizeof(__be32));
195 		call->unmarshall++;
196 
197 		/* Extract the returned uuid, uniquifier, nentries and
198 		 * blkaddrs size */
199 		fallthrough;
200 	case 1:
201 		ret = afs_extract_data(call, true);
202 		if (ret < 0)
203 			return ret;
204 
205 		bp = call->buffer + sizeof(struct afs_uuid__xdr);
206 		uniquifier	= ntohl(*bp++);
207 		nentries	= ntohl(*bp++);
208 		count		= ntohl(*bp);
209 
210 		nentries = min(nentries, count);
211 		alist = afs_alloc_addrlist(nentries, FS_SERVICE, AFS_FS_PORT);
212 		if (!alist)
213 			return -ENOMEM;
214 		alist->version = uniquifier;
215 		call->ret_alist = alist;
216 		call->count = count;
217 		call->count2 = nentries;
218 		call->unmarshall++;
219 
220 	more_entries:
221 		count = min(call->count, 4U);
222 		afs_extract_to_buf(call, count * sizeof(__be32));
223 
224 		fallthrough;	/* and extract entries */
225 	case 2:
226 		ret = afs_extract_data(call, call->count > 4);
227 		if (ret < 0)
228 			return ret;
229 
230 		alist = call->ret_alist;
231 		bp = call->buffer;
232 		count = min(call->count, 4U);
233 		for (i = 0; i < count; i++)
234 			if (alist->nr_addrs < call->count2)
235 				afs_merge_fs_addr4(alist, *bp++, AFS_FS_PORT);
236 
237 		call->count -= count;
238 		if (call->count > 0)
239 			goto more_entries;
240 		call->unmarshall++;
241 		break;
242 	}
243 
244 	_leave(" = 0 [done]");
245 	return 0;
246 }
247 
248 static void afs_vl_get_addrs_u_destructor(struct afs_call *call)
249 {
250 	afs_put_addrlist(call->ret_alist);
251 	return afs_flat_call_destructor(call);
252 }
253 
254 /*
255  * VL.GetAddrsU operation type.
256  */
257 static const struct afs_call_type afs_RXVLGetAddrsU = {
258 	.name		= "VL.GetAddrsU",
259 	.op		= afs_VL_GetAddrsU,
260 	.deliver	= afs_deliver_vl_get_addrs_u,
261 	.destructor	= afs_vl_get_addrs_u_destructor,
262 };
263 
264 /*
265  * Dispatch an operation to get the addresses for a server, where the server is
266  * nominated by UUID.
267  */
268 struct afs_addr_list *afs_vl_get_addrs_u(struct afs_vl_cursor *vc,
269 					 const uuid_t *uuid)
270 {
271 	struct afs_ListAddrByAttributes__xdr *r;
272 	const struct afs_uuid *u = (const struct afs_uuid *)uuid;
273 	struct afs_call *call;
274 	struct afs_net *net = vc->cell->net;
275 	__be32 *bp;
276 	int i;
277 
278 	_enter("");
279 
280 	call = afs_alloc_flat_call(net, &afs_RXVLGetAddrsU,
281 				   sizeof(__be32) + sizeof(struct afs_ListAddrByAttributes__xdr),
282 				   sizeof(struct afs_uuid__xdr) + 3 * sizeof(__be32));
283 	if (!call)
284 		return ERR_PTR(-ENOMEM);
285 
286 	call->key = vc->key;
287 	call->ret_alist = NULL;
288 	call->max_lifespan = AFS_VL_MAX_LIFESPAN;
289 
290 	/* Marshall the parameters */
291 	bp = call->request;
292 	*bp++ = htonl(VLGETADDRSU);
293 	r = (struct afs_ListAddrByAttributes__xdr *)bp;
294 	r->Mask		= htonl(AFS_VLADDR_UUID);
295 	r->ipaddr	= 0;
296 	r->index	= 0;
297 	r->spare	= 0;
298 	r->uuid.time_low			= u->time_low;
299 	r->uuid.time_mid			= htonl(ntohs(u->time_mid));
300 	r->uuid.time_hi_and_version		= htonl(ntohs(u->time_hi_and_version));
301 	r->uuid.clock_seq_hi_and_reserved 	= htonl(u->clock_seq_hi_and_reserved);
302 	r->uuid.clock_seq_low			= htonl(u->clock_seq_low);
303 	for (i = 0; i < 6; i++)
304 		r->uuid.node[i] = htonl(u->node[i]);
305 
306 	trace_afs_make_vl_call(call);
307 	afs_make_call(&vc->ac, call, GFP_KERNEL);
308 	return (struct afs_addr_list *)afs_wait_for_call_to_complete(call, &vc->ac);
309 }
310 
311 /*
312  * Deliver reply data to an VL.GetCapabilities operation.
313  */
314 static int afs_deliver_vl_get_capabilities(struct afs_call *call)
315 {
316 	u32 count;
317 	int ret;
318 
319 	_enter("{%u,%zu/%u}",
320 	       call->unmarshall, iov_iter_count(call->iter), call->count);
321 
322 	switch (call->unmarshall) {
323 	case 0:
324 		afs_extract_to_tmp(call);
325 		call->unmarshall++;
326 
327 		fallthrough;	/* and extract the capabilities word count */
328 	case 1:
329 		ret = afs_extract_data(call, true);
330 		if (ret < 0)
331 			return ret;
332 
333 		count = ntohl(call->tmp);
334 		call->count = count;
335 		call->count2 = count;
336 
337 		call->unmarshall++;
338 		afs_extract_discard(call, count * sizeof(__be32));
339 
340 		fallthrough;	/* and extract capabilities words */
341 	case 2:
342 		ret = afs_extract_data(call, false);
343 		if (ret < 0)
344 			return ret;
345 
346 		/* TODO: Examine capabilities */
347 
348 		call->unmarshall++;
349 		break;
350 	}
351 
352 	_leave(" = 0 [done]");
353 	return 0;
354 }
355 
356 static void afs_destroy_vl_get_capabilities(struct afs_call *call)
357 {
358 	afs_put_vlserver(call->net, call->vlserver);
359 	afs_flat_call_destructor(call);
360 }
361 
362 /*
363  * VL.GetCapabilities operation type
364  */
365 static const struct afs_call_type afs_RXVLGetCapabilities = {
366 	.name		= "VL.GetCapabilities",
367 	.op		= afs_VL_GetCapabilities,
368 	.deliver	= afs_deliver_vl_get_capabilities,
369 	.done		= afs_vlserver_probe_result,
370 	.destructor	= afs_destroy_vl_get_capabilities,
371 };
372 
373 /*
374  * Probe a volume server for the capabilities that it supports.  This can
375  * return up to 196 words.
376  *
377  * We use this to probe for service upgrade to determine what the server at the
378  * other end supports.
379  */
380 struct afs_call *afs_vl_get_capabilities(struct afs_net *net,
381 					 struct afs_addr_cursor *ac,
382 					 struct key *key,
383 					 struct afs_vlserver *server,
384 					 unsigned int server_index)
385 {
386 	struct afs_call *call;
387 	__be32 *bp;
388 
389 	_enter("");
390 
391 	call = afs_alloc_flat_call(net, &afs_RXVLGetCapabilities, 1 * 4, 16 * 4);
392 	if (!call)
393 		return ERR_PTR(-ENOMEM);
394 
395 	call->key = key;
396 	call->vlserver = afs_get_vlserver(server);
397 	call->server_index = server_index;
398 	call->upgrade = true;
399 	call->async = true;
400 	call->max_lifespan = AFS_PROBE_MAX_LIFESPAN;
401 
402 	/* marshall the parameters */
403 	bp = call->request;
404 	*bp++ = htonl(VLGETCAPABILITIES);
405 
406 	/* Can't take a ref on server */
407 	trace_afs_make_vl_call(call);
408 	afs_make_call(ac, call, GFP_KERNEL);
409 	return call;
410 }
411 
412 /*
413  * Deliver reply data to a YFSVL.GetEndpoints call.
414  *
415  *	GetEndpoints(IN yfsServerAttributes *attr,
416  *		     OUT opr_uuid *uuid,
417  *		     OUT afs_int32 *uniquifier,
418  *		     OUT endpoints *fsEndpoints,
419  *		     OUT endpoints *volEndpoints)
420  */
421 static int afs_deliver_yfsvl_get_endpoints(struct afs_call *call)
422 {
423 	struct afs_addr_list *alist;
424 	__be32 *bp;
425 	u32 uniquifier, size;
426 	int ret;
427 
428 	_enter("{%u,%zu,%u}",
429 	       call->unmarshall, iov_iter_count(call->iter), call->count2);
430 
431 	switch (call->unmarshall) {
432 	case 0:
433 		afs_extract_to_buf(call, sizeof(uuid_t) + 3 * sizeof(__be32));
434 		call->unmarshall = 1;
435 
436 		/* Extract the returned uuid, uniquifier, fsEndpoints count and
437 		 * either the first fsEndpoint type or the volEndpoints
438 		 * count if there are no fsEndpoints. */
439 		fallthrough;
440 	case 1:
441 		ret = afs_extract_data(call, true);
442 		if (ret < 0)
443 			return ret;
444 
445 		bp = call->buffer + sizeof(uuid_t);
446 		uniquifier	= ntohl(*bp++);
447 		call->count	= ntohl(*bp++);
448 		call->count2	= ntohl(*bp); /* Type or next count */
449 
450 		if (call->count > YFS_MAXENDPOINTS)
451 			return afs_protocol_error(call, afs_eproto_yvl_fsendpt_num);
452 
453 		alist = afs_alloc_addrlist(call->count, FS_SERVICE, AFS_FS_PORT);
454 		if (!alist)
455 			return -ENOMEM;
456 		alist->version = uniquifier;
457 		call->ret_alist = alist;
458 
459 		if (call->count == 0)
460 			goto extract_volendpoints;
461 
462 	next_fsendpoint:
463 		switch (call->count2) {
464 		case YFS_ENDPOINT_IPV4:
465 			size = sizeof(__be32) * (1 + 1 + 1);
466 			break;
467 		case YFS_ENDPOINT_IPV6:
468 			size = sizeof(__be32) * (1 + 4 + 1);
469 			break;
470 		default:
471 			return afs_protocol_error(call, afs_eproto_yvl_fsendpt_type);
472 		}
473 
474 		size += sizeof(__be32);
475 		afs_extract_to_buf(call, size);
476 		call->unmarshall = 2;
477 
478 		fallthrough;	/* and extract fsEndpoints[] entries */
479 	case 2:
480 		ret = afs_extract_data(call, true);
481 		if (ret < 0)
482 			return ret;
483 
484 		alist = call->ret_alist;
485 		bp = call->buffer;
486 		switch (call->count2) {
487 		case YFS_ENDPOINT_IPV4:
488 			if (ntohl(bp[0]) != sizeof(__be32) * 2)
489 				return afs_protocol_error(
490 					call, afs_eproto_yvl_fsendpt4_len);
491 			afs_merge_fs_addr4(alist, bp[1], ntohl(bp[2]));
492 			bp += 3;
493 			break;
494 		case YFS_ENDPOINT_IPV6:
495 			if (ntohl(bp[0]) != sizeof(__be32) * 5)
496 				return afs_protocol_error(
497 					call, afs_eproto_yvl_fsendpt6_len);
498 			afs_merge_fs_addr6(alist, bp + 1, ntohl(bp[5]));
499 			bp += 6;
500 			break;
501 		default:
502 			return afs_protocol_error(call, afs_eproto_yvl_fsendpt_type);
503 		}
504 
505 		/* Got either the type of the next entry or the count of
506 		 * volEndpoints if no more fsEndpoints.
507 		 */
508 		call->count2 = ntohl(*bp++);
509 
510 		call->count--;
511 		if (call->count > 0)
512 			goto next_fsendpoint;
513 
514 	extract_volendpoints:
515 		/* Extract the list of volEndpoints. */
516 		call->count = call->count2;
517 		if (!call->count)
518 			goto end;
519 		if (call->count > YFS_MAXENDPOINTS)
520 			return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
521 
522 		afs_extract_to_buf(call, 1 * sizeof(__be32));
523 		call->unmarshall = 3;
524 
525 		/* Extract the type of volEndpoints[0].  Normally we would
526 		 * extract the type of the next endpoint when we extract the
527 		 * data of the current one, but this is the first...
528 		 */
529 		fallthrough;
530 	case 3:
531 		ret = afs_extract_data(call, true);
532 		if (ret < 0)
533 			return ret;
534 
535 		bp = call->buffer;
536 
537 	next_volendpoint:
538 		call->count2 = ntohl(*bp++);
539 		switch (call->count2) {
540 		case YFS_ENDPOINT_IPV4:
541 			size = sizeof(__be32) * (1 + 1 + 1);
542 			break;
543 		case YFS_ENDPOINT_IPV6:
544 			size = sizeof(__be32) * (1 + 4 + 1);
545 			break;
546 		default:
547 			return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
548 		}
549 
550 		if (call->count > 1)
551 			size += sizeof(__be32); /* Get next type too */
552 		afs_extract_to_buf(call, size);
553 		call->unmarshall = 4;
554 
555 		fallthrough;	/* and extract volEndpoints[] entries */
556 	case 4:
557 		ret = afs_extract_data(call, true);
558 		if (ret < 0)
559 			return ret;
560 
561 		bp = call->buffer;
562 		switch (call->count2) {
563 		case YFS_ENDPOINT_IPV4:
564 			if (ntohl(bp[0]) != sizeof(__be32) * 2)
565 				return afs_protocol_error(
566 					call, afs_eproto_yvl_vlendpt4_len);
567 			bp += 3;
568 			break;
569 		case YFS_ENDPOINT_IPV6:
570 			if (ntohl(bp[0]) != sizeof(__be32) * 5)
571 				return afs_protocol_error(
572 					call, afs_eproto_yvl_vlendpt6_len);
573 			bp += 6;
574 			break;
575 		default:
576 			return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
577 		}
578 
579 		/* Got either the type of the next entry or the count of
580 		 * volEndpoints if no more fsEndpoints.
581 		 */
582 		call->count--;
583 		if (call->count > 0)
584 			goto next_volendpoint;
585 
586 	end:
587 		afs_extract_discard(call, 0);
588 		call->unmarshall = 5;
589 
590 		fallthrough;	/* Done */
591 	case 5:
592 		ret = afs_extract_data(call, false);
593 		if (ret < 0)
594 			return ret;
595 		call->unmarshall = 6;
596 		fallthrough;
597 
598 	case 6:
599 		break;
600 	}
601 
602 	_leave(" = 0 [done]");
603 	return 0;
604 }
605 
606 /*
607  * YFSVL.GetEndpoints operation type.
608  */
609 static const struct afs_call_type afs_YFSVLGetEndpoints = {
610 	.name		= "YFSVL.GetEndpoints",
611 	.op		= afs_YFSVL_GetEndpoints,
612 	.deliver	= afs_deliver_yfsvl_get_endpoints,
613 	.destructor	= afs_vl_get_addrs_u_destructor,
614 };
615 
616 /*
617  * Dispatch an operation to get the addresses for a server, where the server is
618  * nominated by UUID.
619  */
620 struct afs_addr_list *afs_yfsvl_get_endpoints(struct afs_vl_cursor *vc,
621 					      const uuid_t *uuid)
622 {
623 	struct afs_call *call;
624 	struct afs_net *net = vc->cell->net;
625 	__be32 *bp;
626 
627 	_enter("");
628 
629 	call = afs_alloc_flat_call(net, &afs_YFSVLGetEndpoints,
630 				   sizeof(__be32) * 2 + sizeof(*uuid),
631 				   sizeof(struct in6_addr) + sizeof(__be32) * 3);
632 	if (!call)
633 		return ERR_PTR(-ENOMEM);
634 
635 	call->key = vc->key;
636 	call->ret_alist = NULL;
637 	call->max_lifespan = AFS_VL_MAX_LIFESPAN;
638 
639 	/* Marshall the parameters */
640 	bp = call->request;
641 	*bp++ = htonl(YVLGETENDPOINTS);
642 	*bp++ = htonl(YFS_SERVER_UUID);
643 	memcpy(bp, uuid, sizeof(*uuid)); /* Type opr_uuid */
644 
645 	trace_afs_make_vl_call(call);
646 	afs_make_call(&vc->ac, call, GFP_KERNEL);
647 	return (struct afs_addr_list *)afs_wait_for_call_to_complete(call, &vc->ac);
648 }
649 
650 /*
651  * Deliver reply data to a YFSVL.GetCellName operation.
652  */
653 static int afs_deliver_yfsvl_get_cell_name(struct afs_call *call)
654 {
655 	char *cell_name;
656 	u32 namesz, paddedsz;
657 	int ret;
658 
659 	_enter("{%u,%zu/%u}",
660 	       call->unmarshall, iov_iter_count(call->iter), call->count);
661 
662 	switch (call->unmarshall) {
663 	case 0:
664 		afs_extract_to_tmp(call);
665 		call->unmarshall++;
666 
667 		fallthrough;	/* and extract the cell name length */
668 	case 1:
669 		ret = afs_extract_data(call, true);
670 		if (ret < 0)
671 			return ret;
672 
673 		namesz = ntohl(call->tmp);
674 		if (namesz > AFS_MAXCELLNAME)
675 			return afs_protocol_error(call, afs_eproto_cellname_len);
676 		paddedsz = (namesz + 3) & ~3;
677 		call->count = namesz;
678 		call->count2 = paddedsz - namesz;
679 
680 		cell_name = kmalloc(namesz + 1, GFP_KERNEL);
681 		if (!cell_name)
682 			return -ENOMEM;
683 		cell_name[namesz] = 0;
684 		call->ret_str = cell_name;
685 
686 		afs_extract_begin(call, cell_name, namesz);
687 		call->unmarshall++;
688 
689 		fallthrough;	/* and extract cell name */
690 	case 2:
691 		ret = afs_extract_data(call, true);
692 		if (ret < 0)
693 			return ret;
694 
695 		afs_extract_discard(call, call->count2);
696 		call->unmarshall++;
697 
698 		fallthrough;	/* and extract padding */
699 	case 3:
700 		ret = afs_extract_data(call, false);
701 		if (ret < 0)
702 			return ret;
703 
704 		call->unmarshall++;
705 		break;
706 	}
707 
708 	_leave(" = 0 [done]");
709 	return 0;
710 }
711 
712 static void afs_destroy_yfsvl_get_cell_name(struct afs_call *call)
713 {
714 	kfree(call->ret_str);
715 	afs_flat_call_destructor(call);
716 }
717 
718 /*
719  * VL.GetCapabilities operation type
720  */
721 static const struct afs_call_type afs_YFSVLGetCellName = {
722 	.name		= "YFSVL.GetCellName",
723 	.op		= afs_YFSVL_GetCellName,
724 	.deliver	= afs_deliver_yfsvl_get_cell_name,
725 	.destructor	= afs_destroy_yfsvl_get_cell_name,
726 };
727 
728 /*
729  * Probe a volume server for the capabilities that it supports.  This can
730  * return up to 196 words.
731  *
732  * We use this to probe for service upgrade to determine what the server at the
733  * other end supports.
734  */
735 char *afs_yfsvl_get_cell_name(struct afs_vl_cursor *vc)
736 {
737 	struct afs_call *call;
738 	struct afs_net *net = vc->cell->net;
739 	__be32 *bp;
740 
741 	_enter("");
742 
743 	call = afs_alloc_flat_call(net, &afs_YFSVLGetCellName, 1 * 4, 0);
744 	if (!call)
745 		return ERR_PTR(-ENOMEM);
746 
747 	call->key = vc->key;
748 	call->ret_str = NULL;
749 	call->max_lifespan = AFS_VL_MAX_LIFESPAN;
750 
751 	/* marshall the parameters */
752 	bp = call->request;
753 	*bp++ = htonl(YVLGETCELLNAME);
754 
755 	/* Can't take a ref on server */
756 	trace_afs_make_vl_call(call);
757 	afs_make_call(&vc->ac, call, GFP_KERNEL);
758 	return (char *)afs_wait_for_call_to_complete(call, &vc->ac);
759 }
760