xref: /openbmc/linux/fs/afs/super.c (revision bdeeed09)
1 /* AFS superblock handling
2  *
3  * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
4  *
5  * This software may be freely redistributed under the terms of the
6  * GNU General Public License.
7  *
8  * You should have received a copy of the GNU General Public License
9  * along with this program; if not, write to the Free Software
10  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
11  *
12  * Authors: David Howells <dhowells@redhat.com>
13  *          David Woodhouse <dwmw2@infradead.org>
14  *
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mount.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/parser.h>
25 #include <linux/statfs.h>
26 #include <linux/sched.h>
27 #include <linux/nsproxy.h>
28 #include <linux/magic.h>
29 #include <net/net_namespace.h>
30 #include "internal.h"
31 
32 static void afs_i_init_once(void *foo);
33 static struct dentry *afs_mount(struct file_system_type *fs_type,
34 		      int flags, const char *dev_name, void *data);
35 static void afs_kill_super(struct super_block *sb);
36 static struct inode *afs_alloc_inode(struct super_block *sb);
37 static void afs_destroy_inode(struct inode *inode);
38 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
39 static int afs_show_devname(struct seq_file *m, struct dentry *root);
40 static int afs_show_options(struct seq_file *m, struct dentry *root);
41 
42 struct file_system_type afs_fs_type = {
43 	.owner		= THIS_MODULE,
44 	.name		= "afs",
45 	.mount		= afs_mount,
46 	.kill_sb	= afs_kill_super,
47 	.fs_flags	= 0,
48 };
49 MODULE_ALIAS_FS("afs");
50 
51 static const struct super_operations afs_super_ops = {
52 	.statfs		= afs_statfs,
53 	.alloc_inode	= afs_alloc_inode,
54 	.drop_inode	= afs_drop_inode,
55 	.destroy_inode	= afs_destroy_inode,
56 	.evict_inode	= afs_evict_inode,
57 	.show_devname	= afs_show_devname,
58 	.show_options	= afs_show_options,
59 };
60 
61 static struct kmem_cache *afs_inode_cachep;
62 static atomic_t afs_count_active_inodes;
63 
64 enum {
65 	afs_no_opt,
66 	afs_opt_cell,
67 	afs_opt_dyn,
68 	afs_opt_rwpath,
69 	afs_opt_vol,
70 	afs_opt_autocell,
71 };
72 
73 static const match_table_t afs_options_list = {
74 	{ afs_opt_cell,		"cell=%s"	},
75 	{ afs_opt_dyn,		"dyn"		},
76 	{ afs_opt_rwpath,	"rwpath"	},
77 	{ afs_opt_vol,		"vol=%s"	},
78 	{ afs_opt_autocell,	"autocell"	},
79 	{ afs_no_opt,		NULL		},
80 };
81 
82 /*
83  * initialise the filesystem
84  */
85 int __init afs_fs_init(void)
86 {
87 	int ret;
88 
89 	_enter("");
90 
91 	/* create ourselves an inode cache */
92 	atomic_set(&afs_count_active_inodes, 0);
93 
94 	ret = -ENOMEM;
95 	afs_inode_cachep = kmem_cache_create("afs_inode_cache",
96 					     sizeof(struct afs_vnode),
97 					     0,
98 					     SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT,
99 					     afs_i_init_once);
100 	if (!afs_inode_cachep) {
101 		printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
102 		return ret;
103 	}
104 
105 	/* now export our filesystem to lesser mortals */
106 	ret = register_filesystem(&afs_fs_type);
107 	if (ret < 0) {
108 		kmem_cache_destroy(afs_inode_cachep);
109 		_leave(" = %d", ret);
110 		return ret;
111 	}
112 
113 	_leave(" = 0");
114 	return 0;
115 }
116 
117 /*
118  * clean up the filesystem
119  */
120 void __exit afs_fs_exit(void)
121 {
122 	_enter("");
123 
124 	afs_mntpt_kill_timer();
125 	unregister_filesystem(&afs_fs_type);
126 
127 	if (atomic_read(&afs_count_active_inodes) != 0) {
128 		printk("kAFS: %d active inode objects still present\n",
129 		       atomic_read(&afs_count_active_inodes));
130 		BUG();
131 	}
132 
133 	/*
134 	 * Make sure all delayed rcu free inodes are flushed before we
135 	 * destroy cache.
136 	 */
137 	rcu_barrier();
138 	kmem_cache_destroy(afs_inode_cachep);
139 	_leave("");
140 }
141 
142 /*
143  * Display the mount device name in /proc/mounts.
144  */
145 static int afs_show_devname(struct seq_file *m, struct dentry *root)
146 {
147 	struct afs_super_info *as = AFS_FS_S(root->d_sb);
148 	struct afs_volume *volume = as->volume;
149 	struct afs_cell *cell = as->cell;
150 	const char *suf = "";
151 	char pref = '%';
152 
153 	if (as->dyn_root) {
154 		seq_puts(m, "none");
155 		return 0;
156 	}
157 
158 	switch (volume->type) {
159 	case AFSVL_RWVOL:
160 		break;
161 	case AFSVL_ROVOL:
162 		pref = '#';
163 		if (volume->type_force)
164 			suf = ".readonly";
165 		break;
166 	case AFSVL_BACKVOL:
167 		pref = '#';
168 		suf = ".backup";
169 		break;
170 	}
171 
172 	seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf);
173 	return 0;
174 }
175 
176 /*
177  * Display the mount options in /proc/mounts.
178  */
179 static int afs_show_options(struct seq_file *m, struct dentry *root)
180 {
181 	struct afs_super_info *as = AFS_FS_S(root->d_sb);
182 
183 	if (as->dyn_root)
184 		seq_puts(m, ",dyn");
185 	if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags))
186 		seq_puts(m, ",autocell");
187 	return 0;
188 }
189 
190 /*
191  * parse the mount options
192  * - this function has been shamelessly adapted from the ext3 fs which
193  *   shamelessly adapted it from the msdos fs
194  */
195 static int afs_parse_options(struct afs_mount_params *params,
196 			     char *options, const char **devname)
197 {
198 	struct afs_cell *cell;
199 	substring_t args[MAX_OPT_ARGS];
200 	char *p;
201 	int token;
202 
203 	_enter("%s", options);
204 
205 	options[PAGE_SIZE - 1] = 0;
206 
207 	while ((p = strsep(&options, ","))) {
208 		if (!*p)
209 			continue;
210 
211 		token = match_token(p, afs_options_list, args);
212 		switch (token) {
213 		case afs_opt_cell:
214 			rcu_read_lock();
215 			cell = afs_lookup_cell_rcu(params->net,
216 						   args[0].from,
217 						   args[0].to - args[0].from);
218 			rcu_read_unlock();
219 			if (IS_ERR(cell))
220 				return PTR_ERR(cell);
221 			afs_put_cell(params->net, params->cell);
222 			params->cell = cell;
223 			break;
224 
225 		case afs_opt_rwpath:
226 			params->rwpath = true;
227 			break;
228 
229 		case afs_opt_vol:
230 			*devname = args[0].from;
231 			break;
232 
233 		case afs_opt_autocell:
234 			params->autocell = true;
235 			break;
236 
237 		case afs_opt_dyn:
238 			params->dyn_root = true;
239 			break;
240 
241 		default:
242 			printk(KERN_ERR "kAFS:"
243 			       " Unknown or invalid mount option: '%s'\n", p);
244 			return -EINVAL;
245 		}
246 	}
247 
248 	_leave(" = 0");
249 	return 0;
250 }
251 
252 /*
253  * parse a device name to get cell name, volume name, volume type and R/W
254  * selector
255  * - this can be one of the following:
256  *	"%[cell:]volume[.]"		R/W volume
257  *	"#[cell:]volume[.]"		R/O or R/W volume (rwpath=0),
258  *					 or R/W (rwpath=1) volume
259  *	"%[cell:]volume.readonly"	R/O volume
260  *	"#[cell:]volume.readonly"	R/O volume
261  *	"%[cell:]volume.backup"		Backup volume
262  *	"#[cell:]volume.backup"		Backup volume
263  */
264 static int afs_parse_device_name(struct afs_mount_params *params,
265 				 const char *name)
266 {
267 	struct afs_cell *cell;
268 	const char *cellname, *suffix;
269 	int cellnamesz;
270 
271 	_enter(",%s", name);
272 
273 	if (!name) {
274 		printk(KERN_ERR "kAFS: no volume name specified\n");
275 		return -EINVAL;
276 	}
277 
278 	if ((name[0] != '%' && name[0] != '#') || !name[1]) {
279 		printk(KERN_ERR "kAFS: unparsable volume name\n");
280 		return -EINVAL;
281 	}
282 
283 	/* determine the type of volume we're looking for */
284 	params->type = AFSVL_ROVOL;
285 	params->force = false;
286 	if (params->rwpath || name[0] == '%') {
287 		params->type = AFSVL_RWVOL;
288 		params->force = true;
289 	}
290 	name++;
291 
292 	/* split the cell name out if there is one */
293 	params->volname = strchr(name, ':');
294 	if (params->volname) {
295 		cellname = name;
296 		cellnamesz = params->volname - name;
297 		params->volname++;
298 	} else {
299 		params->volname = name;
300 		cellname = NULL;
301 		cellnamesz = 0;
302 	}
303 
304 	/* the volume type is further affected by a possible suffix */
305 	suffix = strrchr(params->volname, '.');
306 	if (suffix) {
307 		if (strcmp(suffix, ".readonly") == 0) {
308 			params->type = AFSVL_ROVOL;
309 			params->force = true;
310 		} else if (strcmp(suffix, ".backup") == 0) {
311 			params->type = AFSVL_BACKVOL;
312 			params->force = true;
313 		} else if (suffix[1] == 0) {
314 		} else {
315 			suffix = NULL;
316 		}
317 	}
318 
319 	params->volnamesz = suffix ?
320 		suffix - params->volname : strlen(params->volname);
321 
322 	_debug("cell %*.*s [%p]",
323 	       cellnamesz, cellnamesz, cellname ?: "", params->cell);
324 
325 	/* lookup the cell record */
326 	if (cellname || !params->cell) {
327 		cell = afs_lookup_cell(params->net, cellname, cellnamesz,
328 				       NULL, false);
329 		if (IS_ERR(cell)) {
330 			printk(KERN_ERR "kAFS: unable to lookup cell '%*.*s'\n",
331 			       cellnamesz, cellnamesz, cellname ?: "");
332 			return PTR_ERR(cell);
333 		}
334 		afs_put_cell(params->net, params->cell);
335 		params->cell = cell;
336 	}
337 
338 	_debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
339 	       params->cell->name, params->cell,
340 	       params->volnamesz, params->volnamesz, params->volname,
341 	       suffix ?: "-", params->type, params->force ? " FORCE" : "");
342 
343 	return 0;
344 }
345 
346 /*
347  * check a superblock to see if it's the one we're looking for
348  */
349 static int afs_test_super(struct super_block *sb, void *data)
350 {
351 	struct afs_super_info *as1 = data;
352 	struct afs_super_info *as = AFS_FS_S(sb);
353 
354 	return (as->net == as1->net &&
355 		as->volume &&
356 		as->volume->vid == as1->volume->vid);
357 }
358 
359 static int afs_dynroot_test_super(struct super_block *sb, void *data)
360 {
361 	return false;
362 }
363 
364 static int afs_set_super(struct super_block *sb, void *data)
365 {
366 	struct afs_super_info *as = data;
367 
368 	sb->s_fs_info = as;
369 	return set_anon_super(sb, NULL);
370 }
371 
372 /*
373  * fill in the superblock
374  */
375 static int afs_fill_super(struct super_block *sb,
376 			  struct afs_mount_params *params)
377 {
378 	struct afs_super_info *as = AFS_FS_S(sb);
379 	struct afs_fid fid;
380 	struct inode *inode = NULL;
381 	int ret;
382 
383 	_enter("");
384 
385 	/* fill in the superblock */
386 	sb->s_blocksize		= PAGE_SIZE;
387 	sb->s_blocksize_bits	= PAGE_SHIFT;
388 	sb->s_magic		= AFS_FS_MAGIC;
389 	sb->s_op		= &afs_super_ops;
390 	if (!as->dyn_root)
391 		sb->s_xattr	= afs_xattr_handlers;
392 	ret = super_setup_bdi(sb);
393 	if (ret)
394 		return ret;
395 	sb->s_bdi->ra_pages	= VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
396 
397 	/* allocate the root inode and dentry */
398 	if (as->dyn_root) {
399 		inode = afs_iget_pseudo_dir(sb, true);
400 		sb->s_flags	|= SB_RDONLY;
401 	} else {
402 		sprintf(sb->s_id, "%u", as->volume->vid);
403 		afs_activate_volume(as->volume);
404 		fid.vid		= as->volume->vid;
405 		fid.vnode	= 1;
406 		fid.unique	= 1;
407 		inode = afs_iget(sb, params->key, &fid, NULL, NULL, NULL);
408 	}
409 
410 	if (IS_ERR(inode))
411 		return PTR_ERR(inode);
412 
413 	if (params->autocell || params->dyn_root)
414 		set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
415 
416 	ret = -ENOMEM;
417 	sb->s_root = d_make_root(inode);
418 	if (!sb->s_root)
419 		goto error;
420 
421 	if (params->dyn_root)
422 		sb->s_d_op = &afs_dynroot_dentry_operations;
423 	else
424 		sb->s_d_op = &afs_fs_dentry_operations;
425 
426 	_leave(" = 0");
427 	return 0;
428 
429 error:
430 	_leave(" = %d", ret);
431 	return ret;
432 }
433 
434 static struct afs_super_info *afs_alloc_sbi(struct afs_mount_params *params)
435 {
436 	struct afs_super_info *as;
437 
438 	as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
439 	if (as) {
440 		as->net = afs_get_net(params->net);
441 		if (params->dyn_root)
442 			as->dyn_root = true;
443 		else
444 			as->cell = afs_get_cell(params->cell);
445 	}
446 	return as;
447 }
448 
449 static void afs_destroy_sbi(struct afs_super_info *as)
450 {
451 	if (as) {
452 		afs_put_volume(as->cell, as->volume);
453 		afs_put_cell(as->net, as->cell);
454 		afs_put_net(as->net);
455 		kfree(as);
456 	}
457 }
458 
459 /*
460  * get an AFS superblock
461  */
462 static struct dentry *afs_mount(struct file_system_type *fs_type,
463 				int flags, const char *dev_name, void *options)
464 {
465 	struct afs_mount_params params;
466 	struct super_block *sb;
467 	struct afs_volume *candidate;
468 	struct key *key;
469 	struct afs_super_info *as;
470 	int ret;
471 
472 	_enter(",,%s,%p", dev_name, options);
473 
474 	memset(&params, 0, sizeof(params));
475 	params.net = &__afs_net;
476 
477 	ret = -EINVAL;
478 	if (current->nsproxy->net_ns != &init_net)
479 		goto error;
480 
481 	/* parse the options and device name */
482 	if (options) {
483 		ret = afs_parse_options(&params, options, &dev_name);
484 		if (ret < 0)
485 			goto error;
486 	}
487 
488 	if (!params.dyn_root) {
489 		ret = afs_parse_device_name(&params, dev_name);
490 		if (ret < 0)
491 			goto error;
492 
493 		/* try and do the mount securely */
494 		key = afs_request_key(params.cell);
495 		if (IS_ERR(key)) {
496 			_leave(" = %ld [key]", PTR_ERR(key));
497 			ret = PTR_ERR(key);
498 			goto error;
499 		}
500 		params.key = key;
501 	}
502 
503 	/* allocate a superblock info record */
504 	ret = -ENOMEM;
505 	as = afs_alloc_sbi(&params);
506 	if (!as)
507 		goto error_key;
508 
509 	if (!params.dyn_root) {
510 		/* Assume we're going to need a volume record; at the very
511 		 * least we can use it to update the volume record if we have
512 		 * one already.  This checks that the volume exists within the
513 		 * cell.
514 		 */
515 		candidate = afs_create_volume(&params);
516 		if (IS_ERR(candidate)) {
517 			ret = PTR_ERR(candidate);
518 			goto error_as;
519 		}
520 
521 		as->volume = candidate;
522 	}
523 
524 	/* allocate a deviceless superblock */
525 	sb = sget(fs_type,
526 		  as->dyn_root ? afs_dynroot_test_super : afs_test_super,
527 		  afs_set_super, flags, as);
528 	if (IS_ERR(sb)) {
529 		ret = PTR_ERR(sb);
530 		goto error_as;
531 	}
532 
533 	if (!sb->s_root) {
534 		/* initial superblock/root creation */
535 		_debug("create");
536 		ret = afs_fill_super(sb, &params);
537 		if (ret < 0)
538 			goto error_sb;
539 		as = NULL;
540 		sb->s_flags |= SB_ACTIVE;
541 	} else {
542 		_debug("reuse");
543 		ASSERTCMP(sb->s_flags, &, SB_ACTIVE);
544 		afs_destroy_sbi(as);
545 		as = NULL;
546 	}
547 
548 	afs_put_cell(params.net, params.cell);
549 	key_put(params.key);
550 	_leave(" = 0 [%p]", sb);
551 	return dget(sb->s_root);
552 
553 error_sb:
554 	deactivate_locked_super(sb);
555 	goto error_key;
556 error_as:
557 	afs_destroy_sbi(as);
558 error_key:
559 	key_put(params.key);
560 error:
561 	afs_put_cell(params.net, params.cell);
562 	_leave(" = %d", ret);
563 	return ERR_PTR(ret);
564 }
565 
566 static void afs_kill_super(struct super_block *sb)
567 {
568 	struct afs_super_info *as = AFS_FS_S(sb);
569 
570 	/* Clear the callback interests (which will do ilookup5) before
571 	 * deactivating the superblock.
572 	 */
573 	if (as->volume)
574 		afs_clear_callback_interests(as->net, as->volume->servers);
575 	kill_anon_super(sb);
576 	if (as->volume)
577 		afs_deactivate_volume(as->volume);
578 	afs_destroy_sbi(as);
579 }
580 
581 /*
582  * Initialise an inode cache slab element prior to any use.  Note that
583  * afs_alloc_inode() *must* reset anything that could incorrectly leak from one
584  * inode to another.
585  */
586 static void afs_i_init_once(void *_vnode)
587 {
588 	struct afs_vnode *vnode = _vnode;
589 
590 	memset(vnode, 0, sizeof(*vnode));
591 	inode_init_once(&vnode->vfs_inode);
592 	mutex_init(&vnode->io_lock);
593 	mutex_init(&vnode->validate_lock);
594 	spin_lock_init(&vnode->wb_lock);
595 	spin_lock_init(&vnode->lock);
596 	INIT_LIST_HEAD(&vnode->wb_keys);
597 	INIT_LIST_HEAD(&vnode->pending_locks);
598 	INIT_LIST_HEAD(&vnode->granted_locks);
599 	INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
600 	seqlock_init(&vnode->cb_lock);
601 }
602 
603 /*
604  * allocate an AFS inode struct from our slab cache
605  */
606 static struct inode *afs_alloc_inode(struct super_block *sb)
607 {
608 	struct afs_vnode *vnode;
609 
610 	vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
611 	if (!vnode)
612 		return NULL;
613 
614 	atomic_inc(&afs_count_active_inodes);
615 
616 	/* Reset anything that shouldn't leak from one inode to the next. */
617 	memset(&vnode->fid, 0, sizeof(vnode->fid));
618 	memset(&vnode->status, 0, sizeof(vnode->status));
619 
620 	vnode->volume		= NULL;
621 	vnode->lock_key		= NULL;
622 	vnode->permit_cache	= NULL;
623 	vnode->cb_interest	= NULL;
624 #ifdef CONFIG_AFS_FSCACHE
625 	vnode->cache		= NULL;
626 #endif
627 
628 	vnode->flags		= 1 << AFS_VNODE_UNSET;
629 	vnode->cb_type		= 0;
630 	vnode->lock_state	= AFS_VNODE_LOCK_NONE;
631 
632 	_leave(" = %p", &vnode->vfs_inode);
633 	return &vnode->vfs_inode;
634 }
635 
636 static void afs_i_callback(struct rcu_head *head)
637 {
638 	struct inode *inode = container_of(head, struct inode, i_rcu);
639 	struct afs_vnode *vnode = AFS_FS_I(inode);
640 	kmem_cache_free(afs_inode_cachep, vnode);
641 }
642 
643 /*
644  * destroy an AFS inode struct
645  */
646 static void afs_destroy_inode(struct inode *inode)
647 {
648 	struct afs_vnode *vnode = AFS_FS_I(inode);
649 
650 	_enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
651 
652 	_debug("DESTROY INODE %p", inode);
653 
654 	ASSERTCMP(vnode->cb_interest, ==, NULL);
655 
656 	call_rcu(&inode->i_rcu, afs_i_callback);
657 	atomic_dec(&afs_count_active_inodes);
658 }
659 
660 /*
661  * return information about an AFS volume
662  */
663 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
664 {
665 	struct afs_super_info *as = AFS_FS_S(dentry->d_sb);
666 	struct afs_fs_cursor fc;
667 	struct afs_volume_status vs;
668 	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
669 	struct key *key;
670 	int ret;
671 
672 	buf->f_type	= dentry->d_sb->s_magic;
673 	buf->f_bsize	= AFS_BLOCK_SIZE;
674 	buf->f_namelen	= AFSNAMEMAX - 1;
675 
676 	if (as->dyn_root) {
677 		buf->f_blocks	= 1;
678 		buf->f_bavail	= 0;
679 		buf->f_bfree	= 0;
680 		return 0;
681 	}
682 
683 	key = afs_request_key(vnode->volume->cell);
684 	if (IS_ERR(key))
685 		return PTR_ERR(key);
686 
687 	ret = -ERESTARTSYS;
688 	if (afs_begin_vnode_operation(&fc, vnode, key)) {
689 		fc.flags |= AFS_FS_CURSOR_NO_VSLEEP;
690 		while (afs_select_fileserver(&fc)) {
691 			fc.cb_break = vnode->cb_break + vnode->cb_s_break;
692 			afs_fs_get_volume_status(&fc, &vs);
693 		}
694 
695 		afs_check_for_remote_deletion(&fc, fc.vnode);
696 		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
697 		ret = afs_end_vnode_operation(&fc);
698 	}
699 
700 	key_put(key);
701 
702 	if (ret == 0) {
703 		if (vs.max_quota == 0)
704 			buf->f_blocks = vs.part_max_blocks;
705 		else
706 			buf->f_blocks = vs.max_quota;
707 		buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
708 	}
709 
710 	return ret;
711 }
712