1 /* AFS superblock handling 2 * 3 * Copyright (c) 2002, 2007, 2018 Red Hat, Inc. All rights reserved. 4 * 5 * This software may be freely redistributed under the terms of the 6 * GNU General Public License. 7 * 8 * You should have received a copy of the GNU General Public License 9 * along with this program; if not, write to the Free Software 10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 11 * 12 * Authors: David Howells <dhowells@redhat.com> 13 * David Woodhouse <dwmw2@infradead.org> 14 * 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mount.h> 20 #include <linux/init.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/fs_parser.h> 25 #include <linux/statfs.h> 26 #include <linux/sched.h> 27 #include <linux/nsproxy.h> 28 #include <linux/magic.h> 29 #include <net/net_namespace.h> 30 #include "internal.h" 31 32 static void afs_i_init_once(void *foo); 33 static void afs_kill_super(struct super_block *sb); 34 static struct inode *afs_alloc_inode(struct super_block *sb); 35 static void afs_destroy_inode(struct inode *inode); 36 static void afs_free_inode(struct inode *inode); 37 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf); 38 static int afs_show_devname(struct seq_file *m, struct dentry *root); 39 static int afs_show_options(struct seq_file *m, struct dentry *root); 40 static int afs_init_fs_context(struct fs_context *fc); 41 static const struct fs_parameter_spec afs_fs_parameters[]; 42 43 struct file_system_type afs_fs_type = { 44 .owner = THIS_MODULE, 45 .name = "afs", 46 .init_fs_context = afs_init_fs_context, 47 .parameters = afs_fs_parameters, 48 .kill_sb = afs_kill_super, 49 .fs_flags = FS_RENAME_DOES_D_MOVE, 50 }; 51 MODULE_ALIAS_FS("afs"); 52 53 int afs_net_id; 54 55 static const struct super_operations afs_super_ops = { 56 .statfs = afs_statfs, 57 .alloc_inode = afs_alloc_inode, 58 .drop_inode = afs_drop_inode, 59 .destroy_inode = afs_destroy_inode, 60 .free_inode = afs_free_inode, 61 .evict_inode = afs_evict_inode, 62 .show_devname = afs_show_devname, 63 .show_options = afs_show_options, 64 }; 65 66 static struct kmem_cache *afs_inode_cachep; 67 static atomic_t afs_count_active_inodes; 68 69 enum afs_param { 70 Opt_autocell, 71 Opt_dyn, 72 Opt_flock, 73 Opt_source, 74 }; 75 76 static const struct constant_table afs_param_flock[] = { 77 {"local", afs_flock_mode_local }, 78 {"openafs", afs_flock_mode_openafs }, 79 {"strict", afs_flock_mode_strict }, 80 {"write", afs_flock_mode_write }, 81 {} 82 }; 83 84 static const struct fs_parameter_spec afs_fs_parameters[] = { 85 fsparam_flag ("autocell", Opt_autocell), 86 fsparam_flag ("dyn", Opt_dyn), 87 fsparam_enum ("flock", Opt_flock, afs_param_flock), 88 fsparam_string("source", Opt_source), 89 {} 90 }; 91 92 /* 93 * initialise the filesystem 94 */ 95 int __init afs_fs_init(void) 96 { 97 int ret; 98 99 _enter(""); 100 101 /* create ourselves an inode cache */ 102 atomic_set(&afs_count_active_inodes, 0); 103 104 ret = -ENOMEM; 105 afs_inode_cachep = kmem_cache_create("afs_inode_cache", 106 sizeof(struct afs_vnode), 107 0, 108 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, 109 afs_i_init_once); 110 if (!afs_inode_cachep) { 111 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n"); 112 return ret; 113 } 114 115 /* now export our filesystem to lesser mortals */ 116 ret = register_filesystem(&afs_fs_type); 117 if (ret < 0) { 118 kmem_cache_destroy(afs_inode_cachep); 119 _leave(" = %d", ret); 120 return ret; 121 } 122 123 _leave(" = 0"); 124 return 0; 125 } 126 127 /* 128 * clean up the filesystem 129 */ 130 void afs_fs_exit(void) 131 { 132 _enter(""); 133 134 afs_mntpt_kill_timer(); 135 unregister_filesystem(&afs_fs_type); 136 137 if (atomic_read(&afs_count_active_inodes) != 0) { 138 printk("kAFS: %d active inode objects still present\n", 139 atomic_read(&afs_count_active_inodes)); 140 BUG(); 141 } 142 143 /* 144 * Make sure all delayed rcu free inodes are flushed before we 145 * destroy cache. 146 */ 147 rcu_barrier(); 148 kmem_cache_destroy(afs_inode_cachep); 149 _leave(""); 150 } 151 152 /* 153 * Display the mount device name in /proc/mounts. 154 */ 155 static int afs_show_devname(struct seq_file *m, struct dentry *root) 156 { 157 struct afs_super_info *as = AFS_FS_S(root->d_sb); 158 struct afs_volume *volume = as->volume; 159 struct afs_cell *cell = as->cell; 160 const char *suf = ""; 161 char pref = '%'; 162 163 if (as->dyn_root) { 164 seq_puts(m, "none"); 165 return 0; 166 } 167 168 switch (volume->type) { 169 case AFSVL_RWVOL: 170 break; 171 case AFSVL_ROVOL: 172 pref = '#'; 173 if (volume->type_force) 174 suf = ".readonly"; 175 break; 176 case AFSVL_BACKVOL: 177 pref = '#'; 178 suf = ".backup"; 179 break; 180 } 181 182 seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf); 183 return 0; 184 } 185 186 /* 187 * Display the mount options in /proc/mounts. 188 */ 189 static int afs_show_options(struct seq_file *m, struct dentry *root) 190 { 191 struct afs_super_info *as = AFS_FS_S(root->d_sb); 192 const char *p = NULL; 193 194 if (as->dyn_root) 195 seq_puts(m, ",dyn"); 196 if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags)) 197 seq_puts(m, ",autocell"); 198 switch (as->flock_mode) { 199 case afs_flock_mode_unset: break; 200 case afs_flock_mode_local: p = "local"; break; 201 case afs_flock_mode_openafs: p = "openafs"; break; 202 case afs_flock_mode_strict: p = "strict"; break; 203 case afs_flock_mode_write: p = "write"; break; 204 } 205 if (p) 206 seq_printf(m, ",flock=%s", p); 207 208 return 0; 209 } 210 211 /* 212 * Parse the source name to get cell name, volume name, volume type and R/W 213 * selector. 214 * 215 * This can be one of the following: 216 * "%[cell:]volume[.]" R/W volume 217 * "#[cell:]volume[.]" R/O or R/W volume (R/O parent), 218 * or R/W (R/W parent) volume 219 * "%[cell:]volume.readonly" R/O volume 220 * "#[cell:]volume.readonly" R/O volume 221 * "%[cell:]volume.backup" Backup volume 222 * "#[cell:]volume.backup" Backup volume 223 */ 224 static int afs_parse_source(struct fs_context *fc, struct fs_parameter *param) 225 { 226 struct afs_fs_context *ctx = fc->fs_private; 227 struct afs_cell *cell; 228 const char *cellname, *suffix, *name = param->string; 229 int cellnamesz; 230 231 _enter(",%s", name); 232 233 if (!name) { 234 printk(KERN_ERR "kAFS: no volume name specified\n"); 235 return -EINVAL; 236 } 237 238 if ((name[0] != '%' && name[0] != '#') || !name[1]) { 239 /* To use dynroot, we don't want to have to provide a source */ 240 if (strcmp(name, "none") == 0) { 241 ctx->no_cell = true; 242 return 0; 243 } 244 printk(KERN_ERR "kAFS: unparsable volume name\n"); 245 return -EINVAL; 246 } 247 248 /* determine the type of volume we're looking for */ 249 if (name[0] == '%') { 250 ctx->type = AFSVL_RWVOL; 251 ctx->force = true; 252 } 253 name++; 254 255 /* split the cell name out if there is one */ 256 ctx->volname = strchr(name, ':'); 257 if (ctx->volname) { 258 cellname = name; 259 cellnamesz = ctx->volname - name; 260 ctx->volname++; 261 } else { 262 ctx->volname = name; 263 cellname = NULL; 264 cellnamesz = 0; 265 } 266 267 /* the volume type is further affected by a possible suffix */ 268 suffix = strrchr(ctx->volname, '.'); 269 if (suffix) { 270 if (strcmp(suffix, ".readonly") == 0) { 271 ctx->type = AFSVL_ROVOL; 272 ctx->force = true; 273 } else if (strcmp(suffix, ".backup") == 0) { 274 ctx->type = AFSVL_BACKVOL; 275 ctx->force = true; 276 } else if (suffix[1] == 0) { 277 } else { 278 suffix = NULL; 279 } 280 } 281 282 ctx->volnamesz = suffix ? 283 suffix - ctx->volname : strlen(ctx->volname); 284 285 _debug("cell %*.*s [%p]", 286 cellnamesz, cellnamesz, cellname ?: "", ctx->cell); 287 288 /* lookup the cell record */ 289 if (cellname) { 290 cell = afs_lookup_cell(ctx->net, cellname, cellnamesz, 291 NULL, false); 292 if (IS_ERR(cell)) { 293 pr_err("kAFS: unable to lookup cell '%*.*s'\n", 294 cellnamesz, cellnamesz, cellname ?: ""); 295 return PTR_ERR(cell); 296 } 297 afs_put_cell(ctx->net, ctx->cell); 298 ctx->cell = cell; 299 } 300 301 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s", 302 ctx->cell->name, ctx->cell, 303 ctx->volnamesz, ctx->volnamesz, ctx->volname, 304 suffix ?: "-", ctx->type, ctx->force ? " FORCE" : ""); 305 306 fc->source = param->string; 307 param->string = NULL; 308 return 0; 309 } 310 311 /* 312 * Parse a single mount parameter. 313 */ 314 static int afs_parse_param(struct fs_context *fc, struct fs_parameter *param) 315 { 316 struct fs_parse_result result; 317 struct afs_fs_context *ctx = fc->fs_private; 318 int opt; 319 320 opt = fs_parse(fc, afs_fs_parameters, param, &result); 321 if (opt < 0) 322 return opt; 323 324 switch (opt) { 325 case Opt_source: 326 return afs_parse_source(fc, param); 327 328 case Opt_autocell: 329 ctx->autocell = true; 330 break; 331 332 case Opt_dyn: 333 ctx->dyn_root = true; 334 break; 335 336 case Opt_flock: 337 ctx->flock_mode = result.uint_32; 338 break; 339 340 default: 341 return -EINVAL; 342 } 343 344 _leave(" = 0"); 345 return 0; 346 } 347 348 /* 349 * Validate the options, get the cell key and look up the volume. 350 */ 351 static int afs_validate_fc(struct fs_context *fc) 352 { 353 struct afs_fs_context *ctx = fc->fs_private; 354 struct afs_volume *volume; 355 struct afs_cell *cell; 356 struct key *key; 357 int ret; 358 359 if (!ctx->dyn_root) { 360 if (ctx->no_cell) { 361 pr_warn("kAFS: Can only specify source 'none' with -o dyn\n"); 362 return -EINVAL; 363 } 364 365 if (!ctx->cell) { 366 pr_warn("kAFS: No cell specified\n"); 367 return -EDESTADDRREQ; 368 } 369 370 reget_key: 371 /* We try to do the mount securely. */ 372 key = afs_request_key(ctx->cell); 373 if (IS_ERR(key)) 374 return PTR_ERR(key); 375 376 ctx->key = key; 377 378 if (ctx->volume) { 379 afs_put_volume(ctx->net, ctx->volume, 380 afs_volume_trace_put_validate_fc); 381 ctx->volume = NULL; 382 } 383 384 if (test_bit(AFS_CELL_FL_CHECK_ALIAS, &ctx->cell->flags)) { 385 ret = afs_cell_detect_alias(ctx->cell, key); 386 if (ret < 0) 387 return ret; 388 if (ret == 1) { 389 _debug("switch to alias"); 390 key_put(ctx->key); 391 ctx->key = NULL; 392 cell = afs_get_cell(ctx->cell->alias_of); 393 afs_put_cell(ctx->net, ctx->cell); 394 ctx->cell = cell; 395 goto reget_key; 396 } 397 } 398 399 volume = afs_create_volume(ctx); 400 if (IS_ERR(volume)) 401 return PTR_ERR(volume); 402 403 ctx->volume = volume; 404 } 405 406 return 0; 407 } 408 409 /* 410 * check a superblock to see if it's the one we're looking for 411 */ 412 static int afs_test_super(struct super_block *sb, struct fs_context *fc) 413 { 414 struct afs_fs_context *ctx = fc->fs_private; 415 struct afs_super_info *as = AFS_FS_S(sb); 416 417 return (as->net_ns == fc->net_ns && 418 as->volume && 419 as->volume->vid == ctx->volume->vid && 420 as->cell == ctx->cell && 421 !as->dyn_root); 422 } 423 424 static int afs_dynroot_test_super(struct super_block *sb, struct fs_context *fc) 425 { 426 struct afs_super_info *as = AFS_FS_S(sb); 427 428 return (as->net_ns == fc->net_ns && 429 as->dyn_root); 430 } 431 432 static int afs_set_super(struct super_block *sb, struct fs_context *fc) 433 { 434 return set_anon_super(sb, NULL); 435 } 436 437 /* 438 * fill in the superblock 439 */ 440 static int afs_fill_super(struct super_block *sb, struct afs_fs_context *ctx) 441 { 442 struct afs_super_info *as = AFS_FS_S(sb); 443 struct inode *inode = NULL; 444 int ret; 445 446 _enter(""); 447 448 /* fill in the superblock */ 449 sb->s_blocksize = PAGE_SIZE; 450 sb->s_blocksize_bits = PAGE_SHIFT; 451 sb->s_maxbytes = MAX_LFS_FILESIZE; 452 sb->s_magic = AFS_FS_MAGIC; 453 sb->s_op = &afs_super_ops; 454 if (!as->dyn_root) 455 sb->s_xattr = afs_xattr_handlers; 456 ret = super_setup_bdi(sb); 457 if (ret) 458 return ret; 459 460 /* allocate the root inode and dentry */ 461 if (as->dyn_root) { 462 inode = afs_iget_pseudo_dir(sb, true); 463 } else { 464 sprintf(sb->s_id, "%llu", as->volume->vid); 465 afs_activate_volume(as->volume); 466 inode = afs_root_iget(sb, ctx->key); 467 } 468 469 if (IS_ERR(inode)) 470 return PTR_ERR(inode); 471 472 if (ctx->autocell || as->dyn_root) 473 set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags); 474 475 ret = -ENOMEM; 476 sb->s_root = d_make_root(inode); 477 if (!sb->s_root) 478 goto error; 479 480 if (as->dyn_root) { 481 sb->s_d_op = &afs_dynroot_dentry_operations; 482 ret = afs_dynroot_populate(sb); 483 if (ret < 0) 484 goto error; 485 } else { 486 sb->s_d_op = &afs_fs_dentry_operations; 487 rcu_assign_pointer(as->volume->sb, sb); 488 } 489 490 _leave(" = 0"); 491 return 0; 492 493 error: 494 _leave(" = %d", ret); 495 return ret; 496 } 497 498 static struct afs_super_info *afs_alloc_sbi(struct fs_context *fc) 499 { 500 struct afs_fs_context *ctx = fc->fs_private; 501 struct afs_super_info *as; 502 503 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL); 504 if (as) { 505 as->net_ns = get_net(fc->net_ns); 506 as->flock_mode = ctx->flock_mode; 507 if (ctx->dyn_root) { 508 as->dyn_root = true; 509 } else { 510 as->cell = afs_get_cell(ctx->cell); 511 as->volume = afs_get_volume(ctx->volume, 512 afs_volume_trace_get_alloc_sbi); 513 } 514 } 515 return as; 516 } 517 518 static void afs_destroy_sbi(struct afs_super_info *as) 519 { 520 if (as) { 521 struct afs_net *net = afs_net(as->net_ns); 522 afs_put_volume(net, as->volume, afs_volume_trace_put_destroy_sbi); 523 afs_put_cell(net, as->cell); 524 put_net(as->net_ns); 525 kfree(as); 526 } 527 } 528 529 static void afs_kill_super(struct super_block *sb) 530 { 531 struct afs_super_info *as = AFS_FS_S(sb); 532 533 if (as->dyn_root) 534 afs_dynroot_depopulate(sb); 535 536 /* Clear the callback interests (which will do ilookup5) before 537 * deactivating the superblock. 538 */ 539 if (as->volume) 540 rcu_assign_pointer(as->volume->sb, NULL); 541 kill_anon_super(sb); 542 if (as->volume) 543 afs_deactivate_volume(as->volume); 544 afs_destroy_sbi(as); 545 } 546 547 /* 548 * Get an AFS superblock and root directory. 549 */ 550 static int afs_get_tree(struct fs_context *fc) 551 { 552 struct afs_fs_context *ctx = fc->fs_private; 553 struct super_block *sb; 554 struct afs_super_info *as; 555 int ret; 556 557 ret = afs_validate_fc(fc); 558 if (ret) 559 goto error; 560 561 _enter(""); 562 563 /* allocate a superblock info record */ 564 ret = -ENOMEM; 565 as = afs_alloc_sbi(fc); 566 if (!as) 567 goto error; 568 fc->s_fs_info = as; 569 570 /* allocate a deviceless superblock */ 571 sb = sget_fc(fc, 572 as->dyn_root ? afs_dynroot_test_super : afs_test_super, 573 afs_set_super); 574 if (IS_ERR(sb)) { 575 ret = PTR_ERR(sb); 576 goto error; 577 } 578 579 if (!sb->s_root) { 580 /* initial superblock/root creation */ 581 _debug("create"); 582 ret = afs_fill_super(sb, ctx); 583 if (ret < 0) 584 goto error_sb; 585 sb->s_flags |= SB_ACTIVE; 586 } else { 587 _debug("reuse"); 588 ASSERTCMP(sb->s_flags, &, SB_ACTIVE); 589 } 590 591 fc->root = dget(sb->s_root); 592 trace_afs_get_tree(as->cell, as->volume); 593 _leave(" = 0 [%p]", sb); 594 return 0; 595 596 error_sb: 597 deactivate_locked_super(sb); 598 error: 599 _leave(" = %d", ret); 600 return ret; 601 } 602 603 static void afs_free_fc(struct fs_context *fc) 604 { 605 struct afs_fs_context *ctx = fc->fs_private; 606 607 afs_destroy_sbi(fc->s_fs_info); 608 afs_put_volume(ctx->net, ctx->volume, afs_volume_trace_put_free_fc); 609 afs_put_cell(ctx->net, ctx->cell); 610 key_put(ctx->key); 611 kfree(ctx); 612 } 613 614 static const struct fs_context_operations afs_context_ops = { 615 .free = afs_free_fc, 616 .parse_param = afs_parse_param, 617 .get_tree = afs_get_tree, 618 }; 619 620 /* 621 * Set up the filesystem mount context. 622 */ 623 static int afs_init_fs_context(struct fs_context *fc) 624 { 625 struct afs_fs_context *ctx; 626 struct afs_cell *cell; 627 628 ctx = kzalloc(sizeof(struct afs_fs_context), GFP_KERNEL); 629 if (!ctx) 630 return -ENOMEM; 631 632 ctx->type = AFSVL_ROVOL; 633 ctx->net = afs_net(fc->net_ns); 634 635 /* Default to the workstation cell. */ 636 rcu_read_lock(); 637 cell = afs_lookup_cell_rcu(ctx->net, NULL, 0); 638 rcu_read_unlock(); 639 if (IS_ERR(cell)) 640 cell = NULL; 641 ctx->cell = cell; 642 643 fc->fs_private = ctx; 644 fc->ops = &afs_context_ops; 645 return 0; 646 } 647 648 /* 649 * Initialise an inode cache slab element prior to any use. Note that 650 * afs_alloc_inode() *must* reset anything that could incorrectly leak from one 651 * inode to another. 652 */ 653 static void afs_i_init_once(void *_vnode) 654 { 655 struct afs_vnode *vnode = _vnode; 656 657 memset(vnode, 0, sizeof(*vnode)); 658 inode_init_once(&vnode->vfs_inode); 659 mutex_init(&vnode->io_lock); 660 init_rwsem(&vnode->validate_lock); 661 spin_lock_init(&vnode->wb_lock); 662 spin_lock_init(&vnode->lock); 663 INIT_LIST_HEAD(&vnode->wb_keys); 664 INIT_LIST_HEAD(&vnode->pending_locks); 665 INIT_LIST_HEAD(&vnode->granted_locks); 666 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work); 667 seqlock_init(&vnode->cb_lock); 668 } 669 670 /* 671 * allocate an AFS inode struct from our slab cache 672 */ 673 static struct inode *afs_alloc_inode(struct super_block *sb) 674 { 675 struct afs_vnode *vnode; 676 677 vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL); 678 if (!vnode) 679 return NULL; 680 681 atomic_inc(&afs_count_active_inodes); 682 683 /* Reset anything that shouldn't leak from one inode to the next. */ 684 memset(&vnode->fid, 0, sizeof(vnode->fid)); 685 memset(&vnode->status, 0, sizeof(vnode->status)); 686 687 vnode->volume = NULL; 688 vnode->lock_key = NULL; 689 vnode->permit_cache = NULL; 690 #ifdef CONFIG_AFS_FSCACHE 691 vnode->cache = NULL; 692 #endif 693 694 vnode->flags = 1 << AFS_VNODE_UNSET; 695 vnode->lock_state = AFS_VNODE_LOCK_NONE; 696 697 init_rwsem(&vnode->rmdir_lock); 698 699 _leave(" = %p", &vnode->vfs_inode); 700 return &vnode->vfs_inode; 701 } 702 703 static void afs_free_inode(struct inode *inode) 704 { 705 kmem_cache_free(afs_inode_cachep, AFS_FS_I(inode)); 706 } 707 708 /* 709 * destroy an AFS inode struct 710 */ 711 static void afs_destroy_inode(struct inode *inode) 712 { 713 struct afs_vnode *vnode = AFS_FS_I(inode); 714 715 _enter("%p{%llx:%llu}", inode, vnode->fid.vid, vnode->fid.vnode); 716 717 _debug("DESTROY INODE %p", inode); 718 719 atomic_dec(&afs_count_active_inodes); 720 } 721 722 static void afs_get_volume_status_success(struct afs_operation *op) 723 { 724 struct afs_volume_status *vs = &op->volstatus.vs; 725 struct kstatfs *buf = op->volstatus.buf; 726 727 if (vs->max_quota == 0) 728 buf->f_blocks = vs->part_max_blocks; 729 else 730 buf->f_blocks = vs->max_quota; 731 732 if (buf->f_blocks > vs->blocks_in_use) 733 buf->f_bavail = buf->f_bfree = 734 buf->f_blocks - vs->blocks_in_use; 735 } 736 737 static const struct afs_operation_ops afs_get_volume_status_operation = { 738 .issue_afs_rpc = afs_fs_get_volume_status, 739 .issue_yfs_rpc = yfs_fs_get_volume_status, 740 .success = afs_get_volume_status_success, 741 }; 742 743 /* 744 * return information about an AFS volume 745 */ 746 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf) 747 { 748 struct afs_super_info *as = AFS_FS_S(dentry->d_sb); 749 struct afs_operation *op; 750 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 751 752 buf->f_type = dentry->d_sb->s_magic; 753 buf->f_bsize = AFS_BLOCK_SIZE; 754 buf->f_namelen = AFSNAMEMAX - 1; 755 756 if (as->dyn_root) { 757 buf->f_blocks = 1; 758 buf->f_bavail = 0; 759 buf->f_bfree = 0; 760 return 0; 761 } 762 763 op = afs_alloc_operation(NULL, as->volume); 764 if (IS_ERR(op)) 765 return PTR_ERR(op); 766 767 afs_op_set_vnode(op, 0, vnode); 768 op->nr_files = 1; 769 op->volstatus.buf = buf; 770 op->ops = &afs_get_volume_status_operation; 771 return afs_do_sync_operation(op); 772 } 773