1 /* AFS superblock handling 2 * 3 * Copyright (c) 2002, 2007, 2018 Red Hat, Inc. All rights reserved. 4 * 5 * This software may be freely redistributed under the terms of the 6 * GNU General Public License. 7 * 8 * You should have received a copy of the GNU General Public License 9 * along with this program; if not, write to the Free Software 10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 11 * 12 * Authors: David Howells <dhowells@redhat.com> 13 * David Woodhouse <dwmw2@infradead.org> 14 * 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mount.h> 20 #include <linux/init.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/fs_parser.h> 25 #include <linux/statfs.h> 26 #include <linux/sched.h> 27 #include <linux/nsproxy.h> 28 #include <linux/magic.h> 29 #include <net/net_namespace.h> 30 #include "internal.h" 31 32 static void afs_i_init_once(void *foo); 33 static void afs_kill_super(struct super_block *sb); 34 static struct inode *afs_alloc_inode(struct super_block *sb); 35 static void afs_destroy_inode(struct inode *inode); 36 static void afs_free_inode(struct inode *inode); 37 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf); 38 static int afs_show_devname(struct seq_file *m, struct dentry *root); 39 static int afs_show_options(struct seq_file *m, struct dentry *root); 40 static int afs_init_fs_context(struct fs_context *fc); 41 static const struct fs_parameter_spec afs_fs_parameters[]; 42 43 struct file_system_type afs_fs_type = { 44 .owner = THIS_MODULE, 45 .name = "afs", 46 .init_fs_context = afs_init_fs_context, 47 .parameters = afs_fs_parameters, 48 .kill_sb = afs_kill_super, 49 .fs_flags = FS_RENAME_DOES_D_MOVE, 50 }; 51 MODULE_ALIAS_FS("afs"); 52 53 int afs_net_id; 54 55 static const struct super_operations afs_super_ops = { 56 .statfs = afs_statfs, 57 .alloc_inode = afs_alloc_inode, 58 .write_inode = afs_write_inode, 59 .drop_inode = afs_drop_inode, 60 .destroy_inode = afs_destroy_inode, 61 .free_inode = afs_free_inode, 62 .evict_inode = afs_evict_inode, 63 .show_devname = afs_show_devname, 64 .show_options = afs_show_options, 65 }; 66 67 static struct kmem_cache *afs_inode_cachep; 68 static atomic_t afs_count_active_inodes; 69 70 enum afs_param { 71 Opt_autocell, 72 Opt_dyn, 73 Opt_flock, 74 Opt_source, 75 }; 76 77 static const struct constant_table afs_param_flock[] = { 78 {"local", afs_flock_mode_local }, 79 {"openafs", afs_flock_mode_openafs }, 80 {"strict", afs_flock_mode_strict }, 81 {"write", afs_flock_mode_write }, 82 {} 83 }; 84 85 static const struct fs_parameter_spec afs_fs_parameters[] = { 86 fsparam_flag ("autocell", Opt_autocell), 87 fsparam_flag ("dyn", Opt_dyn), 88 fsparam_enum ("flock", Opt_flock, afs_param_flock), 89 fsparam_string("source", Opt_source), 90 {} 91 }; 92 93 /* 94 * initialise the filesystem 95 */ 96 int __init afs_fs_init(void) 97 { 98 int ret; 99 100 _enter(""); 101 102 /* create ourselves an inode cache */ 103 atomic_set(&afs_count_active_inodes, 0); 104 105 ret = -ENOMEM; 106 afs_inode_cachep = kmem_cache_create("afs_inode_cache", 107 sizeof(struct afs_vnode), 108 0, 109 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, 110 afs_i_init_once); 111 if (!afs_inode_cachep) { 112 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n"); 113 return ret; 114 } 115 116 /* now export our filesystem to lesser mortals */ 117 ret = register_filesystem(&afs_fs_type); 118 if (ret < 0) { 119 kmem_cache_destroy(afs_inode_cachep); 120 _leave(" = %d", ret); 121 return ret; 122 } 123 124 _leave(" = 0"); 125 return 0; 126 } 127 128 /* 129 * clean up the filesystem 130 */ 131 void afs_fs_exit(void) 132 { 133 _enter(""); 134 135 afs_mntpt_kill_timer(); 136 unregister_filesystem(&afs_fs_type); 137 138 if (atomic_read(&afs_count_active_inodes) != 0) { 139 printk("kAFS: %d active inode objects still present\n", 140 atomic_read(&afs_count_active_inodes)); 141 BUG(); 142 } 143 144 /* 145 * Make sure all delayed rcu free inodes are flushed before we 146 * destroy cache. 147 */ 148 rcu_barrier(); 149 kmem_cache_destroy(afs_inode_cachep); 150 _leave(""); 151 } 152 153 /* 154 * Display the mount device name in /proc/mounts. 155 */ 156 static int afs_show_devname(struct seq_file *m, struct dentry *root) 157 { 158 struct afs_super_info *as = AFS_FS_S(root->d_sb); 159 struct afs_volume *volume = as->volume; 160 struct afs_cell *cell = as->cell; 161 const char *suf = ""; 162 char pref = '%'; 163 164 if (as->dyn_root) { 165 seq_puts(m, "none"); 166 return 0; 167 } 168 169 switch (volume->type) { 170 case AFSVL_RWVOL: 171 break; 172 case AFSVL_ROVOL: 173 pref = '#'; 174 if (volume->type_force) 175 suf = ".readonly"; 176 break; 177 case AFSVL_BACKVOL: 178 pref = '#'; 179 suf = ".backup"; 180 break; 181 } 182 183 seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf); 184 return 0; 185 } 186 187 /* 188 * Display the mount options in /proc/mounts. 189 */ 190 static int afs_show_options(struct seq_file *m, struct dentry *root) 191 { 192 struct afs_super_info *as = AFS_FS_S(root->d_sb); 193 const char *p = NULL; 194 195 if (as->dyn_root) 196 seq_puts(m, ",dyn"); 197 if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags)) 198 seq_puts(m, ",autocell"); 199 switch (as->flock_mode) { 200 case afs_flock_mode_unset: break; 201 case afs_flock_mode_local: p = "local"; break; 202 case afs_flock_mode_openafs: p = "openafs"; break; 203 case afs_flock_mode_strict: p = "strict"; break; 204 case afs_flock_mode_write: p = "write"; break; 205 } 206 if (p) 207 seq_printf(m, ",flock=%s", p); 208 209 return 0; 210 } 211 212 /* 213 * Parse the source name to get cell name, volume name, volume type and R/W 214 * selector. 215 * 216 * This can be one of the following: 217 * "%[cell:]volume[.]" R/W volume 218 * "#[cell:]volume[.]" R/O or R/W volume (R/O parent), 219 * or R/W (R/W parent) volume 220 * "%[cell:]volume.readonly" R/O volume 221 * "#[cell:]volume.readonly" R/O volume 222 * "%[cell:]volume.backup" Backup volume 223 * "#[cell:]volume.backup" Backup volume 224 */ 225 static int afs_parse_source(struct fs_context *fc, struct fs_parameter *param) 226 { 227 struct afs_fs_context *ctx = fc->fs_private; 228 struct afs_cell *cell; 229 const char *cellname, *suffix, *name = param->string; 230 int cellnamesz; 231 232 _enter(",%s", name); 233 234 if (fc->source) 235 return invalf(fc, "kAFS: Multiple sources not supported"); 236 237 if (!name) { 238 printk(KERN_ERR "kAFS: no volume name specified\n"); 239 return -EINVAL; 240 } 241 242 if ((name[0] != '%' && name[0] != '#') || !name[1]) { 243 /* To use dynroot, we don't want to have to provide a source */ 244 if (strcmp(name, "none") == 0) { 245 ctx->no_cell = true; 246 return 0; 247 } 248 printk(KERN_ERR "kAFS: unparsable volume name\n"); 249 return -EINVAL; 250 } 251 252 /* determine the type of volume we're looking for */ 253 if (name[0] == '%') { 254 ctx->type = AFSVL_RWVOL; 255 ctx->force = true; 256 } 257 name++; 258 259 /* split the cell name out if there is one */ 260 ctx->volname = strchr(name, ':'); 261 if (ctx->volname) { 262 cellname = name; 263 cellnamesz = ctx->volname - name; 264 ctx->volname++; 265 } else { 266 ctx->volname = name; 267 cellname = NULL; 268 cellnamesz = 0; 269 } 270 271 /* the volume type is further affected by a possible suffix */ 272 suffix = strrchr(ctx->volname, '.'); 273 if (suffix) { 274 if (strcmp(suffix, ".readonly") == 0) { 275 ctx->type = AFSVL_ROVOL; 276 ctx->force = true; 277 } else if (strcmp(suffix, ".backup") == 0) { 278 ctx->type = AFSVL_BACKVOL; 279 ctx->force = true; 280 } else if (suffix[1] == 0) { 281 } else { 282 suffix = NULL; 283 } 284 } 285 286 ctx->volnamesz = suffix ? 287 suffix - ctx->volname : strlen(ctx->volname); 288 289 _debug("cell %*.*s [%p]", 290 cellnamesz, cellnamesz, cellname ?: "", ctx->cell); 291 292 /* lookup the cell record */ 293 if (cellname) { 294 cell = afs_lookup_cell(ctx->net, cellname, cellnamesz, 295 NULL, false); 296 if (IS_ERR(cell)) { 297 pr_err("kAFS: unable to lookup cell '%*.*s'\n", 298 cellnamesz, cellnamesz, cellname ?: ""); 299 return PTR_ERR(cell); 300 } 301 afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_parse); 302 afs_see_cell(cell, afs_cell_trace_see_source); 303 ctx->cell = cell; 304 } 305 306 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s", 307 ctx->cell->name, ctx->cell, 308 ctx->volnamesz, ctx->volnamesz, ctx->volname, 309 suffix ?: "-", ctx->type, ctx->force ? " FORCE" : ""); 310 311 fc->source = param->string; 312 param->string = NULL; 313 return 0; 314 } 315 316 /* 317 * Parse a single mount parameter. 318 */ 319 static int afs_parse_param(struct fs_context *fc, struct fs_parameter *param) 320 { 321 struct fs_parse_result result; 322 struct afs_fs_context *ctx = fc->fs_private; 323 int opt; 324 325 opt = fs_parse(fc, afs_fs_parameters, param, &result); 326 if (opt < 0) 327 return opt; 328 329 switch (opt) { 330 case Opt_source: 331 return afs_parse_source(fc, param); 332 333 case Opt_autocell: 334 ctx->autocell = true; 335 break; 336 337 case Opt_dyn: 338 ctx->dyn_root = true; 339 break; 340 341 case Opt_flock: 342 ctx->flock_mode = result.uint_32; 343 break; 344 345 default: 346 return -EINVAL; 347 } 348 349 _leave(" = 0"); 350 return 0; 351 } 352 353 /* 354 * Validate the options, get the cell key and look up the volume. 355 */ 356 static int afs_validate_fc(struct fs_context *fc) 357 { 358 struct afs_fs_context *ctx = fc->fs_private; 359 struct afs_volume *volume; 360 struct afs_cell *cell; 361 struct key *key; 362 int ret; 363 364 if (!ctx->dyn_root) { 365 if (ctx->no_cell) { 366 pr_warn("kAFS: Can only specify source 'none' with -o dyn\n"); 367 return -EINVAL; 368 } 369 370 if (!ctx->cell) { 371 pr_warn("kAFS: No cell specified\n"); 372 return -EDESTADDRREQ; 373 } 374 375 reget_key: 376 /* We try to do the mount securely. */ 377 key = afs_request_key(ctx->cell); 378 if (IS_ERR(key)) 379 return PTR_ERR(key); 380 381 ctx->key = key; 382 383 if (ctx->volume) { 384 afs_put_volume(ctx->net, ctx->volume, 385 afs_volume_trace_put_validate_fc); 386 ctx->volume = NULL; 387 } 388 389 if (test_bit(AFS_CELL_FL_CHECK_ALIAS, &ctx->cell->flags)) { 390 ret = afs_cell_detect_alias(ctx->cell, key); 391 if (ret < 0) 392 return ret; 393 if (ret == 1) { 394 _debug("switch to alias"); 395 key_put(ctx->key); 396 ctx->key = NULL; 397 cell = afs_use_cell(ctx->cell->alias_of, 398 afs_cell_trace_use_fc_alias); 399 afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc); 400 ctx->cell = cell; 401 goto reget_key; 402 } 403 } 404 405 volume = afs_create_volume(ctx); 406 if (IS_ERR(volume)) 407 return PTR_ERR(volume); 408 409 ctx->volume = volume; 410 } 411 412 return 0; 413 } 414 415 /* 416 * check a superblock to see if it's the one we're looking for 417 */ 418 static int afs_test_super(struct super_block *sb, struct fs_context *fc) 419 { 420 struct afs_fs_context *ctx = fc->fs_private; 421 struct afs_super_info *as = AFS_FS_S(sb); 422 423 return (as->net_ns == fc->net_ns && 424 as->volume && 425 as->volume->vid == ctx->volume->vid && 426 as->cell == ctx->cell && 427 !as->dyn_root); 428 } 429 430 static int afs_dynroot_test_super(struct super_block *sb, struct fs_context *fc) 431 { 432 struct afs_super_info *as = AFS_FS_S(sb); 433 434 return (as->net_ns == fc->net_ns && 435 as->dyn_root); 436 } 437 438 static int afs_set_super(struct super_block *sb, struct fs_context *fc) 439 { 440 return set_anon_super(sb, NULL); 441 } 442 443 /* 444 * fill in the superblock 445 */ 446 static int afs_fill_super(struct super_block *sb, struct afs_fs_context *ctx) 447 { 448 struct afs_super_info *as = AFS_FS_S(sb); 449 struct inode *inode = NULL; 450 int ret; 451 452 _enter(""); 453 454 /* fill in the superblock */ 455 sb->s_blocksize = PAGE_SIZE; 456 sb->s_blocksize_bits = PAGE_SHIFT; 457 sb->s_maxbytes = MAX_LFS_FILESIZE; 458 sb->s_magic = AFS_FS_MAGIC; 459 sb->s_op = &afs_super_ops; 460 if (!as->dyn_root) 461 sb->s_xattr = afs_xattr_handlers; 462 ret = super_setup_bdi(sb); 463 if (ret) 464 return ret; 465 466 /* allocate the root inode and dentry */ 467 if (as->dyn_root) { 468 inode = afs_iget_pseudo_dir(sb, true); 469 } else { 470 sprintf(sb->s_id, "%llu", as->volume->vid); 471 afs_activate_volume(as->volume); 472 inode = afs_root_iget(sb, ctx->key); 473 } 474 475 if (IS_ERR(inode)) 476 return PTR_ERR(inode); 477 478 if (ctx->autocell || as->dyn_root) 479 set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags); 480 481 ret = -ENOMEM; 482 sb->s_root = d_make_root(inode); 483 if (!sb->s_root) 484 goto error; 485 486 if (as->dyn_root) { 487 sb->s_d_op = &afs_dynroot_dentry_operations; 488 ret = afs_dynroot_populate(sb); 489 if (ret < 0) 490 goto error; 491 } else { 492 sb->s_d_op = &afs_fs_dentry_operations; 493 rcu_assign_pointer(as->volume->sb, sb); 494 } 495 496 _leave(" = 0"); 497 return 0; 498 499 error: 500 _leave(" = %d", ret); 501 return ret; 502 } 503 504 static struct afs_super_info *afs_alloc_sbi(struct fs_context *fc) 505 { 506 struct afs_fs_context *ctx = fc->fs_private; 507 struct afs_super_info *as; 508 509 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL); 510 if (as) { 511 as->net_ns = get_net(fc->net_ns); 512 as->flock_mode = ctx->flock_mode; 513 if (ctx->dyn_root) { 514 as->dyn_root = true; 515 } else { 516 as->cell = afs_use_cell(ctx->cell, afs_cell_trace_use_sbi); 517 as->volume = afs_get_volume(ctx->volume, 518 afs_volume_trace_get_alloc_sbi); 519 } 520 } 521 return as; 522 } 523 524 static void afs_destroy_sbi(struct afs_super_info *as) 525 { 526 if (as) { 527 struct afs_net *net = afs_net(as->net_ns); 528 afs_put_volume(net, as->volume, afs_volume_trace_put_destroy_sbi); 529 afs_unuse_cell(net, as->cell, afs_cell_trace_unuse_sbi); 530 put_net(as->net_ns); 531 kfree(as); 532 } 533 } 534 535 static void afs_kill_super(struct super_block *sb) 536 { 537 struct afs_super_info *as = AFS_FS_S(sb); 538 539 if (as->dyn_root) 540 afs_dynroot_depopulate(sb); 541 542 /* Clear the callback interests (which will do ilookup5) before 543 * deactivating the superblock. 544 */ 545 if (as->volume) 546 rcu_assign_pointer(as->volume->sb, NULL); 547 kill_anon_super(sb); 548 if (as->volume) 549 afs_deactivate_volume(as->volume); 550 afs_destroy_sbi(as); 551 } 552 553 /* 554 * Get an AFS superblock and root directory. 555 */ 556 static int afs_get_tree(struct fs_context *fc) 557 { 558 struct afs_fs_context *ctx = fc->fs_private; 559 struct super_block *sb; 560 struct afs_super_info *as; 561 int ret; 562 563 ret = afs_validate_fc(fc); 564 if (ret) 565 goto error; 566 567 _enter(""); 568 569 /* allocate a superblock info record */ 570 ret = -ENOMEM; 571 as = afs_alloc_sbi(fc); 572 if (!as) 573 goto error; 574 fc->s_fs_info = as; 575 576 /* allocate a deviceless superblock */ 577 sb = sget_fc(fc, 578 as->dyn_root ? afs_dynroot_test_super : afs_test_super, 579 afs_set_super); 580 if (IS_ERR(sb)) { 581 ret = PTR_ERR(sb); 582 goto error; 583 } 584 585 if (!sb->s_root) { 586 /* initial superblock/root creation */ 587 _debug("create"); 588 ret = afs_fill_super(sb, ctx); 589 if (ret < 0) 590 goto error_sb; 591 sb->s_flags |= SB_ACTIVE; 592 } else { 593 _debug("reuse"); 594 ASSERTCMP(sb->s_flags, &, SB_ACTIVE); 595 } 596 597 fc->root = dget(sb->s_root); 598 trace_afs_get_tree(as->cell, as->volume); 599 _leave(" = 0 [%p]", sb); 600 return 0; 601 602 error_sb: 603 deactivate_locked_super(sb); 604 error: 605 _leave(" = %d", ret); 606 return ret; 607 } 608 609 static void afs_free_fc(struct fs_context *fc) 610 { 611 struct afs_fs_context *ctx = fc->fs_private; 612 613 afs_destroy_sbi(fc->s_fs_info); 614 afs_put_volume(ctx->net, ctx->volume, afs_volume_trace_put_free_fc); 615 afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc); 616 key_put(ctx->key); 617 kfree(ctx); 618 } 619 620 static const struct fs_context_operations afs_context_ops = { 621 .free = afs_free_fc, 622 .parse_param = afs_parse_param, 623 .get_tree = afs_get_tree, 624 }; 625 626 /* 627 * Set up the filesystem mount context. 628 */ 629 static int afs_init_fs_context(struct fs_context *fc) 630 { 631 struct afs_fs_context *ctx; 632 struct afs_cell *cell; 633 634 ctx = kzalloc(sizeof(struct afs_fs_context), GFP_KERNEL); 635 if (!ctx) 636 return -ENOMEM; 637 638 ctx->type = AFSVL_ROVOL; 639 ctx->net = afs_net(fc->net_ns); 640 641 /* Default to the workstation cell. */ 642 cell = afs_find_cell(ctx->net, NULL, 0, afs_cell_trace_use_fc); 643 if (IS_ERR(cell)) 644 cell = NULL; 645 ctx->cell = cell; 646 647 fc->fs_private = ctx; 648 fc->ops = &afs_context_ops; 649 return 0; 650 } 651 652 /* 653 * Initialise an inode cache slab element prior to any use. Note that 654 * afs_alloc_inode() *must* reset anything that could incorrectly leak from one 655 * inode to another. 656 */ 657 static void afs_i_init_once(void *_vnode) 658 { 659 struct afs_vnode *vnode = _vnode; 660 661 memset(vnode, 0, sizeof(*vnode)); 662 inode_init_once(&vnode->netfs.inode); 663 mutex_init(&vnode->io_lock); 664 init_rwsem(&vnode->validate_lock); 665 spin_lock_init(&vnode->wb_lock); 666 spin_lock_init(&vnode->lock); 667 INIT_LIST_HEAD(&vnode->wb_keys); 668 INIT_LIST_HEAD(&vnode->pending_locks); 669 INIT_LIST_HEAD(&vnode->granted_locks); 670 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work); 671 INIT_LIST_HEAD(&vnode->cb_mmap_link); 672 seqlock_init(&vnode->cb_lock); 673 } 674 675 /* 676 * allocate an AFS inode struct from our slab cache 677 */ 678 static struct inode *afs_alloc_inode(struct super_block *sb) 679 { 680 struct afs_vnode *vnode; 681 682 vnode = alloc_inode_sb(sb, afs_inode_cachep, GFP_KERNEL); 683 if (!vnode) 684 return NULL; 685 686 atomic_inc(&afs_count_active_inodes); 687 688 /* Reset anything that shouldn't leak from one inode to the next. */ 689 memset(&vnode->fid, 0, sizeof(vnode->fid)); 690 memset(&vnode->status, 0, sizeof(vnode->status)); 691 afs_vnode_set_cache(vnode, NULL); 692 693 vnode->volume = NULL; 694 vnode->lock_key = NULL; 695 vnode->permit_cache = NULL; 696 697 vnode->flags = 1 << AFS_VNODE_UNSET; 698 vnode->lock_state = AFS_VNODE_LOCK_NONE; 699 700 init_rwsem(&vnode->rmdir_lock); 701 INIT_WORK(&vnode->cb_work, afs_invalidate_mmap_work); 702 703 _leave(" = %p", &vnode->netfs.inode); 704 return &vnode->netfs.inode; 705 } 706 707 static void afs_free_inode(struct inode *inode) 708 { 709 kmem_cache_free(afs_inode_cachep, AFS_FS_I(inode)); 710 } 711 712 /* 713 * destroy an AFS inode struct 714 */ 715 static void afs_destroy_inode(struct inode *inode) 716 { 717 struct afs_vnode *vnode = AFS_FS_I(inode); 718 719 _enter("%p{%llx:%llu}", inode, vnode->fid.vid, vnode->fid.vnode); 720 721 _debug("DESTROY INODE %p", inode); 722 723 atomic_dec(&afs_count_active_inodes); 724 } 725 726 static void afs_get_volume_status_success(struct afs_operation *op) 727 { 728 struct afs_volume_status *vs = &op->volstatus.vs; 729 struct kstatfs *buf = op->volstatus.buf; 730 731 if (vs->max_quota == 0) 732 buf->f_blocks = vs->part_max_blocks; 733 else 734 buf->f_blocks = vs->max_quota; 735 736 if (buf->f_blocks > vs->blocks_in_use) 737 buf->f_bavail = buf->f_bfree = 738 buf->f_blocks - vs->blocks_in_use; 739 } 740 741 static const struct afs_operation_ops afs_get_volume_status_operation = { 742 .issue_afs_rpc = afs_fs_get_volume_status, 743 .issue_yfs_rpc = yfs_fs_get_volume_status, 744 .success = afs_get_volume_status_success, 745 }; 746 747 /* 748 * return information about an AFS volume 749 */ 750 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf) 751 { 752 struct afs_super_info *as = AFS_FS_S(dentry->d_sb); 753 struct afs_operation *op; 754 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 755 756 buf->f_type = dentry->d_sb->s_magic; 757 buf->f_bsize = AFS_BLOCK_SIZE; 758 buf->f_namelen = AFSNAMEMAX - 1; 759 760 if (as->dyn_root) { 761 buf->f_blocks = 1; 762 buf->f_bavail = 0; 763 buf->f_bfree = 0; 764 return 0; 765 } 766 767 op = afs_alloc_operation(NULL, as->volume); 768 if (IS_ERR(op)) 769 return PTR_ERR(op); 770 771 afs_op_set_vnode(op, 0, vnode); 772 op->nr_files = 1; 773 op->volstatus.buf = buf; 774 op->ops = &afs_get_volume_status_operation; 775 return afs_do_sync_operation(op); 776 } 777