1 /* AFS superblock handling 2 * 3 * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved. 4 * 5 * This software may be freely redistributed under the terms of the 6 * GNU General Public License. 7 * 8 * You should have received a copy of the GNU General Public License 9 * along with this program; if not, write to the Free Software 10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 11 * 12 * Authors: David Howells <dhowells@redhat.com> 13 * David Woodhouse <dwmw2@infradead.org> 14 * 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mount.h> 20 #include <linux/init.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/parser.h> 25 #include <linux/statfs.h> 26 #include <linux/sched.h> 27 #include "internal.h" 28 29 #define AFS_FS_MAGIC 0x6B414653 /* 'kAFS' */ 30 31 static void afs_i_init_once(void *foo); 32 static struct dentry *afs_mount(struct file_system_type *fs_type, 33 int flags, const char *dev_name, void *data); 34 static void afs_kill_super(struct super_block *sb); 35 static struct inode *afs_alloc_inode(struct super_block *sb); 36 static void afs_destroy_inode(struct inode *inode); 37 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf); 38 39 struct file_system_type afs_fs_type = { 40 .owner = THIS_MODULE, 41 .name = "afs", 42 .mount = afs_mount, 43 .kill_sb = afs_kill_super, 44 .fs_flags = 0, 45 }; 46 47 static const struct super_operations afs_super_ops = { 48 .statfs = afs_statfs, 49 .alloc_inode = afs_alloc_inode, 50 .drop_inode = afs_drop_inode, 51 .destroy_inode = afs_destroy_inode, 52 .evict_inode = afs_evict_inode, 53 .show_options = generic_show_options, 54 }; 55 56 static struct kmem_cache *afs_inode_cachep; 57 static atomic_t afs_count_active_inodes; 58 59 enum { 60 afs_no_opt, 61 afs_opt_cell, 62 afs_opt_rwpath, 63 afs_opt_vol, 64 afs_opt_autocell, 65 }; 66 67 static const match_table_t afs_options_list = { 68 { afs_opt_cell, "cell=%s" }, 69 { afs_opt_rwpath, "rwpath" }, 70 { afs_opt_vol, "vol=%s" }, 71 { afs_opt_autocell, "autocell" }, 72 { afs_no_opt, NULL }, 73 }; 74 75 /* 76 * initialise the filesystem 77 */ 78 int __init afs_fs_init(void) 79 { 80 int ret; 81 82 _enter(""); 83 84 /* create ourselves an inode cache */ 85 atomic_set(&afs_count_active_inodes, 0); 86 87 ret = -ENOMEM; 88 afs_inode_cachep = kmem_cache_create("afs_inode_cache", 89 sizeof(struct afs_vnode), 90 0, 91 SLAB_HWCACHE_ALIGN, 92 afs_i_init_once); 93 if (!afs_inode_cachep) { 94 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n"); 95 return ret; 96 } 97 98 /* now export our filesystem to lesser mortals */ 99 ret = register_filesystem(&afs_fs_type); 100 if (ret < 0) { 101 kmem_cache_destroy(afs_inode_cachep); 102 _leave(" = %d", ret); 103 return ret; 104 } 105 106 _leave(" = 0"); 107 return 0; 108 } 109 110 /* 111 * clean up the filesystem 112 */ 113 void __exit afs_fs_exit(void) 114 { 115 _enter(""); 116 117 afs_mntpt_kill_timer(); 118 unregister_filesystem(&afs_fs_type); 119 120 if (atomic_read(&afs_count_active_inodes) != 0) { 121 printk("kAFS: %d active inode objects still present\n", 122 atomic_read(&afs_count_active_inodes)); 123 BUG(); 124 } 125 126 kmem_cache_destroy(afs_inode_cachep); 127 _leave(""); 128 } 129 130 /* 131 * parse the mount options 132 * - this function has been shamelessly adapted from the ext3 fs which 133 * shamelessly adapted it from the msdos fs 134 */ 135 static int afs_parse_options(struct afs_mount_params *params, 136 char *options, const char **devname) 137 { 138 struct afs_cell *cell; 139 substring_t args[MAX_OPT_ARGS]; 140 char *p; 141 int token; 142 143 _enter("%s", options); 144 145 options[PAGE_SIZE - 1] = 0; 146 147 while ((p = strsep(&options, ","))) { 148 if (!*p) 149 continue; 150 151 token = match_token(p, afs_options_list, args); 152 switch (token) { 153 case afs_opt_cell: 154 cell = afs_cell_lookup(args[0].from, 155 args[0].to - args[0].from, 156 false); 157 if (IS_ERR(cell)) 158 return PTR_ERR(cell); 159 afs_put_cell(params->cell); 160 params->cell = cell; 161 break; 162 163 case afs_opt_rwpath: 164 params->rwpath = 1; 165 break; 166 167 case afs_opt_vol: 168 *devname = args[0].from; 169 break; 170 171 case afs_opt_autocell: 172 params->autocell = 1; 173 break; 174 175 default: 176 printk(KERN_ERR "kAFS:" 177 " Unknown or invalid mount option: '%s'\n", p); 178 return -EINVAL; 179 } 180 } 181 182 _leave(" = 0"); 183 return 0; 184 } 185 186 /* 187 * parse a device name to get cell name, volume name, volume type and R/W 188 * selector 189 * - this can be one of the following: 190 * "%[cell:]volume[.]" R/W volume 191 * "#[cell:]volume[.]" R/O or R/W volume (rwpath=0), 192 * or R/W (rwpath=1) volume 193 * "%[cell:]volume.readonly" R/O volume 194 * "#[cell:]volume.readonly" R/O volume 195 * "%[cell:]volume.backup" Backup volume 196 * "#[cell:]volume.backup" Backup volume 197 */ 198 static int afs_parse_device_name(struct afs_mount_params *params, 199 const char *name) 200 { 201 struct afs_cell *cell; 202 const char *cellname, *suffix; 203 int cellnamesz; 204 205 _enter(",%s", name); 206 207 if (!name) { 208 printk(KERN_ERR "kAFS: no volume name specified\n"); 209 return -EINVAL; 210 } 211 212 if ((name[0] != '%' && name[0] != '#') || !name[1]) { 213 printk(KERN_ERR "kAFS: unparsable volume name\n"); 214 return -EINVAL; 215 } 216 217 /* determine the type of volume we're looking for */ 218 params->type = AFSVL_ROVOL; 219 params->force = false; 220 if (params->rwpath || name[0] == '%') { 221 params->type = AFSVL_RWVOL; 222 params->force = true; 223 } 224 name++; 225 226 /* split the cell name out if there is one */ 227 params->volname = strchr(name, ':'); 228 if (params->volname) { 229 cellname = name; 230 cellnamesz = params->volname - name; 231 params->volname++; 232 } else { 233 params->volname = name; 234 cellname = NULL; 235 cellnamesz = 0; 236 } 237 238 /* the volume type is further affected by a possible suffix */ 239 suffix = strrchr(params->volname, '.'); 240 if (suffix) { 241 if (strcmp(suffix, ".readonly") == 0) { 242 params->type = AFSVL_ROVOL; 243 params->force = true; 244 } else if (strcmp(suffix, ".backup") == 0) { 245 params->type = AFSVL_BACKVOL; 246 params->force = true; 247 } else if (suffix[1] == 0) { 248 } else { 249 suffix = NULL; 250 } 251 } 252 253 params->volnamesz = suffix ? 254 suffix - params->volname : strlen(params->volname); 255 256 _debug("cell %*.*s [%p]", 257 cellnamesz, cellnamesz, cellname ?: "", params->cell); 258 259 /* lookup the cell record */ 260 if (cellname || !params->cell) { 261 cell = afs_cell_lookup(cellname, cellnamesz, true); 262 if (IS_ERR(cell)) { 263 printk(KERN_ERR "kAFS: unable to lookup cell '%*.*s'\n", 264 cellnamesz, cellnamesz, cellname ?: ""); 265 return PTR_ERR(cell); 266 } 267 afs_put_cell(params->cell); 268 params->cell = cell; 269 } 270 271 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s", 272 params->cell->name, params->cell, 273 params->volnamesz, params->volnamesz, params->volname, 274 suffix ?: "-", params->type, params->force ? " FORCE" : ""); 275 276 return 0; 277 } 278 279 /* 280 * check a superblock to see if it's the one we're looking for 281 */ 282 static int afs_test_super(struct super_block *sb, void *data) 283 { 284 struct afs_super_info *as1 = data; 285 struct afs_super_info *as = sb->s_fs_info; 286 287 return as->volume == as1->volume; 288 } 289 290 static int afs_set_super(struct super_block *sb, void *data) 291 { 292 sb->s_fs_info = data; 293 return set_anon_super(sb, NULL); 294 } 295 296 /* 297 * fill in the superblock 298 */ 299 static int afs_fill_super(struct super_block *sb, 300 struct afs_mount_params *params) 301 { 302 struct afs_super_info *as = sb->s_fs_info; 303 struct afs_fid fid; 304 struct dentry *root = NULL; 305 struct inode *inode = NULL; 306 int ret; 307 308 _enter(""); 309 310 /* fill in the superblock */ 311 sb->s_blocksize = PAGE_CACHE_SIZE; 312 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 313 sb->s_magic = AFS_FS_MAGIC; 314 sb->s_op = &afs_super_ops; 315 sb->s_bdi = &as->volume->bdi; 316 strlcpy(sb->s_id, as->volume->vlocation->vldb.name, sizeof(sb->s_id)); 317 318 /* allocate the root inode and dentry */ 319 fid.vid = as->volume->vid; 320 fid.vnode = 1; 321 fid.unique = 1; 322 inode = afs_iget(sb, params->key, &fid, NULL, NULL); 323 if (IS_ERR(inode)) 324 return PTR_ERR(inode); 325 326 if (params->autocell) 327 set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags); 328 329 ret = -ENOMEM; 330 root = d_alloc_root(inode); 331 if (!root) 332 goto error; 333 334 sb->s_d_op = &afs_fs_dentry_operations; 335 sb->s_root = root; 336 337 _leave(" = 0"); 338 return 0; 339 340 error: 341 iput(inode); 342 _leave(" = %d", ret); 343 return ret; 344 } 345 346 /* 347 * get an AFS superblock 348 */ 349 static struct dentry *afs_mount(struct file_system_type *fs_type, 350 int flags, const char *dev_name, void *options) 351 { 352 struct afs_mount_params params; 353 struct super_block *sb; 354 struct afs_volume *vol; 355 struct key *key; 356 char *new_opts = kstrdup(options, GFP_KERNEL); 357 struct afs_super_info *as; 358 int ret; 359 360 _enter(",,%s,%p", dev_name, options); 361 362 memset(¶ms, 0, sizeof(params)); 363 364 /* parse the options and device name */ 365 if (options) { 366 ret = afs_parse_options(¶ms, options, &dev_name); 367 if (ret < 0) 368 goto error; 369 } 370 371 ret = afs_parse_device_name(¶ms, dev_name); 372 if (ret < 0) 373 goto error; 374 375 /* try and do the mount securely */ 376 key = afs_request_key(params.cell); 377 if (IS_ERR(key)) { 378 _leave(" = %ld [key]", PTR_ERR(key)); 379 ret = PTR_ERR(key); 380 goto error; 381 } 382 params.key = key; 383 384 /* parse the device name */ 385 vol = afs_volume_lookup(¶ms); 386 if (IS_ERR(vol)) { 387 ret = PTR_ERR(vol); 388 goto error; 389 } 390 391 /* allocate a superblock info record */ 392 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL); 393 if (!as) { 394 ret = -ENOMEM; 395 afs_put_volume(vol); 396 goto error; 397 } 398 as->volume = vol; 399 400 /* allocate a deviceless superblock */ 401 sb = sget(fs_type, afs_test_super, afs_set_super, as); 402 if (IS_ERR(sb)) { 403 ret = PTR_ERR(sb); 404 afs_put_volume(vol); 405 kfree(as); 406 goto error; 407 } 408 409 if (!sb->s_root) { 410 /* initial superblock/root creation */ 411 _debug("create"); 412 sb->s_flags = flags; 413 ret = afs_fill_super(sb, ¶ms); 414 if (ret < 0) { 415 deactivate_locked_super(sb); 416 goto error; 417 } 418 save_mount_options(sb, new_opts); 419 sb->s_flags |= MS_ACTIVE; 420 } else { 421 _debug("reuse"); 422 ASSERTCMP(sb->s_flags, &, MS_ACTIVE); 423 afs_put_volume(vol); 424 kfree(as); 425 } 426 427 afs_put_cell(params.cell); 428 kfree(new_opts); 429 _leave(" = 0 [%p]", sb); 430 return dget(sb->s_root); 431 432 error: 433 afs_put_cell(params.cell); 434 key_put(params.key); 435 kfree(new_opts); 436 _leave(" = %d", ret); 437 return ERR_PTR(ret); 438 } 439 440 static void afs_kill_super(struct super_block *sb) 441 { 442 struct afs_super_info *as = sb->s_fs_info; 443 kill_anon_super(sb); 444 afs_put_volume(as->volume); 445 kfree(as); 446 } 447 448 /* 449 * initialise an inode cache slab element prior to any use 450 */ 451 static void afs_i_init_once(void *_vnode) 452 { 453 struct afs_vnode *vnode = _vnode; 454 455 memset(vnode, 0, sizeof(*vnode)); 456 inode_init_once(&vnode->vfs_inode); 457 init_waitqueue_head(&vnode->update_waitq); 458 mutex_init(&vnode->permits_lock); 459 mutex_init(&vnode->validate_lock); 460 spin_lock_init(&vnode->writeback_lock); 461 spin_lock_init(&vnode->lock); 462 INIT_LIST_HEAD(&vnode->writebacks); 463 INIT_LIST_HEAD(&vnode->pending_locks); 464 INIT_LIST_HEAD(&vnode->granted_locks); 465 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work); 466 INIT_WORK(&vnode->cb_broken_work, afs_broken_callback_work); 467 } 468 469 /* 470 * allocate an AFS inode struct from our slab cache 471 */ 472 static struct inode *afs_alloc_inode(struct super_block *sb) 473 { 474 struct afs_vnode *vnode; 475 476 vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL); 477 if (!vnode) 478 return NULL; 479 480 atomic_inc(&afs_count_active_inodes); 481 482 memset(&vnode->fid, 0, sizeof(vnode->fid)); 483 memset(&vnode->status, 0, sizeof(vnode->status)); 484 485 vnode->volume = NULL; 486 vnode->update_cnt = 0; 487 vnode->flags = 1 << AFS_VNODE_UNSET; 488 vnode->cb_promised = false; 489 490 _leave(" = %p", &vnode->vfs_inode); 491 return &vnode->vfs_inode; 492 } 493 494 static void afs_i_callback(struct rcu_head *head) 495 { 496 struct inode *inode = container_of(head, struct inode, i_rcu); 497 struct afs_vnode *vnode = AFS_FS_I(inode); 498 INIT_LIST_HEAD(&inode->i_dentry); 499 kmem_cache_free(afs_inode_cachep, vnode); 500 } 501 502 /* 503 * destroy an AFS inode struct 504 */ 505 static void afs_destroy_inode(struct inode *inode) 506 { 507 struct afs_vnode *vnode = AFS_FS_I(inode); 508 509 _enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode); 510 511 _debug("DESTROY INODE %p", inode); 512 513 ASSERTCMP(vnode->server, ==, NULL); 514 515 call_rcu(&inode->i_rcu, afs_i_callback); 516 atomic_dec(&afs_count_active_inodes); 517 } 518 519 /* 520 * return information about an AFS volume 521 */ 522 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf) 523 { 524 struct afs_volume_status vs; 525 struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode); 526 struct key *key; 527 int ret; 528 529 key = afs_request_key(vnode->volume->cell); 530 if (IS_ERR(key)) 531 return PTR_ERR(key); 532 533 ret = afs_vnode_get_volume_status(vnode, key, &vs); 534 key_put(key); 535 if (ret < 0) { 536 _leave(" = %d", ret); 537 return ret; 538 } 539 540 buf->f_type = dentry->d_sb->s_magic; 541 buf->f_bsize = AFS_BLOCK_SIZE; 542 buf->f_namelen = AFSNAMEMAX - 1; 543 544 if (vs.max_quota == 0) 545 buf->f_blocks = vs.part_max_blocks; 546 else 547 buf->f_blocks = vs.max_quota; 548 buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use; 549 return 0; 550 } 551