1 /* AFS superblock handling 2 * 3 * Copyright (c) 2002, 2007, 2018 Red Hat, Inc. All rights reserved. 4 * 5 * This software may be freely redistributed under the terms of the 6 * GNU General Public License. 7 * 8 * You should have received a copy of the GNU General Public License 9 * along with this program; if not, write to the Free Software 10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 11 * 12 * Authors: David Howells <dhowells@redhat.com> 13 * David Woodhouse <dwmw2@infradead.org> 14 * 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mount.h> 20 #include <linux/init.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/fs_parser.h> 25 #include <linux/statfs.h> 26 #include <linux/sched.h> 27 #include <linux/nsproxy.h> 28 #include <linux/magic.h> 29 #include <net/net_namespace.h> 30 #include "internal.h" 31 32 static void afs_i_init_once(void *foo); 33 static void afs_kill_super(struct super_block *sb); 34 static struct inode *afs_alloc_inode(struct super_block *sb); 35 static void afs_destroy_inode(struct inode *inode); 36 static void afs_free_inode(struct inode *inode); 37 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf); 38 static int afs_show_devname(struct seq_file *m, struct dentry *root); 39 static int afs_show_options(struct seq_file *m, struct dentry *root); 40 static int afs_init_fs_context(struct fs_context *fc); 41 static const struct fs_parameter_spec afs_fs_parameters[]; 42 43 struct file_system_type afs_fs_type = { 44 .owner = THIS_MODULE, 45 .name = "afs", 46 .init_fs_context = afs_init_fs_context, 47 .parameters = afs_fs_parameters, 48 .kill_sb = afs_kill_super, 49 .fs_flags = FS_RENAME_DOES_D_MOVE, 50 }; 51 MODULE_ALIAS_FS("afs"); 52 53 int afs_net_id; 54 55 static const struct super_operations afs_super_ops = { 56 .statfs = afs_statfs, 57 .alloc_inode = afs_alloc_inode, 58 .write_inode = afs_write_inode, 59 .drop_inode = afs_drop_inode, 60 .destroy_inode = afs_destroy_inode, 61 .free_inode = afs_free_inode, 62 .evict_inode = afs_evict_inode, 63 .show_devname = afs_show_devname, 64 .show_options = afs_show_options, 65 }; 66 67 static struct kmem_cache *afs_inode_cachep; 68 static atomic_t afs_count_active_inodes; 69 70 enum afs_param { 71 Opt_autocell, 72 Opt_dyn, 73 Opt_flock, 74 Opt_source, 75 }; 76 77 static const struct constant_table afs_param_flock[] = { 78 {"local", afs_flock_mode_local }, 79 {"openafs", afs_flock_mode_openafs }, 80 {"strict", afs_flock_mode_strict }, 81 {"write", afs_flock_mode_write }, 82 {} 83 }; 84 85 static const struct fs_parameter_spec afs_fs_parameters[] = { 86 fsparam_flag ("autocell", Opt_autocell), 87 fsparam_flag ("dyn", Opt_dyn), 88 fsparam_enum ("flock", Opt_flock, afs_param_flock), 89 fsparam_string("source", Opt_source), 90 {} 91 }; 92 93 /* 94 * initialise the filesystem 95 */ 96 int __init afs_fs_init(void) 97 { 98 int ret; 99 100 _enter(""); 101 102 /* create ourselves an inode cache */ 103 atomic_set(&afs_count_active_inodes, 0); 104 105 ret = -ENOMEM; 106 afs_inode_cachep = kmem_cache_create("afs_inode_cache", 107 sizeof(struct afs_vnode), 108 0, 109 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, 110 afs_i_init_once); 111 if (!afs_inode_cachep) { 112 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n"); 113 return ret; 114 } 115 116 /* now export our filesystem to lesser mortals */ 117 ret = register_filesystem(&afs_fs_type); 118 if (ret < 0) { 119 kmem_cache_destroy(afs_inode_cachep); 120 _leave(" = %d", ret); 121 return ret; 122 } 123 124 _leave(" = 0"); 125 return 0; 126 } 127 128 /* 129 * clean up the filesystem 130 */ 131 void afs_fs_exit(void) 132 { 133 _enter(""); 134 135 afs_mntpt_kill_timer(); 136 unregister_filesystem(&afs_fs_type); 137 138 if (atomic_read(&afs_count_active_inodes) != 0) { 139 printk("kAFS: %d active inode objects still present\n", 140 atomic_read(&afs_count_active_inodes)); 141 BUG(); 142 } 143 144 /* 145 * Make sure all delayed rcu free inodes are flushed before we 146 * destroy cache. 147 */ 148 rcu_barrier(); 149 kmem_cache_destroy(afs_inode_cachep); 150 _leave(""); 151 } 152 153 /* 154 * Display the mount device name in /proc/mounts. 155 */ 156 static int afs_show_devname(struct seq_file *m, struct dentry *root) 157 { 158 struct afs_super_info *as = AFS_FS_S(root->d_sb); 159 struct afs_volume *volume = as->volume; 160 struct afs_cell *cell = as->cell; 161 const char *suf = ""; 162 char pref = '%'; 163 164 if (as->dyn_root) { 165 seq_puts(m, "none"); 166 return 0; 167 } 168 169 switch (volume->type) { 170 case AFSVL_RWVOL: 171 break; 172 case AFSVL_ROVOL: 173 pref = '#'; 174 if (volume->type_force) 175 suf = ".readonly"; 176 break; 177 case AFSVL_BACKVOL: 178 pref = '#'; 179 suf = ".backup"; 180 break; 181 } 182 183 seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf); 184 return 0; 185 } 186 187 /* 188 * Display the mount options in /proc/mounts. 189 */ 190 static int afs_show_options(struct seq_file *m, struct dentry *root) 191 { 192 struct afs_super_info *as = AFS_FS_S(root->d_sb); 193 const char *p = NULL; 194 195 if (as->dyn_root) 196 seq_puts(m, ",dyn"); 197 if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags)) 198 seq_puts(m, ",autocell"); 199 switch (as->flock_mode) { 200 case afs_flock_mode_unset: break; 201 case afs_flock_mode_local: p = "local"; break; 202 case afs_flock_mode_openafs: p = "openafs"; break; 203 case afs_flock_mode_strict: p = "strict"; break; 204 case afs_flock_mode_write: p = "write"; break; 205 } 206 if (p) 207 seq_printf(m, ",flock=%s", p); 208 209 return 0; 210 } 211 212 /* 213 * Parse the source name to get cell name, volume name, volume type and R/W 214 * selector. 215 * 216 * This can be one of the following: 217 * "%[cell:]volume[.]" R/W volume 218 * "#[cell:]volume[.]" R/O or R/W volume (R/O parent), 219 * or R/W (R/W parent) volume 220 * "%[cell:]volume.readonly" R/O volume 221 * "#[cell:]volume.readonly" R/O volume 222 * "%[cell:]volume.backup" Backup volume 223 * "#[cell:]volume.backup" Backup volume 224 */ 225 static int afs_parse_source(struct fs_context *fc, struct fs_parameter *param) 226 { 227 struct afs_fs_context *ctx = fc->fs_private; 228 struct afs_cell *cell; 229 const char *cellname, *suffix, *name = param->string; 230 int cellnamesz; 231 232 _enter(",%s", name); 233 234 if (fc->source) 235 return invalf(fc, "kAFS: Multiple sources not supported"); 236 237 if (!name) { 238 printk(KERN_ERR "kAFS: no volume name specified\n"); 239 return -EINVAL; 240 } 241 242 if ((name[0] != '%' && name[0] != '#') || !name[1]) { 243 /* To use dynroot, we don't want to have to provide a source */ 244 if (strcmp(name, "none") == 0) { 245 ctx->no_cell = true; 246 return 0; 247 } 248 printk(KERN_ERR "kAFS: unparsable volume name\n"); 249 return -EINVAL; 250 } 251 252 /* determine the type of volume we're looking for */ 253 if (name[0] == '%') { 254 ctx->type = AFSVL_RWVOL; 255 ctx->force = true; 256 } 257 name++; 258 259 /* split the cell name out if there is one */ 260 ctx->volname = strchr(name, ':'); 261 if (ctx->volname) { 262 cellname = name; 263 cellnamesz = ctx->volname - name; 264 ctx->volname++; 265 } else { 266 ctx->volname = name; 267 cellname = NULL; 268 cellnamesz = 0; 269 } 270 271 /* the volume type is further affected by a possible suffix */ 272 suffix = strrchr(ctx->volname, '.'); 273 if (suffix) { 274 if (strcmp(suffix, ".readonly") == 0) { 275 ctx->type = AFSVL_ROVOL; 276 ctx->force = true; 277 } else if (strcmp(suffix, ".backup") == 0) { 278 ctx->type = AFSVL_BACKVOL; 279 ctx->force = true; 280 } else if (suffix[1] == 0) { 281 } else { 282 suffix = NULL; 283 } 284 } 285 286 ctx->volnamesz = suffix ? 287 suffix - ctx->volname : strlen(ctx->volname); 288 289 _debug("cell %*.*s [%p]", 290 cellnamesz, cellnamesz, cellname ?: "", ctx->cell); 291 292 /* lookup the cell record */ 293 if (cellname) { 294 cell = afs_lookup_cell(ctx->net, cellname, cellnamesz, 295 NULL, false); 296 if (IS_ERR(cell)) { 297 pr_err("kAFS: unable to lookup cell '%*.*s'\n", 298 cellnamesz, cellnamesz, cellname ?: ""); 299 return PTR_ERR(cell); 300 } 301 afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_parse); 302 afs_see_cell(cell, afs_cell_trace_see_source); 303 ctx->cell = cell; 304 } 305 306 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s", 307 ctx->cell->name, ctx->cell, 308 ctx->volnamesz, ctx->volnamesz, ctx->volname, 309 suffix ?: "-", ctx->type, ctx->force ? " FORCE" : ""); 310 311 fc->source = param->string; 312 param->string = NULL; 313 return 0; 314 } 315 316 /* 317 * Parse a single mount parameter. 318 */ 319 static int afs_parse_param(struct fs_context *fc, struct fs_parameter *param) 320 { 321 struct fs_parse_result result; 322 struct afs_fs_context *ctx = fc->fs_private; 323 int opt; 324 325 opt = fs_parse(fc, afs_fs_parameters, param, &result); 326 if (opt < 0) 327 return opt; 328 329 switch (opt) { 330 case Opt_source: 331 return afs_parse_source(fc, param); 332 333 case Opt_autocell: 334 ctx->autocell = true; 335 break; 336 337 case Opt_dyn: 338 ctx->dyn_root = true; 339 break; 340 341 case Opt_flock: 342 ctx->flock_mode = result.uint_32; 343 break; 344 345 default: 346 return -EINVAL; 347 } 348 349 _leave(" = 0"); 350 return 0; 351 } 352 353 /* 354 * Validate the options, get the cell key and look up the volume. 355 */ 356 static int afs_validate_fc(struct fs_context *fc) 357 { 358 struct afs_fs_context *ctx = fc->fs_private; 359 struct afs_volume *volume; 360 struct afs_cell *cell; 361 struct key *key; 362 int ret; 363 364 if (!ctx->dyn_root) { 365 if (ctx->no_cell) { 366 pr_warn("kAFS: Can only specify source 'none' with -o dyn\n"); 367 return -EINVAL; 368 } 369 370 if (!ctx->cell) { 371 pr_warn("kAFS: No cell specified\n"); 372 return -EDESTADDRREQ; 373 } 374 375 reget_key: 376 /* We try to do the mount securely. */ 377 key = afs_request_key(ctx->cell); 378 if (IS_ERR(key)) 379 return PTR_ERR(key); 380 381 ctx->key = key; 382 383 if (ctx->volume) { 384 afs_put_volume(ctx->net, ctx->volume, 385 afs_volume_trace_put_validate_fc); 386 ctx->volume = NULL; 387 } 388 389 if (test_bit(AFS_CELL_FL_CHECK_ALIAS, &ctx->cell->flags)) { 390 ret = afs_cell_detect_alias(ctx->cell, key); 391 if (ret < 0) 392 return ret; 393 if (ret == 1) { 394 _debug("switch to alias"); 395 key_put(ctx->key); 396 ctx->key = NULL; 397 cell = afs_use_cell(ctx->cell->alias_of, 398 afs_cell_trace_use_fc_alias); 399 afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc); 400 ctx->cell = cell; 401 goto reget_key; 402 } 403 } 404 405 volume = afs_create_volume(ctx); 406 if (IS_ERR(volume)) 407 return PTR_ERR(volume); 408 409 ctx->volume = volume; 410 if (volume->type != AFSVL_RWVOL) 411 ctx->flock_mode = afs_flock_mode_local; 412 } 413 414 return 0; 415 } 416 417 /* 418 * check a superblock to see if it's the one we're looking for 419 */ 420 static int afs_test_super(struct super_block *sb, struct fs_context *fc) 421 { 422 struct afs_fs_context *ctx = fc->fs_private; 423 struct afs_super_info *as = AFS_FS_S(sb); 424 425 return (as->net_ns == fc->net_ns && 426 as->volume && 427 as->volume->vid == ctx->volume->vid && 428 as->cell == ctx->cell && 429 !as->dyn_root); 430 } 431 432 static int afs_dynroot_test_super(struct super_block *sb, struct fs_context *fc) 433 { 434 struct afs_super_info *as = AFS_FS_S(sb); 435 436 return (as->net_ns == fc->net_ns && 437 as->dyn_root); 438 } 439 440 static int afs_set_super(struct super_block *sb, struct fs_context *fc) 441 { 442 return set_anon_super(sb, NULL); 443 } 444 445 /* 446 * fill in the superblock 447 */ 448 static int afs_fill_super(struct super_block *sb, struct afs_fs_context *ctx) 449 { 450 struct afs_super_info *as = AFS_FS_S(sb); 451 struct inode *inode = NULL; 452 int ret; 453 454 _enter(""); 455 456 /* fill in the superblock */ 457 sb->s_blocksize = PAGE_SIZE; 458 sb->s_blocksize_bits = PAGE_SHIFT; 459 sb->s_maxbytes = MAX_LFS_FILESIZE; 460 sb->s_magic = AFS_FS_MAGIC; 461 sb->s_op = &afs_super_ops; 462 if (!as->dyn_root) 463 sb->s_xattr = afs_xattr_handlers; 464 ret = super_setup_bdi(sb); 465 if (ret) 466 return ret; 467 468 /* allocate the root inode and dentry */ 469 if (as->dyn_root) { 470 inode = afs_iget_pseudo_dir(sb, true); 471 } else { 472 sprintf(sb->s_id, "%llu", as->volume->vid); 473 afs_activate_volume(as->volume); 474 inode = afs_root_iget(sb, ctx->key); 475 } 476 477 if (IS_ERR(inode)) 478 return PTR_ERR(inode); 479 480 if (ctx->autocell || as->dyn_root) 481 set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags); 482 483 ret = -ENOMEM; 484 sb->s_root = d_make_root(inode); 485 if (!sb->s_root) 486 goto error; 487 488 if (as->dyn_root) { 489 sb->s_d_op = &afs_dynroot_dentry_operations; 490 ret = afs_dynroot_populate(sb); 491 if (ret < 0) 492 goto error; 493 } else { 494 sb->s_d_op = &afs_fs_dentry_operations; 495 rcu_assign_pointer(as->volume->sb, sb); 496 } 497 498 _leave(" = 0"); 499 return 0; 500 501 error: 502 _leave(" = %d", ret); 503 return ret; 504 } 505 506 static struct afs_super_info *afs_alloc_sbi(struct fs_context *fc) 507 { 508 struct afs_fs_context *ctx = fc->fs_private; 509 struct afs_super_info *as; 510 511 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL); 512 if (as) { 513 as->net_ns = get_net(fc->net_ns); 514 as->flock_mode = ctx->flock_mode; 515 if (ctx->dyn_root) { 516 as->dyn_root = true; 517 } else { 518 as->cell = afs_use_cell(ctx->cell, afs_cell_trace_use_sbi); 519 as->volume = afs_get_volume(ctx->volume, 520 afs_volume_trace_get_alloc_sbi); 521 } 522 } 523 return as; 524 } 525 526 static void afs_destroy_sbi(struct afs_super_info *as) 527 { 528 if (as) { 529 struct afs_net *net = afs_net(as->net_ns); 530 afs_put_volume(net, as->volume, afs_volume_trace_put_destroy_sbi); 531 afs_unuse_cell(net, as->cell, afs_cell_trace_unuse_sbi); 532 put_net(as->net_ns); 533 kfree(as); 534 } 535 } 536 537 static void afs_kill_super(struct super_block *sb) 538 { 539 struct afs_super_info *as = AFS_FS_S(sb); 540 541 if (as->dyn_root) 542 afs_dynroot_depopulate(sb); 543 544 /* Clear the callback interests (which will do ilookup5) before 545 * deactivating the superblock. 546 */ 547 if (as->volume) 548 rcu_assign_pointer(as->volume->sb, NULL); 549 kill_anon_super(sb); 550 if (as->volume) 551 afs_deactivate_volume(as->volume); 552 afs_destroy_sbi(as); 553 } 554 555 /* 556 * Get an AFS superblock and root directory. 557 */ 558 static int afs_get_tree(struct fs_context *fc) 559 { 560 struct afs_fs_context *ctx = fc->fs_private; 561 struct super_block *sb; 562 struct afs_super_info *as; 563 int ret; 564 565 ret = afs_validate_fc(fc); 566 if (ret) 567 goto error; 568 569 _enter(""); 570 571 /* allocate a superblock info record */ 572 ret = -ENOMEM; 573 as = afs_alloc_sbi(fc); 574 if (!as) 575 goto error; 576 fc->s_fs_info = as; 577 578 /* allocate a deviceless superblock */ 579 sb = sget_fc(fc, 580 as->dyn_root ? afs_dynroot_test_super : afs_test_super, 581 afs_set_super); 582 if (IS_ERR(sb)) { 583 ret = PTR_ERR(sb); 584 goto error; 585 } 586 587 if (!sb->s_root) { 588 /* initial superblock/root creation */ 589 _debug("create"); 590 ret = afs_fill_super(sb, ctx); 591 if (ret < 0) 592 goto error_sb; 593 sb->s_flags |= SB_ACTIVE; 594 } else { 595 _debug("reuse"); 596 ASSERTCMP(sb->s_flags, &, SB_ACTIVE); 597 } 598 599 fc->root = dget(sb->s_root); 600 trace_afs_get_tree(as->cell, as->volume); 601 _leave(" = 0 [%p]", sb); 602 return 0; 603 604 error_sb: 605 deactivate_locked_super(sb); 606 error: 607 _leave(" = %d", ret); 608 return ret; 609 } 610 611 static void afs_free_fc(struct fs_context *fc) 612 { 613 struct afs_fs_context *ctx = fc->fs_private; 614 615 afs_destroy_sbi(fc->s_fs_info); 616 afs_put_volume(ctx->net, ctx->volume, afs_volume_trace_put_free_fc); 617 afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc); 618 key_put(ctx->key); 619 kfree(ctx); 620 } 621 622 static const struct fs_context_operations afs_context_ops = { 623 .free = afs_free_fc, 624 .parse_param = afs_parse_param, 625 .get_tree = afs_get_tree, 626 }; 627 628 /* 629 * Set up the filesystem mount context. 630 */ 631 static int afs_init_fs_context(struct fs_context *fc) 632 { 633 struct afs_fs_context *ctx; 634 struct afs_cell *cell; 635 636 ctx = kzalloc(sizeof(struct afs_fs_context), GFP_KERNEL); 637 if (!ctx) 638 return -ENOMEM; 639 640 ctx->type = AFSVL_ROVOL; 641 ctx->net = afs_net(fc->net_ns); 642 643 /* Default to the workstation cell. */ 644 cell = afs_find_cell(ctx->net, NULL, 0, afs_cell_trace_use_fc); 645 if (IS_ERR(cell)) 646 cell = NULL; 647 ctx->cell = cell; 648 649 fc->fs_private = ctx; 650 fc->ops = &afs_context_ops; 651 return 0; 652 } 653 654 /* 655 * Initialise an inode cache slab element prior to any use. Note that 656 * afs_alloc_inode() *must* reset anything that could incorrectly leak from one 657 * inode to another. 658 */ 659 static void afs_i_init_once(void *_vnode) 660 { 661 struct afs_vnode *vnode = _vnode; 662 663 memset(vnode, 0, sizeof(*vnode)); 664 inode_init_once(&vnode->netfs.inode); 665 mutex_init(&vnode->io_lock); 666 init_rwsem(&vnode->validate_lock); 667 spin_lock_init(&vnode->wb_lock); 668 spin_lock_init(&vnode->lock); 669 INIT_LIST_HEAD(&vnode->wb_keys); 670 INIT_LIST_HEAD(&vnode->pending_locks); 671 INIT_LIST_HEAD(&vnode->granted_locks); 672 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work); 673 INIT_LIST_HEAD(&vnode->cb_mmap_link); 674 seqlock_init(&vnode->cb_lock); 675 } 676 677 /* 678 * allocate an AFS inode struct from our slab cache 679 */ 680 static struct inode *afs_alloc_inode(struct super_block *sb) 681 { 682 struct afs_vnode *vnode; 683 684 vnode = alloc_inode_sb(sb, afs_inode_cachep, GFP_KERNEL); 685 if (!vnode) 686 return NULL; 687 688 atomic_inc(&afs_count_active_inodes); 689 690 /* Reset anything that shouldn't leak from one inode to the next. */ 691 memset(&vnode->fid, 0, sizeof(vnode->fid)); 692 memset(&vnode->status, 0, sizeof(vnode->status)); 693 afs_vnode_set_cache(vnode, NULL); 694 695 vnode->volume = NULL; 696 vnode->lock_key = NULL; 697 vnode->permit_cache = NULL; 698 699 vnode->flags = 1 << AFS_VNODE_UNSET; 700 vnode->lock_state = AFS_VNODE_LOCK_NONE; 701 702 init_rwsem(&vnode->rmdir_lock); 703 INIT_WORK(&vnode->cb_work, afs_invalidate_mmap_work); 704 705 _leave(" = %p", &vnode->netfs.inode); 706 return &vnode->netfs.inode; 707 } 708 709 static void afs_free_inode(struct inode *inode) 710 { 711 kmem_cache_free(afs_inode_cachep, AFS_FS_I(inode)); 712 } 713 714 /* 715 * destroy an AFS inode struct 716 */ 717 static void afs_destroy_inode(struct inode *inode) 718 { 719 struct afs_vnode *vnode = AFS_FS_I(inode); 720 721 _enter("%p{%llx:%llu}", inode, vnode->fid.vid, vnode->fid.vnode); 722 723 _debug("DESTROY INODE %p", inode); 724 725 atomic_dec(&afs_count_active_inodes); 726 } 727 728 static void afs_get_volume_status_success(struct afs_operation *op) 729 { 730 struct afs_volume_status *vs = &op->volstatus.vs; 731 struct kstatfs *buf = op->volstatus.buf; 732 733 if (vs->max_quota == 0) 734 buf->f_blocks = vs->part_max_blocks; 735 else 736 buf->f_blocks = vs->max_quota; 737 738 if (buf->f_blocks > vs->blocks_in_use) 739 buf->f_bavail = buf->f_bfree = 740 buf->f_blocks - vs->blocks_in_use; 741 } 742 743 static const struct afs_operation_ops afs_get_volume_status_operation = { 744 .issue_afs_rpc = afs_fs_get_volume_status, 745 .issue_yfs_rpc = yfs_fs_get_volume_status, 746 .success = afs_get_volume_status_success, 747 }; 748 749 /* 750 * return information about an AFS volume 751 */ 752 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf) 753 { 754 struct afs_super_info *as = AFS_FS_S(dentry->d_sb); 755 struct afs_operation *op; 756 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 757 758 buf->f_type = dentry->d_sb->s_magic; 759 buf->f_bsize = AFS_BLOCK_SIZE; 760 buf->f_namelen = AFSNAMEMAX - 1; 761 762 if (as->dyn_root) { 763 buf->f_blocks = 1; 764 buf->f_bavail = 0; 765 buf->f_bfree = 0; 766 return 0; 767 } 768 769 op = afs_alloc_operation(NULL, as->volume); 770 if (IS_ERR(op)) 771 return PTR_ERR(op); 772 773 afs_op_set_vnode(op, 0, vnode); 774 op->nr_files = 1; 775 op->volstatus.buf = buf; 776 op->ops = &afs_get_volume_status_operation; 777 return afs_do_sync_operation(op); 778 } 779