1 /* AFS superblock handling 2 * 3 * Copyright (c) 2002, 2007, 2018 Red Hat, Inc. All rights reserved. 4 * 5 * This software may be freely redistributed under the terms of the 6 * GNU General Public License. 7 * 8 * You should have received a copy of the GNU General Public License 9 * along with this program; if not, write to the Free Software 10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 11 * 12 * Authors: David Howells <dhowells@redhat.com> 13 * David Woodhouse <dwmw2@infradead.org> 14 * 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mount.h> 20 #include <linux/init.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/fs_parser.h> 25 #include <linux/statfs.h> 26 #include <linux/sched.h> 27 #include <linux/nsproxy.h> 28 #include <linux/magic.h> 29 #include <net/net_namespace.h> 30 #include "internal.h" 31 32 static void afs_i_init_once(void *foo); 33 static void afs_kill_super(struct super_block *sb); 34 static struct inode *afs_alloc_inode(struct super_block *sb); 35 static void afs_destroy_inode(struct inode *inode); 36 static void afs_free_inode(struct inode *inode); 37 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf); 38 static int afs_show_devname(struct seq_file *m, struct dentry *root); 39 static int afs_show_options(struct seq_file *m, struct dentry *root); 40 static int afs_init_fs_context(struct fs_context *fc); 41 static const struct fs_parameter_spec afs_fs_parameters[]; 42 43 struct file_system_type afs_fs_type = { 44 .owner = THIS_MODULE, 45 .name = "afs", 46 .init_fs_context = afs_init_fs_context, 47 .parameters = afs_fs_parameters, 48 .kill_sb = afs_kill_super, 49 .fs_flags = FS_RENAME_DOES_D_MOVE, 50 }; 51 MODULE_ALIAS_FS("afs"); 52 53 int afs_net_id; 54 55 static const struct super_operations afs_super_ops = { 56 .statfs = afs_statfs, 57 .alloc_inode = afs_alloc_inode, 58 .drop_inode = afs_drop_inode, 59 .destroy_inode = afs_destroy_inode, 60 .free_inode = afs_free_inode, 61 .evict_inode = afs_evict_inode, 62 .show_devname = afs_show_devname, 63 .show_options = afs_show_options, 64 }; 65 66 static struct kmem_cache *afs_inode_cachep; 67 static atomic_t afs_count_active_inodes; 68 69 enum afs_param { 70 Opt_autocell, 71 Opt_dyn, 72 Opt_flock, 73 Opt_source, 74 }; 75 76 static const struct constant_table afs_param_flock[] = { 77 {"local", afs_flock_mode_local }, 78 {"openafs", afs_flock_mode_openafs }, 79 {"strict", afs_flock_mode_strict }, 80 {"write", afs_flock_mode_write }, 81 {} 82 }; 83 84 static const struct fs_parameter_spec afs_fs_parameters[] = { 85 fsparam_flag ("autocell", Opt_autocell), 86 fsparam_flag ("dyn", Opt_dyn), 87 fsparam_enum ("flock", Opt_flock, afs_param_flock), 88 fsparam_string("source", Opt_source), 89 {} 90 }; 91 92 /* 93 * initialise the filesystem 94 */ 95 int __init afs_fs_init(void) 96 { 97 int ret; 98 99 _enter(""); 100 101 /* create ourselves an inode cache */ 102 atomic_set(&afs_count_active_inodes, 0); 103 104 ret = -ENOMEM; 105 afs_inode_cachep = kmem_cache_create("afs_inode_cache", 106 sizeof(struct afs_vnode), 107 0, 108 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, 109 afs_i_init_once); 110 if (!afs_inode_cachep) { 111 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n"); 112 return ret; 113 } 114 115 /* now export our filesystem to lesser mortals */ 116 ret = register_filesystem(&afs_fs_type); 117 if (ret < 0) { 118 kmem_cache_destroy(afs_inode_cachep); 119 _leave(" = %d", ret); 120 return ret; 121 } 122 123 _leave(" = 0"); 124 return 0; 125 } 126 127 /* 128 * clean up the filesystem 129 */ 130 void afs_fs_exit(void) 131 { 132 _enter(""); 133 134 afs_mntpt_kill_timer(); 135 unregister_filesystem(&afs_fs_type); 136 137 if (atomic_read(&afs_count_active_inodes) != 0) { 138 printk("kAFS: %d active inode objects still present\n", 139 atomic_read(&afs_count_active_inodes)); 140 BUG(); 141 } 142 143 /* 144 * Make sure all delayed rcu free inodes are flushed before we 145 * destroy cache. 146 */ 147 rcu_barrier(); 148 kmem_cache_destroy(afs_inode_cachep); 149 _leave(""); 150 } 151 152 /* 153 * Display the mount device name in /proc/mounts. 154 */ 155 static int afs_show_devname(struct seq_file *m, struct dentry *root) 156 { 157 struct afs_super_info *as = AFS_FS_S(root->d_sb); 158 struct afs_volume *volume = as->volume; 159 struct afs_cell *cell = as->cell; 160 const char *suf = ""; 161 char pref = '%'; 162 163 if (as->dyn_root) { 164 seq_puts(m, "none"); 165 return 0; 166 } 167 168 switch (volume->type) { 169 case AFSVL_RWVOL: 170 break; 171 case AFSVL_ROVOL: 172 pref = '#'; 173 if (volume->type_force) 174 suf = ".readonly"; 175 break; 176 case AFSVL_BACKVOL: 177 pref = '#'; 178 suf = ".backup"; 179 break; 180 } 181 182 seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf); 183 return 0; 184 } 185 186 /* 187 * Display the mount options in /proc/mounts. 188 */ 189 static int afs_show_options(struct seq_file *m, struct dentry *root) 190 { 191 struct afs_super_info *as = AFS_FS_S(root->d_sb); 192 const char *p = NULL; 193 194 if (as->dyn_root) 195 seq_puts(m, ",dyn"); 196 if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags)) 197 seq_puts(m, ",autocell"); 198 switch (as->flock_mode) { 199 case afs_flock_mode_unset: break; 200 case afs_flock_mode_local: p = "local"; break; 201 case afs_flock_mode_openafs: p = "openafs"; break; 202 case afs_flock_mode_strict: p = "strict"; break; 203 case afs_flock_mode_write: p = "write"; break; 204 } 205 if (p) 206 seq_printf(m, ",flock=%s", p); 207 208 return 0; 209 } 210 211 /* 212 * Parse the source name to get cell name, volume name, volume type and R/W 213 * selector. 214 * 215 * This can be one of the following: 216 * "%[cell:]volume[.]" R/W volume 217 * "#[cell:]volume[.]" R/O or R/W volume (R/O parent), 218 * or R/W (R/W parent) volume 219 * "%[cell:]volume.readonly" R/O volume 220 * "#[cell:]volume.readonly" R/O volume 221 * "%[cell:]volume.backup" Backup volume 222 * "#[cell:]volume.backup" Backup volume 223 */ 224 static int afs_parse_source(struct fs_context *fc, struct fs_parameter *param) 225 { 226 struct afs_fs_context *ctx = fc->fs_private; 227 struct afs_cell *cell; 228 const char *cellname, *suffix, *name = param->string; 229 int cellnamesz; 230 231 _enter(",%s", name); 232 233 if (!name) { 234 printk(KERN_ERR "kAFS: no volume name specified\n"); 235 return -EINVAL; 236 } 237 238 if ((name[0] != '%' && name[0] != '#') || !name[1]) { 239 /* To use dynroot, we don't want to have to provide a source */ 240 if (strcmp(name, "none") == 0) { 241 ctx->no_cell = true; 242 return 0; 243 } 244 printk(KERN_ERR "kAFS: unparsable volume name\n"); 245 return -EINVAL; 246 } 247 248 /* determine the type of volume we're looking for */ 249 if (name[0] == '%') { 250 ctx->type = AFSVL_RWVOL; 251 ctx->force = true; 252 } 253 name++; 254 255 /* split the cell name out if there is one */ 256 ctx->volname = strchr(name, ':'); 257 if (ctx->volname) { 258 cellname = name; 259 cellnamesz = ctx->volname - name; 260 ctx->volname++; 261 } else { 262 ctx->volname = name; 263 cellname = NULL; 264 cellnamesz = 0; 265 } 266 267 /* the volume type is further affected by a possible suffix */ 268 suffix = strrchr(ctx->volname, '.'); 269 if (suffix) { 270 if (strcmp(suffix, ".readonly") == 0) { 271 ctx->type = AFSVL_ROVOL; 272 ctx->force = true; 273 } else if (strcmp(suffix, ".backup") == 0) { 274 ctx->type = AFSVL_BACKVOL; 275 ctx->force = true; 276 } else if (suffix[1] == 0) { 277 } else { 278 suffix = NULL; 279 } 280 } 281 282 ctx->volnamesz = suffix ? 283 suffix - ctx->volname : strlen(ctx->volname); 284 285 _debug("cell %*.*s [%p]", 286 cellnamesz, cellnamesz, cellname ?: "", ctx->cell); 287 288 /* lookup the cell record */ 289 if (cellname) { 290 cell = afs_lookup_cell(ctx->net, cellname, cellnamesz, 291 NULL, false); 292 if (IS_ERR(cell)) { 293 pr_err("kAFS: unable to lookup cell '%*.*s'\n", 294 cellnamesz, cellnamesz, cellname ?: ""); 295 return PTR_ERR(cell); 296 } 297 afs_put_cell(ctx->net, ctx->cell); 298 ctx->cell = cell; 299 } 300 301 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s", 302 ctx->cell->name, ctx->cell, 303 ctx->volnamesz, ctx->volnamesz, ctx->volname, 304 suffix ?: "-", ctx->type, ctx->force ? " FORCE" : ""); 305 306 fc->source = param->string; 307 param->string = NULL; 308 return 0; 309 } 310 311 /* 312 * Parse a single mount parameter. 313 */ 314 static int afs_parse_param(struct fs_context *fc, struct fs_parameter *param) 315 { 316 struct fs_parse_result result; 317 struct afs_fs_context *ctx = fc->fs_private; 318 int opt; 319 320 opt = fs_parse(fc, afs_fs_parameters, param, &result); 321 if (opt < 0) 322 return opt; 323 324 switch (opt) { 325 case Opt_source: 326 return afs_parse_source(fc, param); 327 328 case Opt_autocell: 329 ctx->autocell = true; 330 break; 331 332 case Opt_dyn: 333 ctx->dyn_root = true; 334 break; 335 336 case Opt_flock: 337 ctx->flock_mode = result.uint_32; 338 break; 339 340 default: 341 return -EINVAL; 342 } 343 344 _leave(" = 0"); 345 return 0; 346 } 347 348 /* 349 * Validate the options, get the cell key and look up the volume. 350 */ 351 static int afs_validate_fc(struct fs_context *fc) 352 { 353 struct afs_fs_context *ctx = fc->fs_private; 354 struct afs_volume *volume; 355 struct key *key; 356 357 if (!ctx->dyn_root) { 358 if (ctx->no_cell) { 359 pr_warn("kAFS: Can only specify source 'none' with -o dyn\n"); 360 return -EINVAL; 361 } 362 363 if (!ctx->cell) { 364 pr_warn("kAFS: No cell specified\n"); 365 return -EDESTADDRREQ; 366 } 367 368 /* We try to do the mount securely. */ 369 key = afs_request_key(ctx->cell); 370 if (IS_ERR(key)) 371 return PTR_ERR(key); 372 373 ctx->key = key; 374 375 if (ctx->volume) { 376 afs_put_volume(ctx->cell, ctx->volume); 377 ctx->volume = NULL; 378 } 379 380 volume = afs_create_volume(ctx); 381 if (IS_ERR(volume)) 382 return PTR_ERR(volume); 383 384 ctx->volume = volume; 385 } 386 387 return 0; 388 } 389 390 /* 391 * check a superblock to see if it's the one we're looking for 392 */ 393 static int afs_test_super(struct super_block *sb, struct fs_context *fc) 394 { 395 struct afs_fs_context *ctx = fc->fs_private; 396 struct afs_super_info *as = AFS_FS_S(sb); 397 398 return (as->net_ns == fc->net_ns && 399 as->volume && 400 as->volume->vid == ctx->volume->vid && 401 as->cell == ctx->cell && 402 !as->dyn_root); 403 } 404 405 static int afs_dynroot_test_super(struct super_block *sb, struct fs_context *fc) 406 { 407 struct afs_super_info *as = AFS_FS_S(sb); 408 409 return (as->net_ns == fc->net_ns && 410 as->dyn_root); 411 } 412 413 static int afs_set_super(struct super_block *sb, struct fs_context *fc) 414 { 415 return set_anon_super(sb, NULL); 416 } 417 418 /* 419 * fill in the superblock 420 */ 421 static int afs_fill_super(struct super_block *sb, struct afs_fs_context *ctx) 422 { 423 struct afs_super_info *as = AFS_FS_S(sb); 424 struct afs_iget_data iget_data; 425 struct inode *inode = NULL; 426 int ret; 427 428 _enter(""); 429 430 /* fill in the superblock */ 431 sb->s_blocksize = PAGE_SIZE; 432 sb->s_blocksize_bits = PAGE_SHIFT; 433 sb->s_maxbytes = MAX_LFS_FILESIZE; 434 sb->s_magic = AFS_FS_MAGIC; 435 sb->s_op = &afs_super_ops; 436 if (!as->dyn_root) 437 sb->s_xattr = afs_xattr_handlers; 438 ret = super_setup_bdi(sb); 439 if (ret) 440 return ret; 441 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 442 443 /* allocate the root inode and dentry */ 444 if (as->dyn_root) { 445 inode = afs_iget_pseudo_dir(sb, true); 446 } else { 447 sprintf(sb->s_id, "%llu", as->volume->vid); 448 afs_activate_volume(as->volume); 449 iget_data.fid.vid = as->volume->vid; 450 iget_data.fid.vnode = 1; 451 iget_data.fid.vnode_hi = 0; 452 iget_data.fid.unique = 1; 453 iget_data.cb_v_break = as->volume->cb_v_break; 454 iget_data.cb_s_break = 0; 455 inode = afs_iget(sb, ctx->key, &iget_data, NULL, NULL, NULL); 456 } 457 458 if (IS_ERR(inode)) 459 return PTR_ERR(inode); 460 461 if (ctx->autocell || as->dyn_root) 462 set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags); 463 464 ret = -ENOMEM; 465 sb->s_root = d_make_root(inode); 466 if (!sb->s_root) 467 goto error; 468 469 if (as->dyn_root) { 470 sb->s_d_op = &afs_dynroot_dentry_operations; 471 ret = afs_dynroot_populate(sb); 472 if (ret < 0) 473 goto error; 474 } else { 475 sb->s_d_op = &afs_fs_dentry_operations; 476 } 477 478 _leave(" = 0"); 479 return 0; 480 481 error: 482 _leave(" = %d", ret); 483 return ret; 484 } 485 486 static struct afs_super_info *afs_alloc_sbi(struct fs_context *fc) 487 { 488 struct afs_fs_context *ctx = fc->fs_private; 489 struct afs_super_info *as; 490 491 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL); 492 if (as) { 493 as->net_ns = get_net(fc->net_ns); 494 as->flock_mode = ctx->flock_mode; 495 if (ctx->dyn_root) { 496 as->dyn_root = true; 497 } else { 498 as->cell = afs_get_cell(ctx->cell); 499 as->volume = __afs_get_volume(ctx->volume); 500 } 501 } 502 return as; 503 } 504 505 static void afs_destroy_sbi(struct afs_super_info *as) 506 { 507 if (as) { 508 afs_put_volume(as->cell, as->volume); 509 afs_put_cell(afs_net(as->net_ns), as->cell); 510 put_net(as->net_ns); 511 kfree(as); 512 } 513 } 514 515 static void afs_kill_super(struct super_block *sb) 516 { 517 struct afs_super_info *as = AFS_FS_S(sb); 518 struct afs_net *net = afs_net(as->net_ns); 519 520 if (as->dyn_root) 521 afs_dynroot_depopulate(sb); 522 523 /* Clear the callback interests (which will do ilookup5) before 524 * deactivating the superblock. 525 */ 526 if (as->volume) 527 afs_clear_callback_interests(net, as->volume->servers); 528 kill_anon_super(sb); 529 if (as->volume) 530 afs_deactivate_volume(as->volume); 531 afs_destroy_sbi(as); 532 } 533 534 /* 535 * Get an AFS superblock and root directory. 536 */ 537 static int afs_get_tree(struct fs_context *fc) 538 { 539 struct afs_fs_context *ctx = fc->fs_private; 540 struct super_block *sb; 541 struct afs_super_info *as; 542 int ret; 543 544 ret = afs_validate_fc(fc); 545 if (ret) 546 goto error; 547 548 _enter(""); 549 550 /* allocate a superblock info record */ 551 ret = -ENOMEM; 552 as = afs_alloc_sbi(fc); 553 if (!as) 554 goto error; 555 fc->s_fs_info = as; 556 557 /* allocate a deviceless superblock */ 558 sb = sget_fc(fc, 559 as->dyn_root ? afs_dynroot_test_super : afs_test_super, 560 afs_set_super); 561 if (IS_ERR(sb)) { 562 ret = PTR_ERR(sb); 563 goto error; 564 } 565 566 if (!sb->s_root) { 567 /* initial superblock/root creation */ 568 _debug("create"); 569 ret = afs_fill_super(sb, ctx); 570 if (ret < 0) 571 goto error_sb; 572 sb->s_flags |= SB_ACTIVE; 573 } else { 574 _debug("reuse"); 575 ASSERTCMP(sb->s_flags, &, SB_ACTIVE); 576 } 577 578 fc->root = dget(sb->s_root); 579 trace_afs_get_tree(as->cell, as->volume); 580 _leave(" = 0 [%p]", sb); 581 return 0; 582 583 error_sb: 584 deactivate_locked_super(sb); 585 error: 586 _leave(" = %d", ret); 587 return ret; 588 } 589 590 static void afs_free_fc(struct fs_context *fc) 591 { 592 struct afs_fs_context *ctx = fc->fs_private; 593 594 afs_destroy_sbi(fc->s_fs_info); 595 afs_put_volume(ctx->cell, ctx->volume); 596 afs_put_cell(ctx->net, ctx->cell); 597 key_put(ctx->key); 598 kfree(ctx); 599 } 600 601 static const struct fs_context_operations afs_context_ops = { 602 .free = afs_free_fc, 603 .parse_param = afs_parse_param, 604 .get_tree = afs_get_tree, 605 }; 606 607 /* 608 * Set up the filesystem mount context. 609 */ 610 static int afs_init_fs_context(struct fs_context *fc) 611 { 612 struct afs_fs_context *ctx; 613 struct afs_cell *cell; 614 615 ctx = kzalloc(sizeof(struct afs_fs_context), GFP_KERNEL); 616 if (!ctx) 617 return -ENOMEM; 618 619 ctx->type = AFSVL_ROVOL; 620 ctx->net = afs_net(fc->net_ns); 621 622 /* Default to the workstation cell. */ 623 rcu_read_lock(); 624 cell = afs_lookup_cell_rcu(ctx->net, NULL, 0); 625 rcu_read_unlock(); 626 if (IS_ERR(cell)) 627 cell = NULL; 628 ctx->cell = cell; 629 630 fc->fs_private = ctx; 631 fc->ops = &afs_context_ops; 632 return 0; 633 } 634 635 /* 636 * Initialise an inode cache slab element prior to any use. Note that 637 * afs_alloc_inode() *must* reset anything that could incorrectly leak from one 638 * inode to another. 639 */ 640 static void afs_i_init_once(void *_vnode) 641 { 642 struct afs_vnode *vnode = _vnode; 643 644 memset(vnode, 0, sizeof(*vnode)); 645 inode_init_once(&vnode->vfs_inode); 646 mutex_init(&vnode->io_lock); 647 init_rwsem(&vnode->validate_lock); 648 spin_lock_init(&vnode->wb_lock); 649 spin_lock_init(&vnode->lock); 650 INIT_LIST_HEAD(&vnode->wb_keys); 651 INIT_LIST_HEAD(&vnode->pending_locks); 652 INIT_LIST_HEAD(&vnode->granted_locks); 653 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work); 654 seqlock_init(&vnode->cb_lock); 655 } 656 657 /* 658 * allocate an AFS inode struct from our slab cache 659 */ 660 static struct inode *afs_alloc_inode(struct super_block *sb) 661 { 662 struct afs_vnode *vnode; 663 664 vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL); 665 if (!vnode) 666 return NULL; 667 668 atomic_inc(&afs_count_active_inodes); 669 670 /* Reset anything that shouldn't leak from one inode to the next. */ 671 memset(&vnode->fid, 0, sizeof(vnode->fid)); 672 memset(&vnode->status, 0, sizeof(vnode->status)); 673 674 vnode->volume = NULL; 675 vnode->lock_key = NULL; 676 vnode->permit_cache = NULL; 677 RCU_INIT_POINTER(vnode->cb_interest, NULL); 678 #ifdef CONFIG_AFS_FSCACHE 679 vnode->cache = NULL; 680 #endif 681 682 vnode->flags = 1 << AFS_VNODE_UNSET; 683 vnode->lock_state = AFS_VNODE_LOCK_NONE; 684 685 init_rwsem(&vnode->rmdir_lock); 686 687 _leave(" = %p", &vnode->vfs_inode); 688 return &vnode->vfs_inode; 689 } 690 691 static void afs_free_inode(struct inode *inode) 692 { 693 kmem_cache_free(afs_inode_cachep, AFS_FS_I(inode)); 694 } 695 696 /* 697 * destroy an AFS inode struct 698 */ 699 static void afs_destroy_inode(struct inode *inode) 700 { 701 struct afs_vnode *vnode = AFS_FS_I(inode); 702 703 _enter("%p{%llx:%llu}", inode, vnode->fid.vid, vnode->fid.vnode); 704 705 _debug("DESTROY INODE %p", inode); 706 707 ASSERTCMP(rcu_access_pointer(vnode->cb_interest), ==, NULL); 708 709 atomic_dec(&afs_count_active_inodes); 710 } 711 712 /* 713 * return information about an AFS volume 714 */ 715 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf) 716 { 717 struct afs_super_info *as = AFS_FS_S(dentry->d_sb); 718 struct afs_fs_cursor fc; 719 struct afs_volume_status vs; 720 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 721 struct key *key; 722 int ret; 723 724 buf->f_type = dentry->d_sb->s_magic; 725 buf->f_bsize = AFS_BLOCK_SIZE; 726 buf->f_namelen = AFSNAMEMAX - 1; 727 728 if (as->dyn_root) { 729 buf->f_blocks = 1; 730 buf->f_bavail = 0; 731 buf->f_bfree = 0; 732 return 0; 733 } 734 735 key = afs_request_key(vnode->volume->cell); 736 if (IS_ERR(key)) 737 return PTR_ERR(key); 738 739 ret = -ERESTARTSYS; 740 if (afs_begin_vnode_operation(&fc, vnode, key, true)) { 741 fc.flags |= AFS_FS_CURSOR_NO_VSLEEP; 742 while (afs_select_fileserver(&fc)) { 743 fc.cb_break = afs_calc_vnode_cb_break(vnode); 744 afs_fs_get_volume_status(&fc, &vs); 745 } 746 747 afs_check_for_remote_deletion(&fc, fc.vnode); 748 ret = afs_end_vnode_operation(&fc); 749 } 750 751 key_put(key); 752 753 if (ret == 0) { 754 if (vs.max_quota == 0) 755 buf->f_blocks = vs.part_max_blocks; 756 else 757 buf->f_blocks = vs.max_quota; 758 buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use; 759 } 760 761 return ret; 762 } 763