1 /* AFS superblock handling 2 * 3 * Copyright (c) 2002, 2007, 2018 Red Hat, Inc. All rights reserved. 4 * 5 * This software may be freely redistributed under the terms of the 6 * GNU General Public License. 7 * 8 * You should have received a copy of the GNU General Public License 9 * along with this program; if not, write to the Free Software 10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 11 * 12 * Authors: David Howells <dhowells@redhat.com> 13 * David Woodhouse <dwmw2@infradead.org> 14 * 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mount.h> 20 #include <linux/init.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/fs_parser.h> 25 #include <linux/statfs.h> 26 #include <linux/sched.h> 27 #include <linux/nsproxy.h> 28 #include <linux/magic.h> 29 #include <net/net_namespace.h> 30 #include "internal.h" 31 32 static void afs_i_init_once(void *foo); 33 static void afs_kill_super(struct super_block *sb); 34 static struct inode *afs_alloc_inode(struct super_block *sb); 35 static void afs_destroy_inode(struct inode *inode); 36 static void afs_free_inode(struct inode *inode); 37 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf); 38 static int afs_show_devname(struct seq_file *m, struct dentry *root); 39 static int afs_show_options(struct seq_file *m, struct dentry *root); 40 static int afs_init_fs_context(struct fs_context *fc); 41 static const struct fs_parameter_spec afs_fs_parameters[]; 42 43 struct file_system_type afs_fs_type = { 44 .owner = THIS_MODULE, 45 .name = "afs", 46 .init_fs_context = afs_init_fs_context, 47 .parameters = afs_fs_parameters, 48 .kill_sb = afs_kill_super, 49 .fs_flags = FS_RENAME_DOES_D_MOVE, 50 }; 51 MODULE_ALIAS_FS("afs"); 52 53 int afs_net_id; 54 55 static const struct super_operations afs_super_ops = { 56 .statfs = afs_statfs, 57 .alloc_inode = afs_alloc_inode, 58 .drop_inode = afs_drop_inode, 59 .destroy_inode = afs_destroy_inode, 60 .free_inode = afs_free_inode, 61 .evict_inode = afs_evict_inode, 62 .show_devname = afs_show_devname, 63 .show_options = afs_show_options, 64 }; 65 66 static struct kmem_cache *afs_inode_cachep; 67 static atomic_t afs_count_active_inodes; 68 69 enum afs_param { 70 Opt_autocell, 71 Opt_dyn, 72 Opt_flock, 73 Opt_source, 74 }; 75 76 static const struct constant_table afs_param_flock[] = { 77 {"local", afs_flock_mode_local }, 78 {"openafs", afs_flock_mode_openafs }, 79 {"strict", afs_flock_mode_strict }, 80 {"write", afs_flock_mode_write }, 81 {} 82 }; 83 84 static const struct fs_parameter_spec afs_fs_parameters[] = { 85 fsparam_flag ("autocell", Opt_autocell), 86 fsparam_flag ("dyn", Opt_dyn), 87 fsparam_enum ("flock", Opt_flock, afs_param_flock), 88 fsparam_string("source", Opt_source), 89 {} 90 }; 91 92 /* 93 * initialise the filesystem 94 */ 95 int __init afs_fs_init(void) 96 { 97 int ret; 98 99 _enter(""); 100 101 /* create ourselves an inode cache */ 102 atomic_set(&afs_count_active_inodes, 0); 103 104 ret = -ENOMEM; 105 afs_inode_cachep = kmem_cache_create("afs_inode_cache", 106 sizeof(struct afs_vnode), 107 0, 108 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, 109 afs_i_init_once); 110 if (!afs_inode_cachep) { 111 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n"); 112 return ret; 113 } 114 115 /* now export our filesystem to lesser mortals */ 116 ret = register_filesystem(&afs_fs_type); 117 if (ret < 0) { 118 kmem_cache_destroy(afs_inode_cachep); 119 _leave(" = %d", ret); 120 return ret; 121 } 122 123 _leave(" = 0"); 124 return 0; 125 } 126 127 /* 128 * clean up the filesystem 129 */ 130 void afs_fs_exit(void) 131 { 132 _enter(""); 133 134 afs_mntpt_kill_timer(); 135 unregister_filesystem(&afs_fs_type); 136 137 if (atomic_read(&afs_count_active_inodes) != 0) { 138 printk("kAFS: %d active inode objects still present\n", 139 atomic_read(&afs_count_active_inodes)); 140 BUG(); 141 } 142 143 /* 144 * Make sure all delayed rcu free inodes are flushed before we 145 * destroy cache. 146 */ 147 rcu_barrier(); 148 kmem_cache_destroy(afs_inode_cachep); 149 _leave(""); 150 } 151 152 /* 153 * Display the mount device name in /proc/mounts. 154 */ 155 static int afs_show_devname(struct seq_file *m, struct dentry *root) 156 { 157 struct afs_super_info *as = AFS_FS_S(root->d_sb); 158 struct afs_volume *volume = as->volume; 159 struct afs_cell *cell = as->cell; 160 const char *suf = ""; 161 char pref = '%'; 162 163 if (as->dyn_root) { 164 seq_puts(m, "none"); 165 return 0; 166 } 167 168 switch (volume->type) { 169 case AFSVL_RWVOL: 170 break; 171 case AFSVL_ROVOL: 172 pref = '#'; 173 if (volume->type_force) 174 suf = ".readonly"; 175 break; 176 case AFSVL_BACKVOL: 177 pref = '#'; 178 suf = ".backup"; 179 break; 180 } 181 182 seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf); 183 return 0; 184 } 185 186 /* 187 * Display the mount options in /proc/mounts. 188 */ 189 static int afs_show_options(struct seq_file *m, struct dentry *root) 190 { 191 struct afs_super_info *as = AFS_FS_S(root->d_sb); 192 const char *p = NULL; 193 194 if (as->dyn_root) 195 seq_puts(m, ",dyn"); 196 if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags)) 197 seq_puts(m, ",autocell"); 198 switch (as->flock_mode) { 199 case afs_flock_mode_unset: break; 200 case afs_flock_mode_local: p = "local"; break; 201 case afs_flock_mode_openafs: p = "openafs"; break; 202 case afs_flock_mode_strict: p = "strict"; break; 203 case afs_flock_mode_write: p = "write"; break; 204 } 205 if (p) 206 seq_printf(m, ",flock=%s", p); 207 208 return 0; 209 } 210 211 /* 212 * Parse the source name to get cell name, volume name, volume type and R/W 213 * selector. 214 * 215 * This can be one of the following: 216 * "%[cell:]volume[.]" R/W volume 217 * "#[cell:]volume[.]" R/O or R/W volume (R/O parent), 218 * or R/W (R/W parent) volume 219 * "%[cell:]volume.readonly" R/O volume 220 * "#[cell:]volume.readonly" R/O volume 221 * "%[cell:]volume.backup" Backup volume 222 * "#[cell:]volume.backup" Backup volume 223 */ 224 static int afs_parse_source(struct fs_context *fc, struct fs_parameter *param) 225 { 226 struct afs_fs_context *ctx = fc->fs_private; 227 struct afs_cell *cell; 228 const char *cellname, *suffix, *name = param->string; 229 int cellnamesz; 230 231 _enter(",%s", name); 232 233 if (fc->source) 234 return invalf(fc, "kAFS: Multiple sources not supported"); 235 236 if (!name) { 237 printk(KERN_ERR "kAFS: no volume name specified\n"); 238 return -EINVAL; 239 } 240 241 if ((name[0] != '%' && name[0] != '#') || !name[1]) { 242 /* To use dynroot, we don't want to have to provide a source */ 243 if (strcmp(name, "none") == 0) { 244 ctx->no_cell = true; 245 return 0; 246 } 247 printk(KERN_ERR "kAFS: unparsable volume name\n"); 248 return -EINVAL; 249 } 250 251 /* determine the type of volume we're looking for */ 252 if (name[0] == '%') { 253 ctx->type = AFSVL_RWVOL; 254 ctx->force = true; 255 } 256 name++; 257 258 /* split the cell name out if there is one */ 259 ctx->volname = strchr(name, ':'); 260 if (ctx->volname) { 261 cellname = name; 262 cellnamesz = ctx->volname - name; 263 ctx->volname++; 264 } else { 265 ctx->volname = name; 266 cellname = NULL; 267 cellnamesz = 0; 268 } 269 270 /* the volume type is further affected by a possible suffix */ 271 suffix = strrchr(ctx->volname, '.'); 272 if (suffix) { 273 if (strcmp(suffix, ".readonly") == 0) { 274 ctx->type = AFSVL_ROVOL; 275 ctx->force = true; 276 } else if (strcmp(suffix, ".backup") == 0) { 277 ctx->type = AFSVL_BACKVOL; 278 ctx->force = true; 279 } else if (suffix[1] == 0) { 280 } else { 281 suffix = NULL; 282 } 283 } 284 285 ctx->volnamesz = suffix ? 286 suffix - ctx->volname : strlen(ctx->volname); 287 288 _debug("cell %*.*s [%p]", 289 cellnamesz, cellnamesz, cellname ?: "", ctx->cell); 290 291 /* lookup the cell record */ 292 if (cellname) { 293 cell = afs_lookup_cell(ctx->net, cellname, cellnamesz, 294 NULL, false); 295 if (IS_ERR(cell)) { 296 pr_err("kAFS: unable to lookup cell '%*.*s'\n", 297 cellnamesz, cellnamesz, cellname ?: ""); 298 return PTR_ERR(cell); 299 } 300 afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_parse); 301 afs_see_cell(cell, afs_cell_trace_see_source); 302 ctx->cell = cell; 303 } 304 305 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s", 306 ctx->cell->name, ctx->cell, 307 ctx->volnamesz, ctx->volnamesz, ctx->volname, 308 suffix ?: "-", ctx->type, ctx->force ? " FORCE" : ""); 309 310 fc->source = param->string; 311 param->string = NULL; 312 return 0; 313 } 314 315 /* 316 * Parse a single mount parameter. 317 */ 318 static int afs_parse_param(struct fs_context *fc, struct fs_parameter *param) 319 { 320 struct fs_parse_result result; 321 struct afs_fs_context *ctx = fc->fs_private; 322 int opt; 323 324 opt = fs_parse(fc, afs_fs_parameters, param, &result); 325 if (opt < 0) 326 return opt; 327 328 switch (opt) { 329 case Opt_source: 330 return afs_parse_source(fc, param); 331 332 case Opt_autocell: 333 ctx->autocell = true; 334 break; 335 336 case Opt_dyn: 337 ctx->dyn_root = true; 338 break; 339 340 case Opt_flock: 341 ctx->flock_mode = result.uint_32; 342 break; 343 344 default: 345 return -EINVAL; 346 } 347 348 _leave(" = 0"); 349 return 0; 350 } 351 352 /* 353 * Validate the options, get the cell key and look up the volume. 354 */ 355 static int afs_validate_fc(struct fs_context *fc) 356 { 357 struct afs_fs_context *ctx = fc->fs_private; 358 struct afs_volume *volume; 359 struct afs_cell *cell; 360 struct key *key; 361 int ret; 362 363 if (!ctx->dyn_root) { 364 if (ctx->no_cell) { 365 pr_warn("kAFS: Can only specify source 'none' with -o dyn\n"); 366 return -EINVAL; 367 } 368 369 if (!ctx->cell) { 370 pr_warn("kAFS: No cell specified\n"); 371 return -EDESTADDRREQ; 372 } 373 374 reget_key: 375 /* We try to do the mount securely. */ 376 key = afs_request_key(ctx->cell); 377 if (IS_ERR(key)) 378 return PTR_ERR(key); 379 380 ctx->key = key; 381 382 if (ctx->volume) { 383 afs_put_volume(ctx->net, ctx->volume, 384 afs_volume_trace_put_validate_fc); 385 ctx->volume = NULL; 386 } 387 388 if (test_bit(AFS_CELL_FL_CHECK_ALIAS, &ctx->cell->flags)) { 389 ret = afs_cell_detect_alias(ctx->cell, key); 390 if (ret < 0) 391 return ret; 392 if (ret == 1) { 393 _debug("switch to alias"); 394 key_put(ctx->key); 395 ctx->key = NULL; 396 cell = afs_use_cell(ctx->cell->alias_of, 397 afs_cell_trace_use_fc_alias); 398 afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc); 399 ctx->cell = cell; 400 goto reget_key; 401 } 402 } 403 404 volume = afs_create_volume(ctx); 405 if (IS_ERR(volume)) 406 return PTR_ERR(volume); 407 408 ctx->volume = volume; 409 } 410 411 return 0; 412 } 413 414 /* 415 * check a superblock to see if it's the one we're looking for 416 */ 417 static int afs_test_super(struct super_block *sb, struct fs_context *fc) 418 { 419 struct afs_fs_context *ctx = fc->fs_private; 420 struct afs_super_info *as = AFS_FS_S(sb); 421 422 return (as->net_ns == fc->net_ns && 423 as->volume && 424 as->volume->vid == ctx->volume->vid && 425 as->cell == ctx->cell && 426 !as->dyn_root); 427 } 428 429 static int afs_dynroot_test_super(struct super_block *sb, struct fs_context *fc) 430 { 431 struct afs_super_info *as = AFS_FS_S(sb); 432 433 return (as->net_ns == fc->net_ns && 434 as->dyn_root); 435 } 436 437 static int afs_set_super(struct super_block *sb, struct fs_context *fc) 438 { 439 return set_anon_super(sb, NULL); 440 } 441 442 /* 443 * fill in the superblock 444 */ 445 static int afs_fill_super(struct super_block *sb, struct afs_fs_context *ctx) 446 { 447 struct afs_super_info *as = AFS_FS_S(sb); 448 struct inode *inode = NULL; 449 int ret; 450 451 _enter(""); 452 453 /* fill in the superblock */ 454 sb->s_blocksize = PAGE_SIZE; 455 sb->s_blocksize_bits = PAGE_SHIFT; 456 sb->s_maxbytes = MAX_LFS_FILESIZE; 457 sb->s_magic = AFS_FS_MAGIC; 458 sb->s_op = &afs_super_ops; 459 if (!as->dyn_root) 460 sb->s_xattr = afs_xattr_handlers; 461 ret = super_setup_bdi(sb); 462 if (ret) 463 return ret; 464 465 /* allocate the root inode and dentry */ 466 if (as->dyn_root) { 467 inode = afs_iget_pseudo_dir(sb, true); 468 } else { 469 sprintf(sb->s_id, "%llu", as->volume->vid); 470 afs_activate_volume(as->volume); 471 inode = afs_root_iget(sb, ctx->key); 472 } 473 474 if (IS_ERR(inode)) 475 return PTR_ERR(inode); 476 477 if (ctx->autocell || as->dyn_root) 478 set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags); 479 480 ret = -ENOMEM; 481 sb->s_root = d_make_root(inode); 482 if (!sb->s_root) 483 goto error; 484 485 if (as->dyn_root) { 486 sb->s_d_op = &afs_dynroot_dentry_operations; 487 ret = afs_dynroot_populate(sb); 488 if (ret < 0) 489 goto error; 490 } else { 491 sb->s_d_op = &afs_fs_dentry_operations; 492 rcu_assign_pointer(as->volume->sb, sb); 493 } 494 495 _leave(" = 0"); 496 return 0; 497 498 error: 499 _leave(" = %d", ret); 500 return ret; 501 } 502 503 static struct afs_super_info *afs_alloc_sbi(struct fs_context *fc) 504 { 505 struct afs_fs_context *ctx = fc->fs_private; 506 struct afs_super_info *as; 507 508 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL); 509 if (as) { 510 as->net_ns = get_net(fc->net_ns); 511 as->flock_mode = ctx->flock_mode; 512 if (ctx->dyn_root) { 513 as->dyn_root = true; 514 } else { 515 as->cell = afs_use_cell(ctx->cell, afs_cell_trace_use_sbi); 516 as->volume = afs_get_volume(ctx->volume, 517 afs_volume_trace_get_alloc_sbi); 518 } 519 } 520 return as; 521 } 522 523 static void afs_destroy_sbi(struct afs_super_info *as) 524 { 525 if (as) { 526 struct afs_net *net = afs_net(as->net_ns); 527 afs_put_volume(net, as->volume, afs_volume_trace_put_destroy_sbi); 528 afs_unuse_cell(net, as->cell, afs_cell_trace_unuse_sbi); 529 put_net(as->net_ns); 530 kfree(as); 531 } 532 } 533 534 static void afs_kill_super(struct super_block *sb) 535 { 536 struct afs_super_info *as = AFS_FS_S(sb); 537 538 if (as->dyn_root) 539 afs_dynroot_depopulate(sb); 540 541 /* Clear the callback interests (which will do ilookup5) before 542 * deactivating the superblock. 543 */ 544 if (as->volume) 545 rcu_assign_pointer(as->volume->sb, NULL); 546 kill_anon_super(sb); 547 if (as->volume) 548 afs_deactivate_volume(as->volume); 549 afs_destroy_sbi(as); 550 } 551 552 /* 553 * Get an AFS superblock and root directory. 554 */ 555 static int afs_get_tree(struct fs_context *fc) 556 { 557 struct afs_fs_context *ctx = fc->fs_private; 558 struct super_block *sb; 559 struct afs_super_info *as; 560 int ret; 561 562 ret = afs_validate_fc(fc); 563 if (ret) 564 goto error; 565 566 _enter(""); 567 568 /* allocate a superblock info record */ 569 ret = -ENOMEM; 570 as = afs_alloc_sbi(fc); 571 if (!as) 572 goto error; 573 fc->s_fs_info = as; 574 575 /* allocate a deviceless superblock */ 576 sb = sget_fc(fc, 577 as->dyn_root ? afs_dynroot_test_super : afs_test_super, 578 afs_set_super); 579 if (IS_ERR(sb)) { 580 ret = PTR_ERR(sb); 581 goto error; 582 } 583 584 if (!sb->s_root) { 585 /* initial superblock/root creation */ 586 _debug("create"); 587 ret = afs_fill_super(sb, ctx); 588 if (ret < 0) 589 goto error_sb; 590 sb->s_flags |= SB_ACTIVE; 591 } else { 592 _debug("reuse"); 593 ASSERTCMP(sb->s_flags, &, SB_ACTIVE); 594 } 595 596 fc->root = dget(sb->s_root); 597 trace_afs_get_tree(as->cell, as->volume); 598 _leave(" = 0 [%p]", sb); 599 return 0; 600 601 error_sb: 602 deactivate_locked_super(sb); 603 error: 604 _leave(" = %d", ret); 605 return ret; 606 } 607 608 static void afs_free_fc(struct fs_context *fc) 609 { 610 struct afs_fs_context *ctx = fc->fs_private; 611 612 afs_destroy_sbi(fc->s_fs_info); 613 afs_put_volume(ctx->net, ctx->volume, afs_volume_trace_put_free_fc); 614 afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc); 615 key_put(ctx->key); 616 kfree(ctx); 617 } 618 619 static const struct fs_context_operations afs_context_ops = { 620 .free = afs_free_fc, 621 .parse_param = afs_parse_param, 622 .get_tree = afs_get_tree, 623 }; 624 625 /* 626 * Set up the filesystem mount context. 627 */ 628 static int afs_init_fs_context(struct fs_context *fc) 629 { 630 struct afs_fs_context *ctx; 631 struct afs_cell *cell; 632 633 ctx = kzalloc(sizeof(struct afs_fs_context), GFP_KERNEL); 634 if (!ctx) 635 return -ENOMEM; 636 637 ctx->type = AFSVL_ROVOL; 638 ctx->net = afs_net(fc->net_ns); 639 640 /* Default to the workstation cell. */ 641 cell = afs_find_cell(ctx->net, NULL, 0, afs_cell_trace_use_fc); 642 if (IS_ERR(cell)) 643 cell = NULL; 644 ctx->cell = cell; 645 646 fc->fs_private = ctx; 647 fc->ops = &afs_context_ops; 648 return 0; 649 } 650 651 /* 652 * Initialise an inode cache slab element prior to any use. Note that 653 * afs_alloc_inode() *must* reset anything that could incorrectly leak from one 654 * inode to another. 655 */ 656 static void afs_i_init_once(void *_vnode) 657 { 658 struct afs_vnode *vnode = _vnode; 659 660 memset(vnode, 0, sizeof(*vnode)); 661 inode_init_once(&vnode->vfs_inode); 662 mutex_init(&vnode->io_lock); 663 init_rwsem(&vnode->validate_lock); 664 spin_lock_init(&vnode->wb_lock); 665 spin_lock_init(&vnode->lock); 666 INIT_LIST_HEAD(&vnode->wb_keys); 667 INIT_LIST_HEAD(&vnode->pending_locks); 668 INIT_LIST_HEAD(&vnode->granted_locks); 669 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work); 670 seqlock_init(&vnode->cb_lock); 671 } 672 673 /* 674 * allocate an AFS inode struct from our slab cache 675 */ 676 static struct inode *afs_alloc_inode(struct super_block *sb) 677 { 678 struct afs_vnode *vnode; 679 680 vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL); 681 if (!vnode) 682 return NULL; 683 684 atomic_inc(&afs_count_active_inodes); 685 686 /* Reset anything that shouldn't leak from one inode to the next. */ 687 memset(&vnode->fid, 0, sizeof(vnode->fid)); 688 memset(&vnode->status, 0, sizeof(vnode->status)); 689 690 vnode->volume = NULL; 691 vnode->lock_key = NULL; 692 vnode->permit_cache = NULL; 693 #ifdef CONFIG_AFS_FSCACHE 694 vnode->cache = NULL; 695 #endif 696 697 vnode->flags = 1 << AFS_VNODE_UNSET; 698 vnode->lock_state = AFS_VNODE_LOCK_NONE; 699 700 init_rwsem(&vnode->rmdir_lock); 701 INIT_WORK(&vnode->cb_work, afs_invalidate_mmap_work); 702 703 _leave(" = %p", &vnode->vfs_inode); 704 return &vnode->vfs_inode; 705 } 706 707 static void afs_free_inode(struct inode *inode) 708 { 709 kmem_cache_free(afs_inode_cachep, AFS_FS_I(inode)); 710 } 711 712 /* 713 * destroy an AFS inode struct 714 */ 715 static void afs_destroy_inode(struct inode *inode) 716 { 717 struct afs_vnode *vnode = AFS_FS_I(inode); 718 719 _enter("%p{%llx:%llu}", inode, vnode->fid.vid, vnode->fid.vnode); 720 721 _debug("DESTROY INODE %p", inode); 722 723 atomic_dec(&afs_count_active_inodes); 724 } 725 726 static void afs_get_volume_status_success(struct afs_operation *op) 727 { 728 struct afs_volume_status *vs = &op->volstatus.vs; 729 struct kstatfs *buf = op->volstatus.buf; 730 731 if (vs->max_quota == 0) 732 buf->f_blocks = vs->part_max_blocks; 733 else 734 buf->f_blocks = vs->max_quota; 735 736 if (buf->f_blocks > vs->blocks_in_use) 737 buf->f_bavail = buf->f_bfree = 738 buf->f_blocks - vs->blocks_in_use; 739 } 740 741 static const struct afs_operation_ops afs_get_volume_status_operation = { 742 .issue_afs_rpc = afs_fs_get_volume_status, 743 .issue_yfs_rpc = yfs_fs_get_volume_status, 744 .success = afs_get_volume_status_success, 745 }; 746 747 /* 748 * return information about an AFS volume 749 */ 750 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf) 751 { 752 struct afs_super_info *as = AFS_FS_S(dentry->d_sb); 753 struct afs_operation *op; 754 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 755 756 buf->f_type = dentry->d_sb->s_magic; 757 buf->f_bsize = AFS_BLOCK_SIZE; 758 buf->f_namelen = AFSNAMEMAX - 1; 759 760 if (as->dyn_root) { 761 buf->f_blocks = 1; 762 buf->f_bavail = 0; 763 buf->f_bfree = 0; 764 return 0; 765 } 766 767 op = afs_alloc_operation(NULL, as->volume); 768 if (IS_ERR(op)) 769 return PTR_ERR(op); 770 771 afs_op_set_vnode(op, 0, vnode); 772 op->nr_files = 1; 773 op->volstatus.buf = buf; 774 op->ops = &afs_get_volume_status_operation; 775 return afs_do_sync_operation(op); 776 } 777