xref: /openbmc/linux/fs/afs/rxrpc.c (revision f5b06569)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <net/af_rxrpc.h>
15 #include <rxrpc/packet.h>
16 #include "internal.h"
17 #include "afs_cm.h"
18 
19 static struct socket *afs_socket; /* my RxRPC socket */
20 static struct workqueue_struct *afs_async_calls;
21 static atomic_t afs_outstanding_calls;
22 static atomic_t afs_outstanding_skbs;
23 
24 static void afs_wake_up_call_waiter(struct afs_call *);
25 static int afs_wait_for_call_to_complete(struct afs_call *);
26 static void afs_wake_up_async_call(struct afs_call *);
27 static int afs_dont_wait_for_call_to_complete(struct afs_call *);
28 static void afs_process_async_call(struct afs_call *);
29 static void afs_rx_interceptor(struct sock *, unsigned long, struct sk_buff *);
30 static int afs_deliver_cm_op_id(struct afs_call *, struct sk_buff *, bool);
31 
32 /* synchronous call management */
33 const struct afs_wait_mode afs_sync_call = {
34 	.rx_wakeup	= afs_wake_up_call_waiter,
35 	.wait		= afs_wait_for_call_to_complete,
36 };
37 
38 /* asynchronous call management */
39 const struct afs_wait_mode afs_async_call = {
40 	.rx_wakeup	= afs_wake_up_async_call,
41 	.wait		= afs_dont_wait_for_call_to_complete,
42 };
43 
44 /* asynchronous incoming call management */
45 static const struct afs_wait_mode afs_async_incoming_call = {
46 	.rx_wakeup	= afs_wake_up_async_call,
47 };
48 
49 /* asynchronous incoming call initial processing */
50 static const struct afs_call_type afs_RXCMxxxx = {
51 	.name		= "CB.xxxx",
52 	.deliver	= afs_deliver_cm_op_id,
53 	.abort_to_error	= afs_abort_to_error,
54 };
55 
56 static void afs_collect_incoming_call(struct work_struct *);
57 
58 static struct sk_buff_head afs_incoming_calls;
59 static DECLARE_WORK(afs_collect_incoming_call_work, afs_collect_incoming_call);
60 
61 static void afs_async_workfn(struct work_struct *work)
62 {
63 	struct afs_call *call = container_of(work, struct afs_call, async_work);
64 
65 	call->async_workfn(call);
66 }
67 
68 static int afs_wait_atomic_t(atomic_t *p)
69 {
70 	schedule();
71 	return 0;
72 }
73 
74 /*
75  * open an RxRPC socket and bind it to be a server for callback notifications
76  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
77  */
78 int afs_open_socket(void)
79 {
80 	struct sockaddr_rxrpc srx;
81 	struct socket *socket;
82 	int ret;
83 
84 	_enter("");
85 
86 	skb_queue_head_init(&afs_incoming_calls);
87 
88 	ret = -ENOMEM;
89 	afs_async_calls = create_singlethread_workqueue("kafsd");
90 	if (!afs_async_calls)
91 		goto error_0;
92 
93 	ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
94 	if (ret < 0)
95 		goto error_1;
96 
97 	socket->sk->sk_allocation = GFP_NOFS;
98 
99 	/* bind the callback manager's address to make this a server socket */
100 	srx.srx_family			= AF_RXRPC;
101 	srx.srx_service			= CM_SERVICE;
102 	srx.transport_type		= SOCK_DGRAM;
103 	srx.transport_len		= sizeof(srx.transport.sin);
104 	srx.transport.sin.sin_family	= AF_INET;
105 	srx.transport.sin.sin_port	= htons(AFS_CM_PORT);
106 	memset(&srx.transport.sin.sin_addr, 0,
107 	       sizeof(srx.transport.sin.sin_addr));
108 
109 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
110 	if (ret < 0)
111 		goto error_2;
112 
113 	ret = kernel_listen(socket, INT_MAX);
114 	if (ret < 0)
115 		goto error_2;
116 
117 	rxrpc_kernel_intercept_rx_messages(socket, afs_rx_interceptor);
118 
119 	afs_socket = socket;
120 	_leave(" = 0");
121 	return 0;
122 
123 error_2:
124 	sock_release(socket);
125 error_1:
126 	destroy_workqueue(afs_async_calls);
127 error_0:
128 	_leave(" = %d", ret);
129 	return ret;
130 }
131 
132 /*
133  * close the RxRPC socket AFS was using
134  */
135 void afs_close_socket(void)
136 {
137 	_enter("");
138 
139 	wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
140 			 TASK_UNINTERRUPTIBLE);
141 	_debug("no outstanding calls");
142 
143 	sock_release(afs_socket);
144 
145 	_debug("dework");
146 	destroy_workqueue(afs_async_calls);
147 
148 	ASSERTCMP(atomic_read(&afs_outstanding_skbs), ==, 0);
149 	_leave("");
150 }
151 
152 /*
153  * Note that the data in a socket buffer is now consumed.
154  */
155 void afs_data_consumed(struct afs_call *call, struct sk_buff *skb)
156 {
157 	if (!skb) {
158 		_debug("DLVR NULL [%d]", atomic_read(&afs_outstanding_skbs));
159 		dump_stack();
160 	} else {
161 		_debug("DLVR %p{%u} [%d]",
162 		       skb, skb->mark, atomic_read(&afs_outstanding_skbs));
163 		rxrpc_kernel_data_consumed(call->rxcall, skb);
164 	}
165 }
166 
167 /*
168  * free a socket buffer
169  */
170 static void afs_free_skb(struct sk_buff *skb)
171 {
172 	if (!skb) {
173 		_debug("FREE NULL [%d]", atomic_read(&afs_outstanding_skbs));
174 		dump_stack();
175 	} else {
176 		_debug("FREE %p{%u} [%d]",
177 		       skb, skb->mark, atomic_read(&afs_outstanding_skbs));
178 		if (atomic_dec_return(&afs_outstanding_skbs) == -1)
179 			BUG();
180 		rxrpc_kernel_free_skb(skb);
181 	}
182 }
183 
184 /*
185  * free a call
186  */
187 static void afs_free_call(struct afs_call *call)
188 {
189 	_debug("DONE %p{%s} [%d]",
190 	       call, call->type->name, atomic_read(&afs_outstanding_calls));
191 
192 	ASSERTCMP(call->rxcall, ==, NULL);
193 	ASSERT(!work_pending(&call->async_work));
194 	ASSERT(skb_queue_empty(&call->rx_queue));
195 	ASSERT(call->type->name != NULL);
196 
197 	kfree(call->request);
198 	kfree(call);
199 
200 	if (atomic_dec_and_test(&afs_outstanding_calls))
201 		wake_up_atomic_t(&afs_outstanding_calls);
202 }
203 
204 /*
205  * End a call but do not free it
206  */
207 static void afs_end_call_nofree(struct afs_call *call)
208 {
209 	if (call->rxcall) {
210 		rxrpc_kernel_end_call(call->rxcall);
211 		call->rxcall = NULL;
212 	}
213 	if (call->type->destructor)
214 		call->type->destructor(call);
215 }
216 
217 /*
218  * End a call and free it
219  */
220 static void afs_end_call(struct afs_call *call)
221 {
222 	afs_end_call_nofree(call);
223 	afs_free_call(call);
224 }
225 
226 /*
227  * allocate a call with flat request and reply buffers
228  */
229 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
230 				     size_t request_size, size_t reply_size)
231 {
232 	struct afs_call *call;
233 
234 	call = kzalloc(sizeof(*call), GFP_NOFS);
235 	if (!call)
236 		goto nomem_call;
237 
238 	_debug("CALL %p{%s} [%d]",
239 	       call, type->name, atomic_read(&afs_outstanding_calls));
240 	atomic_inc(&afs_outstanding_calls);
241 
242 	call->type = type;
243 	call->request_size = request_size;
244 	call->reply_max = reply_size;
245 
246 	if (request_size) {
247 		call->request = kmalloc(request_size, GFP_NOFS);
248 		if (!call->request)
249 			goto nomem_free;
250 	}
251 
252 	if (reply_size) {
253 		call->buffer = kmalloc(reply_size, GFP_NOFS);
254 		if (!call->buffer)
255 			goto nomem_free;
256 	}
257 
258 	init_waitqueue_head(&call->waitq);
259 	skb_queue_head_init(&call->rx_queue);
260 	return call;
261 
262 nomem_free:
263 	afs_free_call(call);
264 nomem_call:
265 	return NULL;
266 }
267 
268 /*
269  * clean up a call with flat buffer
270  */
271 void afs_flat_call_destructor(struct afs_call *call)
272 {
273 	_enter("");
274 
275 	kfree(call->request);
276 	call->request = NULL;
277 	kfree(call->buffer);
278 	call->buffer = NULL;
279 }
280 
281 /*
282  * attach the data from a bunch of pages on an inode to a call
283  */
284 static int afs_send_pages(struct afs_call *call, struct msghdr *msg,
285 			  struct kvec *iov)
286 {
287 	struct page *pages[8];
288 	unsigned count, n, loop, offset, to;
289 	pgoff_t first = call->first, last = call->last;
290 	int ret;
291 
292 	_enter("");
293 
294 	offset = call->first_offset;
295 	call->first_offset = 0;
296 
297 	do {
298 		_debug("attach %lx-%lx", first, last);
299 
300 		count = last - first + 1;
301 		if (count > ARRAY_SIZE(pages))
302 			count = ARRAY_SIZE(pages);
303 		n = find_get_pages_contig(call->mapping, first, count, pages);
304 		ASSERTCMP(n, ==, count);
305 
306 		loop = 0;
307 		do {
308 			msg->msg_flags = 0;
309 			to = PAGE_SIZE;
310 			if (first + loop >= last)
311 				to = call->last_to;
312 			else
313 				msg->msg_flags = MSG_MORE;
314 			iov->iov_base = kmap(pages[loop]) + offset;
315 			iov->iov_len = to - offset;
316 			offset = 0;
317 
318 			_debug("- range %u-%u%s",
319 			       offset, to, msg->msg_flags ? " [more]" : "");
320 			iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC,
321 				      iov, 1, to - offset);
322 
323 			/* have to change the state *before* sending the last
324 			 * packet as RxRPC might give us the reply before it
325 			 * returns from sending the request */
326 			if (first + loop >= last)
327 				call->state = AFS_CALL_AWAIT_REPLY;
328 			ret = rxrpc_kernel_send_data(call->rxcall, msg,
329 						     to - offset);
330 			kunmap(pages[loop]);
331 			if (ret < 0)
332 				break;
333 		} while (++loop < count);
334 		first += count;
335 
336 		for (loop = 0; loop < count; loop++)
337 			put_page(pages[loop]);
338 		if (ret < 0)
339 			break;
340 	} while (first <= last);
341 
342 	_leave(" = %d", ret);
343 	return ret;
344 }
345 
346 /*
347  * initiate a call
348  */
349 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
350 		  const struct afs_wait_mode *wait_mode)
351 {
352 	struct sockaddr_rxrpc srx;
353 	struct rxrpc_call *rxcall;
354 	struct msghdr msg;
355 	struct kvec iov[1];
356 	int ret;
357 	struct sk_buff *skb;
358 
359 	_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
360 
361 	ASSERT(call->type != NULL);
362 	ASSERT(call->type->name != NULL);
363 
364 	_debug("____MAKE %p{%s,%x} [%d]____",
365 	       call, call->type->name, key_serial(call->key),
366 	       atomic_read(&afs_outstanding_calls));
367 
368 	call->wait_mode = wait_mode;
369 	call->async_workfn = afs_process_async_call;
370 	INIT_WORK(&call->async_work, afs_async_workfn);
371 
372 	memset(&srx, 0, sizeof(srx));
373 	srx.srx_family = AF_RXRPC;
374 	srx.srx_service = call->service_id;
375 	srx.transport_type = SOCK_DGRAM;
376 	srx.transport_len = sizeof(srx.transport.sin);
377 	srx.transport.sin.sin_family = AF_INET;
378 	srx.transport.sin.sin_port = call->port;
379 	memcpy(&srx.transport.sin.sin_addr, addr, 4);
380 
381 	/* create a call */
382 	rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
383 					 (unsigned long) call, gfp);
384 	call->key = NULL;
385 	if (IS_ERR(rxcall)) {
386 		ret = PTR_ERR(rxcall);
387 		goto error_kill_call;
388 	}
389 
390 	call->rxcall = rxcall;
391 
392 	/* send the request */
393 	iov[0].iov_base	= call->request;
394 	iov[0].iov_len	= call->request_size;
395 
396 	msg.msg_name		= NULL;
397 	msg.msg_namelen		= 0;
398 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
399 		      call->request_size);
400 	msg.msg_control		= NULL;
401 	msg.msg_controllen	= 0;
402 	msg.msg_flags		= (call->send_pages ? MSG_MORE : 0);
403 
404 	/* have to change the state *before* sending the last packet as RxRPC
405 	 * might give us the reply before it returns from sending the
406 	 * request */
407 	if (!call->send_pages)
408 		call->state = AFS_CALL_AWAIT_REPLY;
409 	ret = rxrpc_kernel_send_data(rxcall, &msg, call->request_size);
410 	if (ret < 0)
411 		goto error_do_abort;
412 
413 	if (call->send_pages) {
414 		ret = afs_send_pages(call, &msg, iov);
415 		if (ret < 0)
416 			goto error_do_abort;
417 	}
418 
419 	/* at this point, an async call may no longer exist as it may have
420 	 * already completed */
421 	return wait_mode->wait(call);
422 
423 error_do_abort:
424 	rxrpc_kernel_abort_call(rxcall, RX_USER_ABORT);
425 	while ((skb = skb_dequeue(&call->rx_queue)))
426 		afs_free_skb(skb);
427 error_kill_call:
428 	afs_end_call(call);
429 	_leave(" = %d", ret);
430 	return ret;
431 }
432 
433 /*
434  * Handles intercepted messages that were arriving in the socket's Rx queue.
435  *
436  * Called from the AF_RXRPC call processor in waitqueue process context.  For
437  * each call, it is guaranteed this will be called in order of packet to be
438  * delivered.
439  */
440 static void afs_rx_interceptor(struct sock *sk, unsigned long user_call_ID,
441 			       struct sk_buff *skb)
442 {
443 	struct afs_call *call = (struct afs_call *) user_call_ID;
444 
445 	_enter("%p,,%u", call, skb->mark);
446 
447 	_debug("ICPT %p{%u} [%d]",
448 	       skb, skb->mark, atomic_read(&afs_outstanding_skbs));
449 
450 	ASSERTCMP(sk, ==, afs_socket->sk);
451 	atomic_inc(&afs_outstanding_skbs);
452 
453 	if (!call) {
454 		/* its an incoming call for our callback service */
455 		skb_queue_tail(&afs_incoming_calls, skb);
456 		queue_work(afs_wq, &afs_collect_incoming_call_work);
457 	} else {
458 		/* route the messages directly to the appropriate call */
459 		skb_queue_tail(&call->rx_queue, skb);
460 		call->wait_mode->rx_wakeup(call);
461 	}
462 
463 	_leave("");
464 }
465 
466 /*
467  * deliver messages to a call
468  */
469 static void afs_deliver_to_call(struct afs_call *call)
470 {
471 	struct sk_buff *skb;
472 	bool last;
473 	u32 abort_code;
474 	int ret;
475 
476 	_enter("");
477 
478 	while ((call->state == AFS_CALL_AWAIT_REPLY ||
479 		call->state == AFS_CALL_AWAIT_OP_ID ||
480 		call->state == AFS_CALL_AWAIT_REQUEST ||
481 		call->state == AFS_CALL_AWAIT_ACK) &&
482 	       (skb = skb_dequeue(&call->rx_queue))) {
483 		switch (skb->mark) {
484 		case RXRPC_SKB_MARK_DATA:
485 			_debug("Rcv DATA");
486 			last = rxrpc_kernel_is_data_last(skb);
487 			ret = call->type->deliver(call, skb, last);
488 			switch (ret) {
489 			case -EAGAIN:
490 				if (last) {
491 					_debug("short data");
492 					goto unmarshal_error;
493 				}
494 				break;
495 			case 0:
496 				ASSERT(last);
497 				if (call->state == AFS_CALL_AWAIT_REPLY)
498 					call->state = AFS_CALL_COMPLETE;
499 				break;
500 			case -ENOTCONN:
501 				abort_code = RX_CALL_DEAD;
502 				goto do_abort;
503 			case -ENOTSUPP:
504 				abort_code = RX_INVALID_OPERATION;
505 				goto do_abort;
506 			default:
507 			unmarshal_error:
508 				abort_code = RXGEN_CC_UNMARSHAL;
509 				if (call->state != AFS_CALL_AWAIT_REPLY)
510 					abort_code = RXGEN_SS_UNMARSHAL;
511 			do_abort:
512 				rxrpc_kernel_abort_call(call->rxcall,
513 							abort_code);
514 				call->error = ret;
515 				call->state = AFS_CALL_ERROR;
516 				break;
517 			}
518 			break;
519 		case RXRPC_SKB_MARK_FINAL_ACK:
520 			_debug("Rcv ACK");
521 			call->state = AFS_CALL_COMPLETE;
522 			break;
523 		case RXRPC_SKB_MARK_BUSY:
524 			_debug("Rcv BUSY");
525 			call->error = -EBUSY;
526 			call->state = AFS_CALL_BUSY;
527 			break;
528 		case RXRPC_SKB_MARK_REMOTE_ABORT:
529 			abort_code = rxrpc_kernel_get_abort_code(skb);
530 			call->error = call->type->abort_to_error(abort_code);
531 			call->state = AFS_CALL_ABORTED;
532 			_debug("Rcv ABORT %u -> %d", abort_code, call->error);
533 			break;
534 		case RXRPC_SKB_MARK_LOCAL_ABORT:
535 			abort_code = rxrpc_kernel_get_abort_code(skb);
536 			call->error = call->type->abort_to_error(abort_code);
537 			call->state = AFS_CALL_ABORTED;
538 			_debug("Loc ABORT %u -> %d", abort_code, call->error);
539 			break;
540 		case RXRPC_SKB_MARK_NET_ERROR:
541 			call->error = -rxrpc_kernel_get_error_number(skb);
542 			call->state = AFS_CALL_ERROR;
543 			_debug("Rcv NET ERROR %d", call->error);
544 			break;
545 		case RXRPC_SKB_MARK_LOCAL_ERROR:
546 			call->error = -rxrpc_kernel_get_error_number(skb);
547 			call->state = AFS_CALL_ERROR;
548 			_debug("Rcv LOCAL ERROR %d", call->error);
549 			break;
550 		default:
551 			BUG();
552 			break;
553 		}
554 
555 		afs_free_skb(skb);
556 	}
557 
558 	/* make sure the queue is empty if the call is done with (we might have
559 	 * aborted the call early because of an unmarshalling error) */
560 	if (call->state >= AFS_CALL_COMPLETE) {
561 		while ((skb = skb_dequeue(&call->rx_queue)))
562 			afs_free_skb(skb);
563 		if (call->incoming)
564 			afs_end_call(call);
565 	}
566 
567 	_leave("");
568 }
569 
570 /*
571  * wait synchronously for a call to complete
572  */
573 static int afs_wait_for_call_to_complete(struct afs_call *call)
574 {
575 	struct sk_buff *skb;
576 	int ret;
577 
578 	DECLARE_WAITQUEUE(myself, current);
579 
580 	_enter("");
581 
582 	add_wait_queue(&call->waitq, &myself);
583 	for (;;) {
584 		set_current_state(TASK_INTERRUPTIBLE);
585 
586 		/* deliver any messages that are in the queue */
587 		if (!skb_queue_empty(&call->rx_queue)) {
588 			__set_current_state(TASK_RUNNING);
589 			afs_deliver_to_call(call);
590 			continue;
591 		}
592 
593 		ret = call->error;
594 		if (call->state >= AFS_CALL_COMPLETE)
595 			break;
596 		ret = -EINTR;
597 		if (signal_pending(current))
598 			break;
599 		schedule();
600 	}
601 
602 	remove_wait_queue(&call->waitq, &myself);
603 	__set_current_state(TASK_RUNNING);
604 
605 	/* kill the call */
606 	if (call->state < AFS_CALL_COMPLETE) {
607 		_debug("call incomplete");
608 		rxrpc_kernel_abort_call(call->rxcall, RX_CALL_DEAD);
609 		while ((skb = skb_dequeue(&call->rx_queue)))
610 			afs_free_skb(skb);
611 	}
612 
613 	_debug("call complete");
614 	afs_end_call(call);
615 	_leave(" = %d", ret);
616 	return ret;
617 }
618 
619 /*
620  * wake up a waiting call
621  */
622 static void afs_wake_up_call_waiter(struct afs_call *call)
623 {
624 	wake_up(&call->waitq);
625 }
626 
627 /*
628  * wake up an asynchronous call
629  */
630 static void afs_wake_up_async_call(struct afs_call *call)
631 {
632 	_enter("");
633 	queue_work(afs_async_calls, &call->async_work);
634 }
635 
636 /*
637  * put a call into asynchronous mode
638  * - mustn't touch the call descriptor as the call my have completed by the
639  *   time we get here
640  */
641 static int afs_dont_wait_for_call_to_complete(struct afs_call *call)
642 {
643 	_enter("");
644 	return -EINPROGRESS;
645 }
646 
647 /*
648  * delete an asynchronous call
649  */
650 static void afs_delete_async_call(struct afs_call *call)
651 {
652 	_enter("");
653 
654 	afs_free_call(call);
655 
656 	_leave("");
657 }
658 
659 /*
660  * perform processing on an asynchronous call
661  * - on a multiple-thread workqueue this work item may try to run on several
662  *   CPUs at the same time
663  */
664 static void afs_process_async_call(struct afs_call *call)
665 {
666 	_enter("");
667 
668 	if (!skb_queue_empty(&call->rx_queue))
669 		afs_deliver_to_call(call);
670 
671 	if (call->state >= AFS_CALL_COMPLETE && call->wait_mode) {
672 		if (call->wait_mode->async_complete)
673 			call->wait_mode->async_complete(call->reply,
674 							call->error);
675 		call->reply = NULL;
676 
677 		/* kill the call */
678 		afs_end_call_nofree(call);
679 
680 		/* we can't just delete the call because the work item may be
681 		 * queued */
682 		call->async_workfn = afs_delete_async_call;
683 		queue_work(afs_async_calls, &call->async_work);
684 	}
685 
686 	_leave("");
687 }
688 
689 /*
690  * Empty a socket buffer into a flat reply buffer.
691  */
692 int afs_transfer_reply(struct afs_call *call, struct sk_buff *skb, bool last)
693 {
694 	size_t len = skb->len;
695 
696 	if (len > call->reply_max - call->reply_size) {
697 		_leave(" = -EBADMSG [%zu > %u]",
698 		       len, call->reply_max - call->reply_size);
699 		return -EBADMSG;
700 	}
701 
702 	if (len > 0) {
703 		if (skb_copy_bits(skb, 0, call->buffer + call->reply_size,
704 				  len) < 0)
705 			BUG();
706 		call->reply_size += len;
707 	}
708 
709 	afs_data_consumed(call, skb);
710 	if (!last)
711 		return -EAGAIN;
712 
713 	if (call->reply_size != call->reply_max) {
714 		_leave(" = -EBADMSG [%u != %u]",
715 		       call->reply_size, call->reply_max);
716 		return -EBADMSG;
717 	}
718 	return 0;
719 }
720 
721 /*
722  * accept the backlog of incoming calls
723  */
724 static void afs_collect_incoming_call(struct work_struct *work)
725 {
726 	struct rxrpc_call *rxcall;
727 	struct afs_call *call = NULL;
728 	struct sk_buff *skb;
729 
730 	while ((skb = skb_dequeue(&afs_incoming_calls))) {
731 		_debug("new call");
732 
733 		/* don't need the notification */
734 		afs_free_skb(skb);
735 
736 		if (!call) {
737 			call = kzalloc(sizeof(struct afs_call), GFP_KERNEL);
738 			if (!call) {
739 				rxrpc_kernel_reject_call(afs_socket);
740 				return;
741 			}
742 
743 			call->async_workfn = afs_process_async_call;
744 			INIT_WORK(&call->async_work, afs_async_workfn);
745 			call->wait_mode = &afs_async_incoming_call;
746 			call->type = &afs_RXCMxxxx;
747 			init_waitqueue_head(&call->waitq);
748 			skb_queue_head_init(&call->rx_queue);
749 			call->state = AFS_CALL_AWAIT_OP_ID;
750 
751 			_debug("CALL %p{%s} [%d]",
752 			       call, call->type->name,
753 			       atomic_read(&afs_outstanding_calls));
754 			atomic_inc(&afs_outstanding_calls);
755 		}
756 
757 		rxcall = rxrpc_kernel_accept_call(afs_socket,
758 						  (unsigned long) call);
759 		if (!IS_ERR(rxcall)) {
760 			call->rxcall = rxcall;
761 			call = NULL;
762 		}
763 	}
764 
765 	if (call)
766 		afs_free_call(call);
767 }
768 
769 /*
770  * Grab the operation ID from an incoming cache manager call.  The socket
771  * buffer is discarded on error or if we don't yet have sufficient data.
772  */
773 static int afs_deliver_cm_op_id(struct afs_call *call, struct sk_buff *skb,
774 				bool last)
775 {
776 	size_t len = skb->len;
777 	void *oibuf = (void *) &call->operation_ID;
778 
779 	_enter("{%u},{%zu},%d", call->offset, len, last);
780 
781 	ASSERTCMP(call->offset, <, 4);
782 
783 	/* the operation ID forms the first four bytes of the request data */
784 	len = min_t(size_t, len, 4 - call->offset);
785 	if (skb_copy_bits(skb, 0, oibuf + call->offset, len) < 0)
786 		BUG();
787 	if (!pskb_pull(skb, len))
788 		BUG();
789 	call->offset += len;
790 
791 	if (call->offset < 4) {
792 		afs_data_consumed(call, skb);
793 		_leave(" = -EAGAIN");
794 		return -EAGAIN;
795 	}
796 
797 	call->state = AFS_CALL_AWAIT_REQUEST;
798 
799 	/* ask the cache manager to route the call (it'll change the call type
800 	 * if successful) */
801 	if (!afs_cm_incoming_call(call))
802 		return -ENOTSUPP;
803 
804 	/* pass responsibility for the remainer of this message off to the
805 	 * cache manager op */
806 	return call->type->deliver(call, skb, last);
807 }
808 
809 /*
810  * send an empty reply
811  */
812 void afs_send_empty_reply(struct afs_call *call)
813 {
814 	struct msghdr msg;
815 
816 	_enter("");
817 
818 	msg.msg_name		= NULL;
819 	msg.msg_namelen		= 0;
820 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
821 	msg.msg_control		= NULL;
822 	msg.msg_controllen	= 0;
823 	msg.msg_flags		= 0;
824 
825 	call->state = AFS_CALL_AWAIT_ACK;
826 	switch (rxrpc_kernel_send_data(call->rxcall, &msg, 0)) {
827 	case 0:
828 		_leave(" [replied]");
829 		return;
830 
831 	case -ENOMEM:
832 		_debug("oom");
833 		rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT);
834 	default:
835 		afs_end_call(call);
836 		_leave(" [error]");
837 		return;
838 	}
839 }
840 
841 /*
842  * send a simple reply
843  */
844 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
845 {
846 	struct msghdr msg;
847 	struct kvec iov[1];
848 	int n;
849 
850 	_enter("");
851 
852 	iov[0].iov_base		= (void *) buf;
853 	iov[0].iov_len		= len;
854 	msg.msg_name		= NULL;
855 	msg.msg_namelen		= 0;
856 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
857 	msg.msg_control		= NULL;
858 	msg.msg_controllen	= 0;
859 	msg.msg_flags		= 0;
860 
861 	call->state = AFS_CALL_AWAIT_ACK;
862 	n = rxrpc_kernel_send_data(call->rxcall, &msg, len);
863 	if (n >= 0) {
864 		/* Success */
865 		_leave(" [replied]");
866 		return;
867 	}
868 
869 	if (n == -ENOMEM) {
870 		_debug("oom");
871 		rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT);
872 	}
873 	afs_end_call(call);
874 	_leave(" [error]");
875 }
876 
877 /*
878  * Extract a piece of data from the received data socket buffers.
879  */
880 int afs_extract_data(struct afs_call *call, struct sk_buff *skb,
881 		     bool last, void *buf, size_t count)
882 {
883 	size_t len = skb->len;
884 
885 	_enter("{%u},{%zu},%d,,%zu", call->offset, len, last, count);
886 
887 	ASSERTCMP(call->offset, <, count);
888 
889 	len = min_t(size_t, len, count - call->offset);
890 	if (skb_copy_bits(skb, 0, buf + call->offset, len) < 0 ||
891 	    !pskb_pull(skb, len))
892 		BUG();
893 	call->offset += len;
894 
895 	if (call->offset < count) {
896 		afs_data_consumed(call, skb);
897 		_leave(" = -EAGAIN");
898 		return -EAGAIN;
899 	}
900 	return 0;
901 }
902