1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <net/sock.h> 14 #include <net/af_rxrpc.h> 15 #include <rxrpc/packet.h> 16 #include "internal.h" 17 #include "afs_cm.h" 18 19 static struct socket *afs_socket; /* my RxRPC socket */ 20 static struct workqueue_struct *afs_async_calls; 21 static atomic_t afs_outstanding_calls; 22 static atomic_t afs_outstanding_skbs; 23 24 static void afs_wake_up_call_waiter(struct afs_call *); 25 static int afs_wait_for_call_to_complete(struct afs_call *); 26 static void afs_wake_up_async_call(struct afs_call *); 27 static int afs_dont_wait_for_call_to_complete(struct afs_call *); 28 static void afs_process_async_call(struct afs_call *); 29 static void afs_rx_interceptor(struct sock *, unsigned long, struct sk_buff *); 30 static int afs_deliver_cm_op_id(struct afs_call *, struct sk_buff *, bool); 31 32 /* synchronous call management */ 33 const struct afs_wait_mode afs_sync_call = { 34 .rx_wakeup = afs_wake_up_call_waiter, 35 .wait = afs_wait_for_call_to_complete, 36 }; 37 38 /* asynchronous call management */ 39 const struct afs_wait_mode afs_async_call = { 40 .rx_wakeup = afs_wake_up_async_call, 41 .wait = afs_dont_wait_for_call_to_complete, 42 }; 43 44 /* asynchronous incoming call management */ 45 static const struct afs_wait_mode afs_async_incoming_call = { 46 .rx_wakeup = afs_wake_up_async_call, 47 }; 48 49 /* asynchronous incoming call initial processing */ 50 static const struct afs_call_type afs_RXCMxxxx = { 51 .name = "CB.xxxx", 52 .deliver = afs_deliver_cm_op_id, 53 .abort_to_error = afs_abort_to_error, 54 }; 55 56 static void afs_collect_incoming_call(struct work_struct *); 57 58 static struct sk_buff_head afs_incoming_calls; 59 static DECLARE_WORK(afs_collect_incoming_call_work, afs_collect_incoming_call); 60 61 static void afs_async_workfn(struct work_struct *work) 62 { 63 struct afs_call *call = container_of(work, struct afs_call, async_work); 64 65 call->async_workfn(call); 66 } 67 68 static int afs_wait_atomic_t(atomic_t *p) 69 { 70 schedule(); 71 return 0; 72 } 73 74 /* 75 * open an RxRPC socket and bind it to be a server for callback notifications 76 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 77 */ 78 int afs_open_socket(void) 79 { 80 struct sockaddr_rxrpc srx; 81 struct socket *socket; 82 int ret; 83 84 _enter(""); 85 86 skb_queue_head_init(&afs_incoming_calls); 87 88 ret = -ENOMEM; 89 afs_async_calls = create_singlethread_workqueue("kafsd"); 90 if (!afs_async_calls) 91 goto error_0; 92 93 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket); 94 if (ret < 0) 95 goto error_1; 96 97 socket->sk->sk_allocation = GFP_NOFS; 98 99 /* bind the callback manager's address to make this a server socket */ 100 srx.srx_family = AF_RXRPC; 101 srx.srx_service = CM_SERVICE; 102 srx.transport_type = SOCK_DGRAM; 103 srx.transport_len = sizeof(srx.transport.sin); 104 srx.transport.sin.sin_family = AF_INET; 105 srx.transport.sin.sin_port = htons(AFS_CM_PORT); 106 memset(&srx.transport.sin.sin_addr, 0, 107 sizeof(srx.transport.sin.sin_addr)); 108 109 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 110 if (ret < 0) 111 goto error_2; 112 113 ret = kernel_listen(socket, INT_MAX); 114 if (ret < 0) 115 goto error_2; 116 117 rxrpc_kernel_intercept_rx_messages(socket, afs_rx_interceptor); 118 119 afs_socket = socket; 120 _leave(" = 0"); 121 return 0; 122 123 error_2: 124 sock_release(socket); 125 error_1: 126 destroy_workqueue(afs_async_calls); 127 error_0: 128 _leave(" = %d", ret); 129 return ret; 130 } 131 132 /* 133 * close the RxRPC socket AFS was using 134 */ 135 void afs_close_socket(void) 136 { 137 _enter(""); 138 139 wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t, 140 TASK_UNINTERRUPTIBLE); 141 _debug("no outstanding calls"); 142 143 sock_release(afs_socket); 144 145 _debug("dework"); 146 destroy_workqueue(afs_async_calls); 147 148 ASSERTCMP(atomic_read(&afs_outstanding_skbs), ==, 0); 149 _leave(""); 150 } 151 152 /* 153 * Note that the data in a socket buffer is now consumed. 154 */ 155 void afs_data_consumed(struct afs_call *call, struct sk_buff *skb) 156 { 157 if (!skb) { 158 _debug("DLVR NULL [%d]", atomic_read(&afs_outstanding_skbs)); 159 dump_stack(); 160 } else { 161 _debug("DLVR %p{%u} [%d]", 162 skb, skb->mark, atomic_read(&afs_outstanding_skbs)); 163 rxrpc_kernel_data_consumed(call->rxcall, skb); 164 } 165 } 166 167 /* 168 * free a socket buffer 169 */ 170 static void afs_free_skb(struct sk_buff *skb) 171 { 172 if (!skb) { 173 _debug("FREE NULL [%d]", atomic_read(&afs_outstanding_skbs)); 174 dump_stack(); 175 } else { 176 _debug("FREE %p{%u} [%d]", 177 skb, skb->mark, atomic_read(&afs_outstanding_skbs)); 178 if (atomic_dec_return(&afs_outstanding_skbs) == -1) 179 BUG(); 180 rxrpc_kernel_free_skb(skb); 181 } 182 } 183 184 /* 185 * free a call 186 */ 187 static void afs_free_call(struct afs_call *call) 188 { 189 _debug("DONE %p{%s} [%d]", 190 call, call->type->name, atomic_read(&afs_outstanding_calls)); 191 192 ASSERTCMP(call->rxcall, ==, NULL); 193 ASSERT(!work_pending(&call->async_work)); 194 ASSERT(skb_queue_empty(&call->rx_queue)); 195 ASSERT(call->type->name != NULL); 196 197 kfree(call->request); 198 kfree(call); 199 200 if (atomic_dec_and_test(&afs_outstanding_calls)) 201 wake_up_atomic_t(&afs_outstanding_calls); 202 } 203 204 /* 205 * End a call but do not free it 206 */ 207 static void afs_end_call_nofree(struct afs_call *call) 208 { 209 if (call->rxcall) { 210 rxrpc_kernel_end_call(call->rxcall); 211 call->rxcall = NULL; 212 } 213 if (call->type->destructor) 214 call->type->destructor(call); 215 } 216 217 /* 218 * End a call and free it 219 */ 220 static void afs_end_call(struct afs_call *call) 221 { 222 afs_end_call_nofree(call); 223 afs_free_call(call); 224 } 225 226 /* 227 * allocate a call with flat request and reply buffers 228 */ 229 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type, 230 size_t request_size, size_t reply_size) 231 { 232 struct afs_call *call; 233 234 call = kzalloc(sizeof(*call), GFP_NOFS); 235 if (!call) 236 goto nomem_call; 237 238 _debug("CALL %p{%s} [%d]", 239 call, type->name, atomic_read(&afs_outstanding_calls)); 240 atomic_inc(&afs_outstanding_calls); 241 242 call->type = type; 243 call->request_size = request_size; 244 call->reply_max = reply_size; 245 246 if (request_size) { 247 call->request = kmalloc(request_size, GFP_NOFS); 248 if (!call->request) 249 goto nomem_free; 250 } 251 252 if (reply_size) { 253 call->buffer = kmalloc(reply_size, GFP_NOFS); 254 if (!call->buffer) 255 goto nomem_free; 256 } 257 258 init_waitqueue_head(&call->waitq); 259 skb_queue_head_init(&call->rx_queue); 260 return call; 261 262 nomem_free: 263 afs_free_call(call); 264 nomem_call: 265 return NULL; 266 } 267 268 /* 269 * clean up a call with flat buffer 270 */ 271 void afs_flat_call_destructor(struct afs_call *call) 272 { 273 _enter(""); 274 275 kfree(call->request); 276 call->request = NULL; 277 kfree(call->buffer); 278 call->buffer = NULL; 279 } 280 281 /* 282 * attach the data from a bunch of pages on an inode to a call 283 */ 284 static int afs_send_pages(struct afs_call *call, struct msghdr *msg, 285 struct kvec *iov) 286 { 287 struct page *pages[8]; 288 unsigned count, n, loop, offset, to; 289 pgoff_t first = call->first, last = call->last; 290 int ret; 291 292 _enter(""); 293 294 offset = call->first_offset; 295 call->first_offset = 0; 296 297 do { 298 _debug("attach %lx-%lx", first, last); 299 300 count = last - first + 1; 301 if (count > ARRAY_SIZE(pages)) 302 count = ARRAY_SIZE(pages); 303 n = find_get_pages_contig(call->mapping, first, count, pages); 304 ASSERTCMP(n, ==, count); 305 306 loop = 0; 307 do { 308 msg->msg_flags = 0; 309 to = PAGE_SIZE; 310 if (first + loop >= last) 311 to = call->last_to; 312 else 313 msg->msg_flags = MSG_MORE; 314 iov->iov_base = kmap(pages[loop]) + offset; 315 iov->iov_len = to - offset; 316 offset = 0; 317 318 _debug("- range %u-%u%s", 319 offset, to, msg->msg_flags ? " [more]" : ""); 320 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, 321 iov, 1, to - offset); 322 323 /* have to change the state *before* sending the last 324 * packet as RxRPC might give us the reply before it 325 * returns from sending the request */ 326 if (first + loop >= last) 327 call->state = AFS_CALL_AWAIT_REPLY; 328 ret = rxrpc_kernel_send_data(call->rxcall, msg, 329 to - offset); 330 kunmap(pages[loop]); 331 if (ret < 0) 332 break; 333 } while (++loop < count); 334 first += count; 335 336 for (loop = 0; loop < count; loop++) 337 put_page(pages[loop]); 338 if (ret < 0) 339 break; 340 } while (first <= last); 341 342 _leave(" = %d", ret); 343 return ret; 344 } 345 346 /* 347 * initiate a call 348 */ 349 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp, 350 const struct afs_wait_mode *wait_mode) 351 { 352 struct sockaddr_rxrpc srx; 353 struct rxrpc_call *rxcall; 354 struct msghdr msg; 355 struct kvec iov[1]; 356 int ret; 357 struct sk_buff *skb; 358 359 _enter("%x,{%d},", addr->s_addr, ntohs(call->port)); 360 361 ASSERT(call->type != NULL); 362 ASSERT(call->type->name != NULL); 363 364 _debug("____MAKE %p{%s,%x} [%d]____", 365 call, call->type->name, key_serial(call->key), 366 atomic_read(&afs_outstanding_calls)); 367 368 call->wait_mode = wait_mode; 369 call->async_workfn = afs_process_async_call; 370 INIT_WORK(&call->async_work, afs_async_workfn); 371 372 memset(&srx, 0, sizeof(srx)); 373 srx.srx_family = AF_RXRPC; 374 srx.srx_service = call->service_id; 375 srx.transport_type = SOCK_DGRAM; 376 srx.transport_len = sizeof(srx.transport.sin); 377 srx.transport.sin.sin_family = AF_INET; 378 srx.transport.sin.sin_port = call->port; 379 memcpy(&srx.transport.sin.sin_addr, addr, 4); 380 381 /* create a call */ 382 rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key, 383 (unsigned long) call, gfp); 384 call->key = NULL; 385 if (IS_ERR(rxcall)) { 386 ret = PTR_ERR(rxcall); 387 goto error_kill_call; 388 } 389 390 call->rxcall = rxcall; 391 392 /* send the request */ 393 iov[0].iov_base = call->request; 394 iov[0].iov_len = call->request_size; 395 396 msg.msg_name = NULL; 397 msg.msg_namelen = 0; 398 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, 399 call->request_size); 400 msg.msg_control = NULL; 401 msg.msg_controllen = 0; 402 msg.msg_flags = (call->send_pages ? MSG_MORE : 0); 403 404 /* have to change the state *before* sending the last packet as RxRPC 405 * might give us the reply before it returns from sending the 406 * request */ 407 if (!call->send_pages) 408 call->state = AFS_CALL_AWAIT_REPLY; 409 ret = rxrpc_kernel_send_data(rxcall, &msg, call->request_size); 410 if (ret < 0) 411 goto error_do_abort; 412 413 if (call->send_pages) { 414 ret = afs_send_pages(call, &msg, iov); 415 if (ret < 0) 416 goto error_do_abort; 417 } 418 419 /* at this point, an async call may no longer exist as it may have 420 * already completed */ 421 return wait_mode->wait(call); 422 423 error_do_abort: 424 rxrpc_kernel_abort_call(rxcall, RX_USER_ABORT); 425 while ((skb = skb_dequeue(&call->rx_queue))) 426 afs_free_skb(skb); 427 error_kill_call: 428 afs_end_call(call); 429 _leave(" = %d", ret); 430 return ret; 431 } 432 433 /* 434 * Handles intercepted messages that were arriving in the socket's Rx queue. 435 * 436 * Called from the AF_RXRPC call processor in waitqueue process context. For 437 * each call, it is guaranteed this will be called in order of packet to be 438 * delivered. 439 */ 440 static void afs_rx_interceptor(struct sock *sk, unsigned long user_call_ID, 441 struct sk_buff *skb) 442 { 443 struct afs_call *call = (struct afs_call *) user_call_ID; 444 445 _enter("%p,,%u", call, skb->mark); 446 447 _debug("ICPT %p{%u} [%d]", 448 skb, skb->mark, atomic_read(&afs_outstanding_skbs)); 449 450 ASSERTCMP(sk, ==, afs_socket->sk); 451 atomic_inc(&afs_outstanding_skbs); 452 453 if (!call) { 454 /* its an incoming call for our callback service */ 455 skb_queue_tail(&afs_incoming_calls, skb); 456 queue_work(afs_wq, &afs_collect_incoming_call_work); 457 } else { 458 /* route the messages directly to the appropriate call */ 459 skb_queue_tail(&call->rx_queue, skb); 460 call->wait_mode->rx_wakeup(call); 461 } 462 463 _leave(""); 464 } 465 466 /* 467 * deliver messages to a call 468 */ 469 static void afs_deliver_to_call(struct afs_call *call) 470 { 471 struct sk_buff *skb; 472 bool last; 473 u32 abort_code; 474 int ret; 475 476 _enter(""); 477 478 while ((call->state == AFS_CALL_AWAIT_REPLY || 479 call->state == AFS_CALL_AWAIT_OP_ID || 480 call->state == AFS_CALL_AWAIT_REQUEST || 481 call->state == AFS_CALL_AWAIT_ACK) && 482 (skb = skb_dequeue(&call->rx_queue))) { 483 switch (skb->mark) { 484 case RXRPC_SKB_MARK_DATA: 485 _debug("Rcv DATA"); 486 last = rxrpc_kernel_is_data_last(skb); 487 ret = call->type->deliver(call, skb, last); 488 switch (ret) { 489 case -EAGAIN: 490 if (last) { 491 _debug("short data"); 492 goto unmarshal_error; 493 } 494 break; 495 case 0: 496 ASSERT(last); 497 if (call->state == AFS_CALL_AWAIT_REPLY) 498 call->state = AFS_CALL_COMPLETE; 499 break; 500 case -ENOTCONN: 501 abort_code = RX_CALL_DEAD; 502 goto do_abort; 503 case -ENOTSUPP: 504 abort_code = RX_INVALID_OPERATION; 505 goto do_abort; 506 default: 507 unmarshal_error: 508 abort_code = RXGEN_CC_UNMARSHAL; 509 if (call->state != AFS_CALL_AWAIT_REPLY) 510 abort_code = RXGEN_SS_UNMARSHAL; 511 do_abort: 512 rxrpc_kernel_abort_call(call->rxcall, 513 abort_code); 514 call->error = ret; 515 call->state = AFS_CALL_ERROR; 516 break; 517 } 518 break; 519 case RXRPC_SKB_MARK_FINAL_ACK: 520 _debug("Rcv ACK"); 521 call->state = AFS_CALL_COMPLETE; 522 break; 523 case RXRPC_SKB_MARK_BUSY: 524 _debug("Rcv BUSY"); 525 call->error = -EBUSY; 526 call->state = AFS_CALL_BUSY; 527 break; 528 case RXRPC_SKB_MARK_REMOTE_ABORT: 529 abort_code = rxrpc_kernel_get_abort_code(skb); 530 call->error = call->type->abort_to_error(abort_code); 531 call->state = AFS_CALL_ABORTED; 532 _debug("Rcv ABORT %u -> %d", abort_code, call->error); 533 break; 534 case RXRPC_SKB_MARK_LOCAL_ABORT: 535 abort_code = rxrpc_kernel_get_abort_code(skb); 536 call->error = call->type->abort_to_error(abort_code); 537 call->state = AFS_CALL_ABORTED; 538 _debug("Loc ABORT %u -> %d", abort_code, call->error); 539 break; 540 case RXRPC_SKB_MARK_NET_ERROR: 541 call->error = -rxrpc_kernel_get_error_number(skb); 542 call->state = AFS_CALL_ERROR; 543 _debug("Rcv NET ERROR %d", call->error); 544 break; 545 case RXRPC_SKB_MARK_LOCAL_ERROR: 546 call->error = -rxrpc_kernel_get_error_number(skb); 547 call->state = AFS_CALL_ERROR; 548 _debug("Rcv LOCAL ERROR %d", call->error); 549 break; 550 default: 551 BUG(); 552 break; 553 } 554 555 afs_free_skb(skb); 556 } 557 558 /* make sure the queue is empty if the call is done with (we might have 559 * aborted the call early because of an unmarshalling error) */ 560 if (call->state >= AFS_CALL_COMPLETE) { 561 while ((skb = skb_dequeue(&call->rx_queue))) 562 afs_free_skb(skb); 563 if (call->incoming) 564 afs_end_call(call); 565 } 566 567 _leave(""); 568 } 569 570 /* 571 * wait synchronously for a call to complete 572 */ 573 static int afs_wait_for_call_to_complete(struct afs_call *call) 574 { 575 struct sk_buff *skb; 576 int ret; 577 578 DECLARE_WAITQUEUE(myself, current); 579 580 _enter(""); 581 582 add_wait_queue(&call->waitq, &myself); 583 for (;;) { 584 set_current_state(TASK_INTERRUPTIBLE); 585 586 /* deliver any messages that are in the queue */ 587 if (!skb_queue_empty(&call->rx_queue)) { 588 __set_current_state(TASK_RUNNING); 589 afs_deliver_to_call(call); 590 continue; 591 } 592 593 ret = call->error; 594 if (call->state >= AFS_CALL_COMPLETE) 595 break; 596 ret = -EINTR; 597 if (signal_pending(current)) 598 break; 599 schedule(); 600 } 601 602 remove_wait_queue(&call->waitq, &myself); 603 __set_current_state(TASK_RUNNING); 604 605 /* kill the call */ 606 if (call->state < AFS_CALL_COMPLETE) { 607 _debug("call incomplete"); 608 rxrpc_kernel_abort_call(call->rxcall, RX_CALL_DEAD); 609 while ((skb = skb_dequeue(&call->rx_queue))) 610 afs_free_skb(skb); 611 } 612 613 _debug("call complete"); 614 afs_end_call(call); 615 _leave(" = %d", ret); 616 return ret; 617 } 618 619 /* 620 * wake up a waiting call 621 */ 622 static void afs_wake_up_call_waiter(struct afs_call *call) 623 { 624 wake_up(&call->waitq); 625 } 626 627 /* 628 * wake up an asynchronous call 629 */ 630 static void afs_wake_up_async_call(struct afs_call *call) 631 { 632 _enter(""); 633 queue_work(afs_async_calls, &call->async_work); 634 } 635 636 /* 637 * put a call into asynchronous mode 638 * - mustn't touch the call descriptor as the call my have completed by the 639 * time we get here 640 */ 641 static int afs_dont_wait_for_call_to_complete(struct afs_call *call) 642 { 643 _enter(""); 644 return -EINPROGRESS; 645 } 646 647 /* 648 * delete an asynchronous call 649 */ 650 static void afs_delete_async_call(struct afs_call *call) 651 { 652 _enter(""); 653 654 afs_free_call(call); 655 656 _leave(""); 657 } 658 659 /* 660 * perform processing on an asynchronous call 661 * - on a multiple-thread workqueue this work item may try to run on several 662 * CPUs at the same time 663 */ 664 static void afs_process_async_call(struct afs_call *call) 665 { 666 _enter(""); 667 668 if (!skb_queue_empty(&call->rx_queue)) 669 afs_deliver_to_call(call); 670 671 if (call->state >= AFS_CALL_COMPLETE && call->wait_mode) { 672 if (call->wait_mode->async_complete) 673 call->wait_mode->async_complete(call->reply, 674 call->error); 675 call->reply = NULL; 676 677 /* kill the call */ 678 afs_end_call_nofree(call); 679 680 /* we can't just delete the call because the work item may be 681 * queued */ 682 call->async_workfn = afs_delete_async_call; 683 queue_work(afs_async_calls, &call->async_work); 684 } 685 686 _leave(""); 687 } 688 689 /* 690 * Empty a socket buffer into a flat reply buffer. 691 */ 692 int afs_transfer_reply(struct afs_call *call, struct sk_buff *skb, bool last) 693 { 694 size_t len = skb->len; 695 696 if (len > call->reply_max - call->reply_size) { 697 _leave(" = -EBADMSG [%zu > %u]", 698 len, call->reply_max - call->reply_size); 699 return -EBADMSG; 700 } 701 702 if (len > 0) { 703 if (skb_copy_bits(skb, 0, call->buffer + call->reply_size, 704 len) < 0) 705 BUG(); 706 call->reply_size += len; 707 } 708 709 afs_data_consumed(call, skb); 710 if (!last) 711 return -EAGAIN; 712 713 if (call->reply_size != call->reply_max) { 714 _leave(" = -EBADMSG [%u != %u]", 715 call->reply_size, call->reply_max); 716 return -EBADMSG; 717 } 718 return 0; 719 } 720 721 /* 722 * accept the backlog of incoming calls 723 */ 724 static void afs_collect_incoming_call(struct work_struct *work) 725 { 726 struct rxrpc_call *rxcall; 727 struct afs_call *call = NULL; 728 struct sk_buff *skb; 729 730 while ((skb = skb_dequeue(&afs_incoming_calls))) { 731 _debug("new call"); 732 733 /* don't need the notification */ 734 afs_free_skb(skb); 735 736 if (!call) { 737 call = kzalloc(sizeof(struct afs_call), GFP_KERNEL); 738 if (!call) { 739 rxrpc_kernel_reject_call(afs_socket); 740 return; 741 } 742 743 call->async_workfn = afs_process_async_call; 744 INIT_WORK(&call->async_work, afs_async_workfn); 745 call->wait_mode = &afs_async_incoming_call; 746 call->type = &afs_RXCMxxxx; 747 init_waitqueue_head(&call->waitq); 748 skb_queue_head_init(&call->rx_queue); 749 call->state = AFS_CALL_AWAIT_OP_ID; 750 751 _debug("CALL %p{%s} [%d]", 752 call, call->type->name, 753 atomic_read(&afs_outstanding_calls)); 754 atomic_inc(&afs_outstanding_calls); 755 } 756 757 rxcall = rxrpc_kernel_accept_call(afs_socket, 758 (unsigned long) call); 759 if (!IS_ERR(rxcall)) { 760 call->rxcall = rxcall; 761 call = NULL; 762 } 763 } 764 765 if (call) 766 afs_free_call(call); 767 } 768 769 /* 770 * Grab the operation ID from an incoming cache manager call. The socket 771 * buffer is discarded on error or if we don't yet have sufficient data. 772 */ 773 static int afs_deliver_cm_op_id(struct afs_call *call, struct sk_buff *skb, 774 bool last) 775 { 776 size_t len = skb->len; 777 void *oibuf = (void *) &call->operation_ID; 778 779 _enter("{%u},{%zu},%d", call->offset, len, last); 780 781 ASSERTCMP(call->offset, <, 4); 782 783 /* the operation ID forms the first four bytes of the request data */ 784 len = min_t(size_t, len, 4 - call->offset); 785 if (skb_copy_bits(skb, 0, oibuf + call->offset, len) < 0) 786 BUG(); 787 if (!pskb_pull(skb, len)) 788 BUG(); 789 call->offset += len; 790 791 if (call->offset < 4) { 792 afs_data_consumed(call, skb); 793 _leave(" = -EAGAIN"); 794 return -EAGAIN; 795 } 796 797 call->state = AFS_CALL_AWAIT_REQUEST; 798 799 /* ask the cache manager to route the call (it'll change the call type 800 * if successful) */ 801 if (!afs_cm_incoming_call(call)) 802 return -ENOTSUPP; 803 804 /* pass responsibility for the remainer of this message off to the 805 * cache manager op */ 806 return call->type->deliver(call, skb, last); 807 } 808 809 /* 810 * send an empty reply 811 */ 812 void afs_send_empty_reply(struct afs_call *call) 813 { 814 struct msghdr msg; 815 816 _enter(""); 817 818 msg.msg_name = NULL; 819 msg.msg_namelen = 0; 820 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); 821 msg.msg_control = NULL; 822 msg.msg_controllen = 0; 823 msg.msg_flags = 0; 824 825 call->state = AFS_CALL_AWAIT_ACK; 826 switch (rxrpc_kernel_send_data(call->rxcall, &msg, 0)) { 827 case 0: 828 _leave(" [replied]"); 829 return; 830 831 case -ENOMEM: 832 _debug("oom"); 833 rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT); 834 default: 835 afs_end_call(call); 836 _leave(" [error]"); 837 return; 838 } 839 } 840 841 /* 842 * send a simple reply 843 */ 844 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 845 { 846 struct msghdr msg; 847 struct kvec iov[1]; 848 int n; 849 850 _enter(""); 851 852 iov[0].iov_base = (void *) buf; 853 iov[0].iov_len = len; 854 msg.msg_name = NULL; 855 msg.msg_namelen = 0; 856 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); 857 msg.msg_control = NULL; 858 msg.msg_controllen = 0; 859 msg.msg_flags = 0; 860 861 call->state = AFS_CALL_AWAIT_ACK; 862 n = rxrpc_kernel_send_data(call->rxcall, &msg, len); 863 if (n >= 0) { 864 /* Success */ 865 _leave(" [replied]"); 866 return; 867 } 868 869 if (n == -ENOMEM) { 870 _debug("oom"); 871 rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT); 872 } 873 afs_end_call(call); 874 _leave(" [error]"); 875 } 876 877 /* 878 * Extract a piece of data from the received data socket buffers. 879 */ 880 int afs_extract_data(struct afs_call *call, struct sk_buff *skb, 881 bool last, void *buf, size_t count) 882 { 883 size_t len = skb->len; 884 885 _enter("{%u},{%zu},%d,,%zu", call->offset, len, last, count); 886 887 ASSERTCMP(call->offset, <, count); 888 889 len = min_t(size_t, len, count - call->offset); 890 if (skb_copy_bits(skb, 0, buf + call->offset, len) < 0 || 891 !pskb_pull(skb, len)) 892 BUG(); 893 call->offset += len; 894 895 if (call->offset < count) { 896 afs_data_consumed(call, skb); 897 _leave(" = -EAGAIN"); 898 return -EAGAIN; 899 } 900 return 0; 901 } 902