1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 15 #include <net/sock.h> 16 #include <net/af_rxrpc.h> 17 #include "internal.h" 18 #include "afs_cm.h" 19 #include "protocol_yfs.h" 20 21 struct workqueue_struct *afs_async_calls; 22 23 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 25 static void afs_delete_async_call(struct work_struct *); 26 static void afs_process_async_call(struct work_struct *); 27 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 28 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 29 static int afs_deliver_cm_op_id(struct afs_call *); 30 31 /* asynchronous incoming call initial processing */ 32 static const struct afs_call_type afs_RXCMxxxx = { 33 .name = "CB.xxxx", 34 .deliver = afs_deliver_cm_op_id, 35 }; 36 37 /* 38 * open an RxRPC socket and bind it to be a server for callback notifications 39 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 40 */ 41 int afs_open_socket(struct afs_net *net) 42 { 43 struct sockaddr_rxrpc srx; 44 struct socket *socket; 45 unsigned int min_level; 46 int ret; 47 48 _enter(""); 49 50 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 51 if (ret < 0) 52 goto error_1; 53 54 socket->sk->sk_allocation = GFP_NOFS; 55 56 /* bind the callback manager's address to make this a server socket */ 57 memset(&srx, 0, sizeof(srx)); 58 srx.srx_family = AF_RXRPC; 59 srx.srx_service = CM_SERVICE; 60 srx.transport_type = SOCK_DGRAM; 61 srx.transport_len = sizeof(srx.transport.sin6); 62 srx.transport.sin6.sin6_family = AF_INET6; 63 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 64 65 min_level = RXRPC_SECURITY_ENCRYPT; 66 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL, 67 (void *)&min_level, sizeof(min_level)); 68 if (ret < 0) 69 goto error_2; 70 71 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 72 if (ret == -EADDRINUSE) { 73 srx.transport.sin6.sin6_port = 0; 74 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 75 } 76 if (ret < 0) 77 goto error_2; 78 79 srx.srx_service = YFS_CM_SERVICE; 80 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 81 if (ret < 0) 82 goto error_2; 83 84 /* Ideally, we'd turn on service upgrade here, but we can't because 85 * OpenAFS is buggy and leaks the userStatus field from packet to 86 * packet and between FS packets and CB packets - so if we try to do an 87 * upgrade on an FS packet, OpenAFS will leak that into the CB packet 88 * it sends back to us. 89 */ 90 91 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 92 afs_rx_discard_new_call); 93 94 ret = kernel_listen(socket, INT_MAX); 95 if (ret < 0) 96 goto error_2; 97 98 net->socket = socket; 99 afs_charge_preallocation(&net->charge_preallocation_work); 100 _leave(" = 0"); 101 return 0; 102 103 error_2: 104 sock_release(socket); 105 error_1: 106 _leave(" = %d", ret); 107 return ret; 108 } 109 110 /* 111 * close the RxRPC socket AFS was using 112 */ 113 void afs_close_socket(struct afs_net *net) 114 { 115 _enter(""); 116 117 kernel_listen(net->socket, 0); 118 flush_workqueue(afs_async_calls); 119 120 if (net->spare_incoming_call) { 121 afs_put_call(net->spare_incoming_call); 122 net->spare_incoming_call = NULL; 123 } 124 125 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 126 wait_var_event(&net->nr_outstanding_calls, 127 !atomic_read(&net->nr_outstanding_calls)); 128 _debug("no outstanding calls"); 129 130 kernel_sock_shutdown(net->socket, SHUT_RDWR); 131 flush_workqueue(afs_async_calls); 132 sock_release(net->socket); 133 134 _debug("dework"); 135 _leave(""); 136 } 137 138 /* 139 * Allocate a call. 140 */ 141 static struct afs_call *afs_alloc_call(struct afs_net *net, 142 const struct afs_call_type *type, 143 gfp_t gfp) 144 { 145 struct afs_call *call; 146 int o; 147 148 call = kzalloc(sizeof(*call), gfp); 149 if (!call) 150 return NULL; 151 152 call->type = type; 153 call->net = net; 154 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 155 atomic_set(&call->usage, 1); 156 INIT_WORK(&call->async_work, afs_process_async_call); 157 init_waitqueue_head(&call->waitq); 158 spin_lock_init(&call->state_lock); 159 call->_iter = &call->iter; 160 161 o = atomic_inc_return(&net->nr_outstanding_calls); 162 trace_afs_call(call, afs_call_trace_alloc, 1, o, 163 __builtin_return_address(0)); 164 return call; 165 } 166 167 /* 168 * Dispose of a reference on a call. 169 */ 170 void afs_put_call(struct afs_call *call) 171 { 172 struct afs_net *net = call->net; 173 int n = atomic_dec_return(&call->usage); 174 int o = atomic_read(&net->nr_outstanding_calls); 175 176 trace_afs_call(call, afs_call_trace_put, n + 1, o, 177 __builtin_return_address(0)); 178 179 ASSERTCMP(n, >=, 0); 180 if (n == 0) { 181 ASSERT(!work_pending(&call->async_work)); 182 ASSERT(call->type->name != NULL); 183 184 if (call->rxcall) { 185 rxrpc_kernel_end_call(net->socket, call->rxcall); 186 call->rxcall = NULL; 187 } 188 if (call->type->destructor) 189 call->type->destructor(call); 190 191 afs_put_server(call->net, call->server); 192 afs_put_cb_interest(call->net, call->cbi); 193 afs_put_addrlist(call->alist); 194 kfree(call->request); 195 196 trace_afs_call(call, afs_call_trace_free, 0, o, 197 __builtin_return_address(0)); 198 kfree(call); 199 200 o = atomic_dec_return(&net->nr_outstanding_calls); 201 if (o == 0) 202 wake_up_var(&net->nr_outstanding_calls); 203 } 204 } 205 206 static struct afs_call *afs_get_call(struct afs_call *call, 207 enum afs_call_trace why) 208 { 209 int u = atomic_inc_return(&call->usage); 210 211 trace_afs_call(call, why, u, 212 atomic_read(&call->net->nr_outstanding_calls), 213 __builtin_return_address(0)); 214 return call; 215 } 216 217 /* 218 * Queue the call for actual work. 219 */ 220 static void afs_queue_call_work(struct afs_call *call) 221 { 222 if (call->type->work) { 223 INIT_WORK(&call->work, call->type->work); 224 225 afs_get_call(call, afs_call_trace_work); 226 if (!queue_work(afs_wq, &call->work)) 227 afs_put_call(call); 228 } 229 } 230 231 /* 232 * allocate a call with flat request and reply buffers 233 */ 234 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 235 const struct afs_call_type *type, 236 size_t request_size, size_t reply_max) 237 { 238 struct afs_call *call; 239 240 call = afs_alloc_call(net, type, GFP_NOFS); 241 if (!call) 242 goto nomem_call; 243 244 if (request_size) { 245 call->request_size = request_size; 246 call->request = kmalloc(request_size, GFP_NOFS); 247 if (!call->request) 248 goto nomem_free; 249 } 250 251 if (reply_max) { 252 call->reply_max = reply_max; 253 call->buffer = kmalloc(reply_max, GFP_NOFS); 254 if (!call->buffer) 255 goto nomem_free; 256 } 257 258 afs_extract_to_buf(call, call->reply_max); 259 call->operation_ID = type->op; 260 init_waitqueue_head(&call->waitq); 261 return call; 262 263 nomem_free: 264 afs_put_call(call); 265 nomem_call: 266 return NULL; 267 } 268 269 /* 270 * clean up a call with flat buffer 271 */ 272 void afs_flat_call_destructor(struct afs_call *call) 273 { 274 _enter(""); 275 276 kfree(call->request); 277 call->request = NULL; 278 kfree(call->buffer); 279 call->buffer = NULL; 280 } 281 282 #define AFS_BVEC_MAX 8 283 284 /* 285 * Load the given bvec with the next few pages. 286 */ 287 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, 288 struct bio_vec *bv, pgoff_t first, pgoff_t last, 289 unsigned offset) 290 { 291 struct page *pages[AFS_BVEC_MAX]; 292 unsigned int nr, n, i, to, bytes = 0; 293 294 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); 295 n = find_get_pages_contig(call->mapping, first, nr, pages); 296 ASSERTCMP(n, ==, nr); 297 298 msg->msg_flags |= MSG_MORE; 299 for (i = 0; i < nr; i++) { 300 to = PAGE_SIZE; 301 if (first + i >= last) { 302 to = call->last_to; 303 msg->msg_flags &= ~MSG_MORE; 304 } 305 bv[i].bv_page = pages[i]; 306 bv[i].bv_len = to - offset; 307 bv[i].bv_offset = offset; 308 bytes += to - offset; 309 offset = 0; 310 } 311 312 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes); 313 } 314 315 /* 316 * Advance the AFS call state when the RxRPC call ends the transmit phase. 317 */ 318 static void afs_notify_end_request_tx(struct sock *sock, 319 struct rxrpc_call *rxcall, 320 unsigned long call_user_ID) 321 { 322 struct afs_call *call = (struct afs_call *)call_user_ID; 323 324 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 325 } 326 327 /* 328 * attach the data from a bunch of pages on an inode to a call 329 */ 330 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 331 { 332 struct bio_vec bv[AFS_BVEC_MAX]; 333 unsigned int bytes, nr, loop, offset; 334 pgoff_t first = call->first, last = call->last; 335 int ret; 336 337 offset = call->first_offset; 338 call->first_offset = 0; 339 340 do { 341 afs_load_bvec(call, msg, bv, first, last, offset); 342 trace_afs_send_pages(call, msg, first, last, offset); 343 344 offset = 0; 345 bytes = msg->msg_iter.count; 346 nr = msg->msg_iter.nr_segs; 347 348 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg, 349 bytes, afs_notify_end_request_tx); 350 for (loop = 0; loop < nr; loop++) 351 put_page(bv[loop].bv_page); 352 if (ret < 0) 353 break; 354 355 first += nr; 356 } while (first <= last); 357 358 trace_afs_sent_pages(call, call->first, last, first, ret); 359 return ret; 360 } 361 362 /* 363 * Initiate a call and synchronously queue up the parameters for dispatch. Any 364 * error is stored into the call struct, which the caller must check for. 365 */ 366 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp) 367 { 368 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; 369 struct rxrpc_call *rxcall; 370 struct msghdr msg; 371 struct kvec iov[1]; 372 s64 tx_total_len; 373 int ret; 374 375 _enter(",{%pISp},", &srx->transport); 376 377 ASSERT(call->type != NULL); 378 ASSERT(call->type->name != NULL); 379 380 _debug("____MAKE %p{%s,%x} [%d]____", 381 call, call->type->name, key_serial(call->key), 382 atomic_read(&call->net->nr_outstanding_calls)); 383 384 call->addr_ix = ac->index; 385 call->alist = afs_get_addrlist(ac->alist); 386 387 /* Work out the length we're going to transmit. This is awkward for 388 * calls such as FS.StoreData where there's an extra injection of data 389 * after the initial fixed part. 390 */ 391 tx_total_len = call->request_size; 392 if (call->send_pages) { 393 if (call->last == call->first) { 394 tx_total_len += call->last_to - call->first_offset; 395 } else { 396 /* It looks mathematically like you should be able to 397 * combine the following lines with the ones above, but 398 * unsigned arithmetic is fun when it wraps... 399 */ 400 tx_total_len += PAGE_SIZE - call->first_offset; 401 tx_total_len += call->last_to; 402 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE; 403 } 404 } 405 406 /* If the call is going to be asynchronous, we need an extra ref for 407 * the call to hold itself so the caller need not hang on to its ref. 408 */ 409 if (call->async) 410 afs_get_call(call, afs_call_trace_get); 411 412 /* create a call */ 413 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 414 (unsigned long)call, 415 tx_total_len, gfp, 416 (call->async ? 417 afs_wake_up_async_call : 418 afs_wake_up_call_waiter), 419 call->upgrade, 420 call->intr, 421 call->debug_id); 422 if (IS_ERR(rxcall)) { 423 ret = PTR_ERR(rxcall); 424 call->error = ret; 425 goto error_kill_call; 426 } 427 428 call->rxcall = rxcall; 429 430 if (call->max_lifespan) 431 rxrpc_kernel_set_max_life(call->net->socket, rxcall, 432 call->max_lifespan); 433 434 /* send the request */ 435 iov[0].iov_base = call->request; 436 iov[0].iov_len = call->request_size; 437 438 msg.msg_name = NULL; 439 msg.msg_namelen = 0; 440 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size); 441 msg.msg_control = NULL; 442 msg.msg_controllen = 0; 443 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); 444 445 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 446 &msg, call->request_size, 447 afs_notify_end_request_tx); 448 if (ret < 0) 449 goto error_do_abort; 450 451 if (call->send_pages) { 452 ret = afs_send_pages(call, &msg); 453 if (ret < 0) 454 goto error_do_abort; 455 } 456 457 /* Note that at this point, we may have received the reply or an abort 458 * - and an asynchronous call may already have completed. 459 * 460 * afs_wait_for_call_to_complete(call, ac) 461 * must be called to synchronously clean up. 462 */ 463 return; 464 465 error_do_abort: 466 if (ret != -ECONNABORTED) { 467 rxrpc_kernel_abort_call(call->net->socket, rxcall, 468 RX_USER_ABORT, ret, "KSD"); 469 } else { 470 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0); 471 rxrpc_kernel_recv_data(call->net->socket, rxcall, 472 &msg.msg_iter, false, 473 &call->abort_code, &call->service_id); 474 ac->abort_code = call->abort_code; 475 ac->responded = true; 476 } 477 call->error = ret; 478 trace_afs_call_done(call); 479 error_kill_call: 480 if (call->type->done) 481 call->type->done(call); 482 483 /* We need to dispose of the extra ref we grabbed for an async call. 484 * The call, however, might be queued on afs_async_calls and we need to 485 * make sure we don't get any more notifications that might requeue it. 486 */ 487 if (call->rxcall) { 488 rxrpc_kernel_end_call(call->net->socket, call->rxcall); 489 call->rxcall = NULL; 490 } 491 if (call->async) { 492 if (cancel_work_sync(&call->async_work)) 493 afs_put_call(call); 494 afs_put_call(call); 495 } 496 497 ac->error = ret; 498 call->state = AFS_CALL_COMPLETE; 499 _leave(" = %d", ret); 500 } 501 502 /* 503 * deliver messages to a call 504 */ 505 static void afs_deliver_to_call(struct afs_call *call) 506 { 507 enum afs_call_state state; 508 u32 abort_code, remote_abort = 0; 509 int ret; 510 511 _enter("%s", call->type->name); 512 513 while (state = READ_ONCE(call->state), 514 state == AFS_CALL_CL_AWAIT_REPLY || 515 state == AFS_CALL_SV_AWAIT_OP_ID || 516 state == AFS_CALL_SV_AWAIT_REQUEST || 517 state == AFS_CALL_SV_AWAIT_ACK 518 ) { 519 if (state == AFS_CALL_SV_AWAIT_ACK) { 520 iov_iter_kvec(&call->iter, READ, NULL, 0, 0); 521 ret = rxrpc_kernel_recv_data(call->net->socket, 522 call->rxcall, &call->iter, 523 false, &remote_abort, 524 &call->service_id); 525 trace_afs_receive_data(call, &call->iter, false, ret); 526 527 if (ret == -EINPROGRESS || ret == -EAGAIN) 528 return; 529 if (ret < 0 || ret == 1) { 530 if (ret == 1) 531 ret = 0; 532 goto call_complete; 533 } 534 return; 535 } 536 537 if (!call->have_reply_time && 538 rxrpc_kernel_get_reply_time(call->net->socket, 539 call->rxcall, 540 &call->reply_time)) 541 call->have_reply_time = true; 542 543 ret = call->type->deliver(call); 544 state = READ_ONCE(call->state); 545 switch (ret) { 546 case 0: 547 afs_queue_call_work(call); 548 if (state == AFS_CALL_CL_PROC_REPLY) { 549 if (call->cbi) 550 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 551 &call->cbi->server->flags); 552 goto call_complete; 553 } 554 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 555 goto done; 556 case -EINPROGRESS: 557 case -EAGAIN: 558 goto out; 559 case -ECONNABORTED: 560 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 561 goto done; 562 case -ENOTSUPP: 563 abort_code = RXGEN_OPCODE; 564 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 565 abort_code, ret, "KIV"); 566 goto local_abort; 567 case -EIO: 568 pr_err("kAFS: Call %u in bad state %u\n", 569 call->debug_id, state); 570 /* Fall through */ 571 case -ENODATA: 572 case -EBADMSG: 573 case -EMSGSIZE: 574 abort_code = RXGEN_CC_UNMARSHAL; 575 if (state != AFS_CALL_CL_AWAIT_REPLY) 576 abort_code = RXGEN_SS_UNMARSHAL; 577 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 578 abort_code, ret, "KUM"); 579 goto local_abort; 580 default: 581 abort_code = RX_USER_ABORT; 582 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 583 abort_code, ret, "KER"); 584 goto local_abort; 585 } 586 } 587 588 done: 589 if (call->type->done) 590 call->type->done(call); 591 if (state == AFS_CALL_COMPLETE && call->incoming) 592 afs_put_call(call); 593 out: 594 _leave(""); 595 return; 596 597 local_abort: 598 abort_code = 0; 599 call_complete: 600 afs_set_call_complete(call, ret, remote_abort); 601 state = AFS_CALL_COMPLETE; 602 goto done; 603 } 604 605 /* 606 * Wait synchronously for a call to complete and clean up the call struct. 607 */ 608 long afs_wait_for_call_to_complete(struct afs_call *call, 609 struct afs_addr_cursor *ac) 610 { 611 signed long rtt2, timeout; 612 long ret; 613 bool stalled = false; 614 u64 rtt; 615 u32 life, last_life; 616 bool rxrpc_complete = false; 617 618 DECLARE_WAITQUEUE(myself, current); 619 620 _enter(""); 621 622 ret = call->error; 623 if (ret < 0) 624 goto out; 625 626 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall); 627 rtt2 = nsecs_to_jiffies64(rtt) * 2; 628 if (rtt2 < 2) 629 rtt2 = 2; 630 631 timeout = rtt2; 632 rxrpc_kernel_check_life(call->net->socket, call->rxcall, &last_life); 633 634 add_wait_queue(&call->waitq, &myself); 635 for (;;) { 636 set_current_state(TASK_UNINTERRUPTIBLE); 637 638 /* deliver any messages that are in the queue */ 639 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 640 call->need_attention) { 641 call->need_attention = false; 642 __set_current_state(TASK_RUNNING); 643 afs_deliver_to_call(call); 644 continue; 645 } 646 647 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 648 break; 649 650 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall, &life)) { 651 /* rxrpc terminated the call. */ 652 rxrpc_complete = true; 653 break; 654 } 655 656 if (call->intr && timeout == 0 && 657 life == last_life && signal_pending(current)) { 658 if (stalled) 659 break; 660 __set_current_state(TASK_RUNNING); 661 rxrpc_kernel_probe_life(call->net->socket, call->rxcall); 662 timeout = rtt2; 663 stalled = true; 664 continue; 665 } 666 667 if (life != last_life) { 668 timeout = rtt2; 669 last_life = life; 670 stalled = false; 671 } 672 673 timeout = schedule_timeout(timeout); 674 } 675 676 remove_wait_queue(&call->waitq, &myself); 677 __set_current_state(TASK_RUNNING); 678 679 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 680 if (rxrpc_complete) { 681 afs_set_call_complete(call, call->error, call->abort_code); 682 } else { 683 /* Kill off the call if it's still live. */ 684 _debug("call interrupted"); 685 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 686 RX_USER_ABORT, -EINTR, "KWI")) 687 afs_set_call_complete(call, -EINTR, 0); 688 } 689 } 690 691 spin_lock_bh(&call->state_lock); 692 ac->abort_code = call->abort_code; 693 ac->error = call->error; 694 spin_unlock_bh(&call->state_lock); 695 696 ret = ac->error; 697 switch (ret) { 698 case 0: 699 ret = call->ret0; 700 call->ret0 = 0; 701 702 /* Fall through */ 703 case -ECONNABORTED: 704 ac->responded = true; 705 break; 706 } 707 708 out: 709 _debug("call complete"); 710 afs_put_call(call); 711 _leave(" = %p", (void *)ret); 712 return ret; 713 } 714 715 /* 716 * wake up a waiting call 717 */ 718 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 719 unsigned long call_user_ID) 720 { 721 struct afs_call *call = (struct afs_call *)call_user_ID; 722 723 call->need_attention = true; 724 wake_up(&call->waitq); 725 } 726 727 /* 728 * wake up an asynchronous call 729 */ 730 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 731 unsigned long call_user_ID) 732 { 733 struct afs_call *call = (struct afs_call *)call_user_ID; 734 int u; 735 736 trace_afs_notify_call(rxcall, call); 737 call->need_attention = true; 738 739 u = atomic_fetch_add_unless(&call->usage, 1, 0); 740 if (u != 0) { 741 trace_afs_call(call, afs_call_trace_wake, u, 742 atomic_read(&call->net->nr_outstanding_calls), 743 __builtin_return_address(0)); 744 745 if (!queue_work(afs_async_calls, &call->async_work)) 746 afs_put_call(call); 747 } 748 } 749 750 /* 751 * Delete an asynchronous call. The work item carries a ref to the call struct 752 * that we need to release. 753 */ 754 static void afs_delete_async_call(struct work_struct *work) 755 { 756 struct afs_call *call = container_of(work, struct afs_call, async_work); 757 758 _enter(""); 759 760 afs_put_call(call); 761 762 _leave(""); 763 } 764 765 /* 766 * Perform I/O processing on an asynchronous call. The work item carries a ref 767 * to the call struct that we either need to release or to pass on. 768 */ 769 static void afs_process_async_call(struct work_struct *work) 770 { 771 struct afs_call *call = container_of(work, struct afs_call, async_work); 772 773 _enter(""); 774 775 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 776 call->need_attention = false; 777 afs_deliver_to_call(call); 778 } 779 780 if (call->state == AFS_CALL_COMPLETE) { 781 /* We have two refs to release - one from the alloc and one 782 * queued with the work item - and we can't just deallocate the 783 * call because the work item may be queued again. 784 */ 785 call->async_work.func = afs_delete_async_call; 786 if (!queue_work(afs_async_calls, &call->async_work)) 787 afs_put_call(call); 788 } 789 790 afs_put_call(call); 791 _leave(""); 792 } 793 794 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 795 { 796 struct afs_call *call = (struct afs_call *)user_call_ID; 797 798 call->rxcall = rxcall; 799 } 800 801 /* 802 * Charge the incoming call preallocation. 803 */ 804 void afs_charge_preallocation(struct work_struct *work) 805 { 806 struct afs_net *net = 807 container_of(work, struct afs_net, charge_preallocation_work); 808 struct afs_call *call = net->spare_incoming_call; 809 810 for (;;) { 811 if (!call) { 812 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 813 if (!call) 814 break; 815 816 call->async = true; 817 call->state = AFS_CALL_SV_AWAIT_OP_ID; 818 init_waitqueue_head(&call->waitq); 819 afs_extract_to_tmp(call); 820 } 821 822 if (rxrpc_kernel_charge_accept(net->socket, 823 afs_wake_up_async_call, 824 afs_rx_attach, 825 (unsigned long)call, 826 GFP_KERNEL, 827 call->debug_id) < 0) 828 break; 829 call = NULL; 830 } 831 net->spare_incoming_call = call; 832 } 833 834 /* 835 * Discard a preallocated call when a socket is shut down. 836 */ 837 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 838 unsigned long user_call_ID) 839 { 840 struct afs_call *call = (struct afs_call *)user_call_ID; 841 842 call->rxcall = NULL; 843 afs_put_call(call); 844 } 845 846 /* 847 * Notification of an incoming call. 848 */ 849 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 850 unsigned long user_call_ID) 851 { 852 struct afs_net *net = afs_sock2net(sk); 853 854 queue_work(afs_wq, &net->charge_preallocation_work); 855 } 856 857 /* 858 * Grab the operation ID from an incoming cache manager call. The socket 859 * buffer is discarded on error or if we don't yet have sufficient data. 860 */ 861 static int afs_deliver_cm_op_id(struct afs_call *call) 862 { 863 int ret; 864 865 _enter("{%zu}", iov_iter_count(call->_iter)); 866 867 /* the operation ID forms the first four bytes of the request data */ 868 ret = afs_extract_data(call, true); 869 if (ret < 0) 870 return ret; 871 872 call->operation_ID = ntohl(call->tmp); 873 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 874 875 /* ask the cache manager to route the call (it'll change the call type 876 * if successful) */ 877 if (!afs_cm_incoming_call(call)) 878 return -ENOTSUPP; 879 880 trace_afs_cb_call(call); 881 882 /* pass responsibility for the remainer of this message off to the 883 * cache manager op */ 884 return call->type->deliver(call); 885 } 886 887 /* 888 * Advance the AFS call state when an RxRPC service call ends the transmit 889 * phase. 890 */ 891 static void afs_notify_end_reply_tx(struct sock *sock, 892 struct rxrpc_call *rxcall, 893 unsigned long call_user_ID) 894 { 895 struct afs_call *call = (struct afs_call *)call_user_ID; 896 897 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 898 } 899 900 /* 901 * send an empty reply 902 */ 903 void afs_send_empty_reply(struct afs_call *call) 904 { 905 struct afs_net *net = call->net; 906 struct msghdr msg; 907 908 _enter(""); 909 910 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 911 912 msg.msg_name = NULL; 913 msg.msg_namelen = 0; 914 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); 915 msg.msg_control = NULL; 916 msg.msg_controllen = 0; 917 msg.msg_flags = 0; 918 919 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 920 afs_notify_end_reply_tx)) { 921 case 0: 922 _leave(" [replied]"); 923 return; 924 925 case -ENOMEM: 926 _debug("oom"); 927 rxrpc_kernel_abort_call(net->socket, call->rxcall, 928 RX_USER_ABORT, -ENOMEM, "KOO"); 929 /* Fall through */ 930 default: 931 _leave(" [error]"); 932 return; 933 } 934 } 935 936 /* 937 * send a simple reply 938 */ 939 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 940 { 941 struct afs_net *net = call->net; 942 struct msghdr msg; 943 struct kvec iov[1]; 944 int n; 945 946 _enter(""); 947 948 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 949 950 iov[0].iov_base = (void *) buf; 951 iov[0].iov_len = len; 952 msg.msg_name = NULL; 953 msg.msg_namelen = 0; 954 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len); 955 msg.msg_control = NULL; 956 msg.msg_controllen = 0; 957 msg.msg_flags = 0; 958 959 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 960 afs_notify_end_reply_tx); 961 if (n >= 0) { 962 /* Success */ 963 _leave(" [replied]"); 964 return; 965 } 966 967 if (n == -ENOMEM) { 968 _debug("oom"); 969 rxrpc_kernel_abort_call(net->socket, call->rxcall, 970 RX_USER_ABORT, -ENOMEM, "KOO"); 971 } 972 _leave(" [error]"); 973 } 974 975 /* 976 * Extract a piece of data from the received data socket buffers. 977 */ 978 int afs_extract_data(struct afs_call *call, bool want_more) 979 { 980 struct afs_net *net = call->net; 981 struct iov_iter *iter = call->_iter; 982 enum afs_call_state state; 983 u32 remote_abort = 0; 984 int ret; 985 986 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more); 987 988 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, 989 want_more, &remote_abort, 990 &call->service_id); 991 if (ret == 0 || ret == -EAGAIN) 992 return ret; 993 994 state = READ_ONCE(call->state); 995 if (ret == 1) { 996 switch (state) { 997 case AFS_CALL_CL_AWAIT_REPLY: 998 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 999 break; 1000 case AFS_CALL_SV_AWAIT_REQUEST: 1001 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 1002 break; 1003 case AFS_CALL_COMPLETE: 1004 kdebug("prem complete %d", call->error); 1005 return afs_io_error(call, afs_io_error_extract); 1006 default: 1007 break; 1008 } 1009 return 0; 1010 } 1011 1012 afs_set_call_complete(call, ret, remote_abort); 1013 return ret; 1014 } 1015 1016 /* 1017 * Log protocol error production. 1018 */ 1019 noinline int afs_protocol_error(struct afs_call *call, int error, 1020 enum afs_eproto_cause cause) 1021 { 1022 trace_afs_protocol_error(call, error, cause); 1023 return error; 1024 } 1025