xref: /openbmc/linux/fs/afs/rxrpc.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
19 
20 struct workqueue_struct *afs_async_calls;
21 
22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *);
24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_process_async_call(struct work_struct *);
26 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
27 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
28 static int afs_deliver_cm_op_id(struct afs_call *);
29 
30 /* asynchronous incoming call initial processing */
31 static const struct afs_call_type afs_RXCMxxxx = {
32 	.name		= "CB.xxxx",
33 	.deliver	= afs_deliver_cm_op_id,
34 };
35 
36 /*
37  * open an RxRPC socket and bind it to be a server for callback notifications
38  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
39  */
40 int afs_open_socket(struct afs_net *net)
41 {
42 	struct sockaddr_rxrpc srx;
43 	struct socket *socket;
44 	int ret;
45 
46 	_enter("");
47 
48 	ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
49 	if (ret < 0)
50 		goto error_1;
51 
52 	socket->sk->sk_allocation = GFP_NOFS;
53 
54 	/* bind the callback manager's address to make this a server socket */
55 	memset(&srx, 0, sizeof(srx));
56 	srx.srx_family			= AF_RXRPC;
57 	srx.srx_service			= CM_SERVICE;
58 	srx.transport_type		= SOCK_DGRAM;
59 	srx.transport_len		= sizeof(srx.transport.sin6);
60 	srx.transport.sin6.sin6_family	= AF_INET6;
61 	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
62 
63 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
64 	if (ret == -EADDRINUSE) {
65 		srx.transport.sin6.sin6_port = 0;
66 		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
67 	}
68 	if (ret < 0)
69 		goto error_2;
70 
71 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
72 					   afs_rx_discard_new_call);
73 
74 	ret = kernel_listen(socket, INT_MAX);
75 	if (ret < 0)
76 		goto error_2;
77 
78 	net->socket = socket;
79 	afs_charge_preallocation(&net->charge_preallocation_work);
80 	_leave(" = 0");
81 	return 0;
82 
83 error_2:
84 	sock_release(socket);
85 error_1:
86 	_leave(" = %d", ret);
87 	return ret;
88 }
89 
90 /*
91  * close the RxRPC socket AFS was using
92  */
93 void afs_close_socket(struct afs_net *net)
94 {
95 	_enter("");
96 
97 	kernel_listen(net->socket, 0);
98 	flush_workqueue(afs_async_calls);
99 
100 	if (net->spare_incoming_call) {
101 		afs_put_call(net->spare_incoming_call);
102 		net->spare_incoming_call = NULL;
103 	}
104 
105 	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
106 	wait_var_event(&net->nr_outstanding_calls,
107 		       !atomic_read(&net->nr_outstanding_calls));
108 	_debug("no outstanding calls");
109 
110 	kernel_sock_shutdown(net->socket, SHUT_RDWR);
111 	flush_workqueue(afs_async_calls);
112 	sock_release(net->socket);
113 
114 	_debug("dework");
115 	_leave("");
116 }
117 
118 /*
119  * Allocate a call.
120  */
121 static struct afs_call *afs_alloc_call(struct afs_net *net,
122 				       const struct afs_call_type *type,
123 				       gfp_t gfp)
124 {
125 	struct afs_call *call;
126 	int o;
127 
128 	call = kzalloc(sizeof(*call), gfp);
129 	if (!call)
130 		return NULL;
131 
132 	call->type = type;
133 	call->net = net;
134 	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
135 	atomic_set(&call->usage, 1);
136 	INIT_WORK(&call->async_work, afs_process_async_call);
137 	init_waitqueue_head(&call->waitq);
138 	spin_lock_init(&call->state_lock);
139 
140 	o = atomic_inc_return(&net->nr_outstanding_calls);
141 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
142 		       __builtin_return_address(0));
143 	return call;
144 }
145 
146 /*
147  * Dispose of a reference on a call.
148  */
149 void afs_put_call(struct afs_call *call)
150 {
151 	struct afs_net *net = call->net;
152 	int n = atomic_dec_return(&call->usage);
153 	int o = atomic_read(&net->nr_outstanding_calls);
154 
155 	trace_afs_call(call, afs_call_trace_put, n + 1, o,
156 		       __builtin_return_address(0));
157 
158 	ASSERTCMP(n, >=, 0);
159 	if (n == 0) {
160 		ASSERT(!work_pending(&call->async_work));
161 		ASSERT(call->type->name != NULL);
162 
163 		if (call->rxcall) {
164 			rxrpc_kernel_end_call(net->socket, call->rxcall);
165 			call->rxcall = NULL;
166 		}
167 		if (call->type->destructor)
168 			call->type->destructor(call);
169 
170 		afs_put_server(call->net, call->cm_server);
171 		afs_put_cb_interest(call->net, call->cbi);
172 		kfree(call->request);
173 
174 		trace_afs_call(call, afs_call_trace_free, 0, o,
175 			       __builtin_return_address(0));
176 		kfree(call);
177 
178 		o = atomic_dec_return(&net->nr_outstanding_calls);
179 		if (o == 0)
180 			wake_up_var(&net->nr_outstanding_calls);
181 	}
182 }
183 
184 /*
185  * Queue the call for actual work.  Returns 0 unconditionally for convenience.
186  */
187 int afs_queue_call_work(struct afs_call *call)
188 {
189 	int u = atomic_inc_return(&call->usage);
190 
191 	trace_afs_call(call, afs_call_trace_work, u,
192 		       atomic_read(&call->net->nr_outstanding_calls),
193 		       __builtin_return_address(0));
194 
195 	INIT_WORK(&call->work, call->type->work);
196 
197 	if (!queue_work(afs_wq, &call->work))
198 		afs_put_call(call);
199 	return 0;
200 }
201 
202 /*
203  * allocate a call with flat request and reply buffers
204  */
205 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
206 				     const struct afs_call_type *type,
207 				     size_t request_size, size_t reply_max)
208 {
209 	struct afs_call *call;
210 
211 	call = afs_alloc_call(net, type, GFP_NOFS);
212 	if (!call)
213 		goto nomem_call;
214 
215 	if (request_size) {
216 		call->request_size = request_size;
217 		call->request = kmalloc(request_size, GFP_NOFS);
218 		if (!call->request)
219 			goto nomem_free;
220 	}
221 
222 	if (reply_max) {
223 		call->reply_max = reply_max;
224 		call->buffer = kmalloc(reply_max, GFP_NOFS);
225 		if (!call->buffer)
226 			goto nomem_free;
227 	}
228 
229 	call->operation_ID = type->op;
230 	init_waitqueue_head(&call->waitq);
231 	return call;
232 
233 nomem_free:
234 	afs_put_call(call);
235 nomem_call:
236 	return NULL;
237 }
238 
239 /*
240  * clean up a call with flat buffer
241  */
242 void afs_flat_call_destructor(struct afs_call *call)
243 {
244 	_enter("");
245 
246 	kfree(call->request);
247 	call->request = NULL;
248 	kfree(call->buffer);
249 	call->buffer = NULL;
250 }
251 
252 #define AFS_BVEC_MAX 8
253 
254 /*
255  * Load the given bvec with the next few pages.
256  */
257 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
258 			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
259 			  unsigned offset)
260 {
261 	struct page *pages[AFS_BVEC_MAX];
262 	unsigned int nr, n, i, to, bytes = 0;
263 
264 	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
265 	n = find_get_pages_contig(call->mapping, first, nr, pages);
266 	ASSERTCMP(n, ==, nr);
267 
268 	msg->msg_flags |= MSG_MORE;
269 	for (i = 0; i < nr; i++) {
270 		to = PAGE_SIZE;
271 		if (first + i >= last) {
272 			to = call->last_to;
273 			msg->msg_flags &= ~MSG_MORE;
274 		}
275 		bv[i].bv_page = pages[i];
276 		bv[i].bv_len = to - offset;
277 		bv[i].bv_offset = offset;
278 		bytes += to - offset;
279 		offset = 0;
280 	}
281 
282 	iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
283 }
284 
285 /*
286  * Advance the AFS call state when the RxRPC call ends the transmit phase.
287  */
288 static void afs_notify_end_request_tx(struct sock *sock,
289 				      struct rxrpc_call *rxcall,
290 				      unsigned long call_user_ID)
291 {
292 	struct afs_call *call = (struct afs_call *)call_user_ID;
293 
294 	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
295 }
296 
297 /*
298  * attach the data from a bunch of pages on an inode to a call
299  */
300 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
301 {
302 	struct bio_vec bv[AFS_BVEC_MAX];
303 	unsigned int bytes, nr, loop, offset;
304 	pgoff_t first = call->first, last = call->last;
305 	int ret;
306 
307 	offset = call->first_offset;
308 	call->first_offset = 0;
309 
310 	do {
311 		afs_load_bvec(call, msg, bv, first, last, offset);
312 		trace_afs_send_pages(call, msg, first, last, offset);
313 
314 		offset = 0;
315 		bytes = msg->msg_iter.count;
316 		nr = msg->msg_iter.nr_segs;
317 
318 		ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
319 					     bytes, afs_notify_end_request_tx);
320 		for (loop = 0; loop < nr; loop++)
321 			put_page(bv[loop].bv_page);
322 		if (ret < 0)
323 			break;
324 
325 		first += nr;
326 	} while (first <= last);
327 
328 	trace_afs_sent_pages(call, call->first, last, first, ret);
329 	return ret;
330 }
331 
332 /*
333  * initiate a call
334  */
335 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call,
336 		   gfp_t gfp, bool async)
337 {
338 	struct sockaddr_rxrpc *srx = ac->addr;
339 	struct rxrpc_call *rxcall;
340 	struct msghdr msg;
341 	struct kvec iov[1];
342 	size_t offset;
343 	s64 tx_total_len;
344 	int ret;
345 
346 	_enter(",{%pISp},", &srx->transport);
347 
348 	ASSERT(call->type != NULL);
349 	ASSERT(call->type->name != NULL);
350 
351 	_debug("____MAKE %p{%s,%x} [%d]____",
352 	       call, call->type->name, key_serial(call->key),
353 	       atomic_read(&call->net->nr_outstanding_calls));
354 
355 	call->async = async;
356 
357 	/* Work out the length we're going to transmit.  This is awkward for
358 	 * calls such as FS.StoreData where there's an extra injection of data
359 	 * after the initial fixed part.
360 	 */
361 	tx_total_len = call->request_size;
362 	if (call->send_pages) {
363 		if (call->last == call->first) {
364 			tx_total_len += call->last_to - call->first_offset;
365 		} else {
366 			/* It looks mathematically like you should be able to
367 			 * combine the following lines with the ones above, but
368 			 * unsigned arithmetic is fun when it wraps...
369 			 */
370 			tx_total_len += PAGE_SIZE - call->first_offset;
371 			tx_total_len += call->last_to;
372 			tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
373 		}
374 	}
375 
376 	/* create a call */
377 	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
378 					 (unsigned long)call,
379 					 tx_total_len, gfp,
380 					 (async ?
381 					  afs_wake_up_async_call :
382 					  afs_wake_up_call_waiter),
383 					 call->upgrade,
384 					 call->debug_id);
385 	if (IS_ERR(rxcall)) {
386 		ret = PTR_ERR(rxcall);
387 		goto error_kill_call;
388 	}
389 
390 	call->rxcall = rxcall;
391 
392 	/* send the request */
393 	iov[0].iov_base	= call->request;
394 	iov[0].iov_len	= call->request_size;
395 
396 	msg.msg_name		= NULL;
397 	msg.msg_namelen		= 0;
398 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
399 		      call->request_size);
400 	msg.msg_control		= NULL;
401 	msg.msg_controllen	= 0;
402 	msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
403 
404 	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
405 				     &msg, call->request_size,
406 				     afs_notify_end_request_tx);
407 	if (ret < 0)
408 		goto error_do_abort;
409 
410 	if (call->send_pages) {
411 		ret = afs_send_pages(call, &msg);
412 		if (ret < 0)
413 			goto error_do_abort;
414 	}
415 
416 	/* at this point, an async call may no longer exist as it may have
417 	 * already completed */
418 	if (call->async)
419 		return -EINPROGRESS;
420 
421 	return afs_wait_for_call_to_complete(call, ac);
422 
423 error_do_abort:
424 	call->state = AFS_CALL_COMPLETE;
425 	if (ret != -ECONNABORTED) {
426 		rxrpc_kernel_abort_call(call->net->socket, rxcall,
427 					RX_USER_ABORT, ret, "KSD");
428 	} else {
429 		offset = 0;
430 		rxrpc_kernel_recv_data(call->net->socket, rxcall, NULL,
431 				       0, &offset, false, &call->abort_code,
432 				       &call->service_id);
433 		ac->abort_code = call->abort_code;
434 		ac->responded = true;
435 	}
436 	call->error = ret;
437 	trace_afs_call_done(call);
438 error_kill_call:
439 	afs_put_call(call);
440 	ac->error = ret;
441 	_leave(" = %d", ret);
442 	return ret;
443 }
444 
445 /*
446  * deliver messages to a call
447  */
448 static void afs_deliver_to_call(struct afs_call *call)
449 {
450 	enum afs_call_state state;
451 	u32 abort_code, remote_abort = 0;
452 	int ret;
453 
454 	_enter("%s", call->type->name);
455 
456 	while (state = READ_ONCE(call->state),
457 	       state == AFS_CALL_CL_AWAIT_REPLY ||
458 	       state == AFS_CALL_SV_AWAIT_OP_ID ||
459 	       state == AFS_CALL_SV_AWAIT_REQUEST ||
460 	       state == AFS_CALL_SV_AWAIT_ACK
461 	       ) {
462 		if (state == AFS_CALL_SV_AWAIT_ACK) {
463 			size_t offset = 0;
464 			ret = rxrpc_kernel_recv_data(call->net->socket,
465 						     call->rxcall,
466 						     NULL, 0, &offset, false,
467 						     &remote_abort,
468 						     &call->service_id);
469 			trace_afs_recv_data(call, 0, offset, false, ret);
470 
471 			if (ret == -EINPROGRESS || ret == -EAGAIN)
472 				return;
473 			if (ret < 0 || ret == 1) {
474 				if (ret == 1)
475 					ret = 0;
476 				goto call_complete;
477 			}
478 			return;
479 		}
480 
481 		ret = call->type->deliver(call);
482 		state = READ_ONCE(call->state);
483 		switch (ret) {
484 		case 0:
485 			if (state == AFS_CALL_CL_PROC_REPLY)
486 				goto call_complete;
487 			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
488 			goto done;
489 		case -EINPROGRESS:
490 		case -EAGAIN:
491 			goto out;
492 		case -EIO:
493 		case -ECONNABORTED:
494 			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
495 			goto done;
496 		case -ENOTCONN:
497 			abort_code = RX_CALL_DEAD;
498 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
499 						abort_code, ret, "KNC");
500 			goto local_abort;
501 		case -ENOTSUPP:
502 			abort_code = RXGEN_OPCODE;
503 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
504 						abort_code, ret, "KIV");
505 			goto local_abort;
506 		case -ENODATA:
507 		case -EBADMSG:
508 		case -EMSGSIZE:
509 		default:
510 			abort_code = RXGEN_CC_UNMARSHAL;
511 			if (state != AFS_CALL_CL_AWAIT_REPLY)
512 				abort_code = RXGEN_SS_UNMARSHAL;
513 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
514 						abort_code, -EBADMSG, "KUM");
515 			goto local_abort;
516 		}
517 	}
518 
519 done:
520 	if (state == AFS_CALL_COMPLETE && call->incoming)
521 		afs_put_call(call);
522 out:
523 	_leave("");
524 	return;
525 
526 local_abort:
527 	abort_code = 0;
528 call_complete:
529 	afs_set_call_complete(call, ret, remote_abort);
530 	state = AFS_CALL_COMPLETE;
531 	goto done;
532 }
533 
534 /*
535  * wait synchronously for a call to complete
536  */
537 static long afs_wait_for_call_to_complete(struct afs_call *call,
538 					  struct afs_addr_cursor *ac)
539 {
540 	signed long rtt2, timeout;
541 	long ret;
542 	u64 rtt;
543 	u32 life, last_life;
544 
545 	DECLARE_WAITQUEUE(myself, current);
546 
547 	_enter("");
548 
549 	rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
550 	rtt2 = nsecs_to_jiffies64(rtt) * 2;
551 	if (rtt2 < 2)
552 		rtt2 = 2;
553 
554 	timeout = rtt2;
555 	last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
556 
557 	add_wait_queue(&call->waitq, &myself);
558 	for (;;) {
559 		set_current_state(TASK_UNINTERRUPTIBLE);
560 
561 		/* deliver any messages that are in the queue */
562 		if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
563 		    call->need_attention) {
564 			call->need_attention = false;
565 			__set_current_state(TASK_RUNNING);
566 			afs_deliver_to_call(call);
567 			continue;
568 		}
569 
570 		if (afs_check_call_state(call, AFS_CALL_COMPLETE))
571 			break;
572 
573 		life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
574 		if (timeout == 0 &&
575 		    life == last_life && signal_pending(current))
576 				break;
577 
578 		if (life != last_life) {
579 			timeout = rtt2;
580 			last_life = life;
581 		}
582 
583 		timeout = schedule_timeout(timeout);
584 	}
585 
586 	remove_wait_queue(&call->waitq, &myself);
587 	__set_current_state(TASK_RUNNING);
588 
589 	/* Kill off the call if it's still live. */
590 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
591 		_debug("call interrupted");
592 		if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
593 					    RX_USER_ABORT, -EINTR, "KWI"))
594 			afs_set_call_complete(call, -EINTR, 0);
595 	}
596 
597 	spin_lock_bh(&call->state_lock);
598 	ac->abort_code = call->abort_code;
599 	ac->error = call->error;
600 	spin_unlock_bh(&call->state_lock);
601 
602 	ret = ac->error;
603 	switch (ret) {
604 	case 0:
605 		if (call->ret_reply0) {
606 			ret = (long)call->reply[0];
607 			call->reply[0] = NULL;
608 		}
609 		/* Fall through */
610 	case -ECONNABORTED:
611 		ac->responded = true;
612 		break;
613 	}
614 
615 	_debug("call complete");
616 	afs_put_call(call);
617 	_leave(" = %p", (void *)ret);
618 	return ret;
619 }
620 
621 /*
622  * wake up a waiting call
623  */
624 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
625 				    unsigned long call_user_ID)
626 {
627 	struct afs_call *call = (struct afs_call *)call_user_ID;
628 
629 	call->need_attention = true;
630 	wake_up(&call->waitq);
631 }
632 
633 /*
634  * wake up an asynchronous call
635  */
636 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
637 				   unsigned long call_user_ID)
638 {
639 	struct afs_call *call = (struct afs_call *)call_user_ID;
640 	int u;
641 
642 	trace_afs_notify_call(rxcall, call);
643 	call->need_attention = true;
644 
645 	u = __atomic_add_unless(&call->usage, 1, 0);
646 	if (u != 0) {
647 		trace_afs_call(call, afs_call_trace_wake, u,
648 			       atomic_read(&call->net->nr_outstanding_calls),
649 			       __builtin_return_address(0));
650 
651 		if (!queue_work(afs_async_calls, &call->async_work))
652 			afs_put_call(call);
653 	}
654 }
655 
656 /*
657  * Delete an asynchronous call.  The work item carries a ref to the call struct
658  * that we need to release.
659  */
660 static void afs_delete_async_call(struct work_struct *work)
661 {
662 	struct afs_call *call = container_of(work, struct afs_call, async_work);
663 
664 	_enter("");
665 
666 	afs_put_call(call);
667 
668 	_leave("");
669 }
670 
671 /*
672  * Perform I/O processing on an asynchronous call.  The work item carries a ref
673  * to the call struct that we either need to release or to pass on.
674  */
675 static void afs_process_async_call(struct work_struct *work)
676 {
677 	struct afs_call *call = container_of(work, struct afs_call, async_work);
678 
679 	_enter("");
680 
681 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
682 		call->need_attention = false;
683 		afs_deliver_to_call(call);
684 	}
685 
686 	if (call->state == AFS_CALL_COMPLETE) {
687 		call->reply[0] = NULL;
688 
689 		/* We have two refs to release - one from the alloc and one
690 		 * queued with the work item - and we can't just deallocate the
691 		 * call because the work item may be queued again.
692 		 */
693 		call->async_work.func = afs_delete_async_call;
694 		if (!queue_work(afs_async_calls, &call->async_work))
695 			afs_put_call(call);
696 	}
697 
698 	afs_put_call(call);
699 	_leave("");
700 }
701 
702 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
703 {
704 	struct afs_call *call = (struct afs_call *)user_call_ID;
705 
706 	call->rxcall = rxcall;
707 }
708 
709 /*
710  * Charge the incoming call preallocation.
711  */
712 void afs_charge_preallocation(struct work_struct *work)
713 {
714 	struct afs_net *net =
715 		container_of(work, struct afs_net, charge_preallocation_work);
716 	struct afs_call *call = net->spare_incoming_call;
717 
718 	for (;;) {
719 		if (!call) {
720 			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
721 			if (!call)
722 				break;
723 
724 			call->async = true;
725 			call->state = AFS_CALL_SV_AWAIT_OP_ID;
726 			init_waitqueue_head(&call->waitq);
727 		}
728 
729 		if (rxrpc_kernel_charge_accept(net->socket,
730 					       afs_wake_up_async_call,
731 					       afs_rx_attach,
732 					       (unsigned long)call,
733 					       GFP_KERNEL,
734 					       call->debug_id) < 0)
735 			break;
736 		call = NULL;
737 	}
738 	net->spare_incoming_call = call;
739 }
740 
741 /*
742  * Discard a preallocated call when a socket is shut down.
743  */
744 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
745 				    unsigned long user_call_ID)
746 {
747 	struct afs_call *call = (struct afs_call *)user_call_ID;
748 
749 	call->rxcall = NULL;
750 	afs_put_call(call);
751 }
752 
753 /*
754  * Notification of an incoming call.
755  */
756 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
757 			    unsigned long user_call_ID)
758 {
759 	struct afs_net *net = afs_sock2net(sk);
760 
761 	queue_work(afs_wq, &net->charge_preallocation_work);
762 }
763 
764 /*
765  * Grab the operation ID from an incoming cache manager call.  The socket
766  * buffer is discarded on error or if we don't yet have sufficient data.
767  */
768 static int afs_deliver_cm_op_id(struct afs_call *call)
769 {
770 	int ret;
771 
772 	_enter("{%zu}", call->offset);
773 
774 	ASSERTCMP(call->offset, <, 4);
775 
776 	/* the operation ID forms the first four bytes of the request data */
777 	ret = afs_extract_data(call, &call->tmp, 4, true);
778 	if (ret < 0)
779 		return ret;
780 
781 	call->operation_ID = ntohl(call->tmp);
782 	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
783 	call->offset = 0;
784 
785 	/* ask the cache manager to route the call (it'll change the call type
786 	 * if successful) */
787 	if (!afs_cm_incoming_call(call))
788 		return -ENOTSUPP;
789 
790 	trace_afs_cb_call(call);
791 
792 	/* pass responsibility for the remainer of this message off to the
793 	 * cache manager op */
794 	return call->type->deliver(call);
795 }
796 
797 /*
798  * Advance the AFS call state when an RxRPC service call ends the transmit
799  * phase.
800  */
801 static void afs_notify_end_reply_tx(struct sock *sock,
802 				    struct rxrpc_call *rxcall,
803 				    unsigned long call_user_ID)
804 {
805 	struct afs_call *call = (struct afs_call *)call_user_ID;
806 
807 	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
808 }
809 
810 /*
811  * send an empty reply
812  */
813 void afs_send_empty_reply(struct afs_call *call)
814 {
815 	struct afs_net *net = call->net;
816 	struct msghdr msg;
817 
818 	_enter("");
819 
820 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
821 
822 	msg.msg_name		= NULL;
823 	msg.msg_namelen		= 0;
824 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
825 	msg.msg_control		= NULL;
826 	msg.msg_controllen	= 0;
827 	msg.msg_flags		= 0;
828 
829 	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
830 				       afs_notify_end_reply_tx)) {
831 	case 0:
832 		_leave(" [replied]");
833 		return;
834 
835 	case -ENOMEM:
836 		_debug("oom");
837 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
838 					RX_USER_ABORT, -ENOMEM, "KOO");
839 	default:
840 		_leave(" [error]");
841 		return;
842 	}
843 }
844 
845 /*
846  * send a simple reply
847  */
848 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
849 {
850 	struct afs_net *net = call->net;
851 	struct msghdr msg;
852 	struct kvec iov[1];
853 	int n;
854 
855 	_enter("");
856 
857 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
858 
859 	iov[0].iov_base		= (void *) buf;
860 	iov[0].iov_len		= len;
861 	msg.msg_name		= NULL;
862 	msg.msg_namelen		= 0;
863 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
864 	msg.msg_control		= NULL;
865 	msg.msg_controllen	= 0;
866 	msg.msg_flags		= 0;
867 
868 	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
869 				   afs_notify_end_reply_tx);
870 	if (n >= 0) {
871 		/* Success */
872 		_leave(" [replied]");
873 		return;
874 	}
875 
876 	if (n == -ENOMEM) {
877 		_debug("oom");
878 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
879 					RX_USER_ABORT, -ENOMEM, "KOO");
880 	}
881 	_leave(" [error]");
882 }
883 
884 /*
885  * Extract a piece of data from the received data socket buffers.
886  */
887 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
888 		     bool want_more)
889 {
890 	struct afs_net *net = call->net;
891 	enum afs_call_state state;
892 	u32 remote_abort = 0;
893 	int ret;
894 
895 	_enter("{%s,%zu},,%zu,%d",
896 	       call->type->name, call->offset, count, want_more);
897 
898 	ASSERTCMP(call->offset, <=, count);
899 
900 	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall,
901 				     buf, count, &call->offset,
902 				     want_more, &remote_abort,
903 				     &call->service_id);
904 	trace_afs_recv_data(call, count, call->offset, want_more, ret);
905 	if (ret == 0 || ret == -EAGAIN)
906 		return ret;
907 
908 	state = READ_ONCE(call->state);
909 	if (ret == 1) {
910 		switch (state) {
911 		case AFS_CALL_CL_AWAIT_REPLY:
912 			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
913 			break;
914 		case AFS_CALL_SV_AWAIT_REQUEST:
915 			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
916 			break;
917 		case AFS_CALL_COMPLETE:
918 			kdebug("prem complete %d", call->error);
919 			return -EIO;
920 		default:
921 			break;
922 		}
923 		return 0;
924 	}
925 
926 	afs_set_call_complete(call, ret, remote_abort);
927 	return ret;
928 }
929 
930 /*
931  * Log protocol error production.
932  */
933 noinline int afs_protocol_error(struct afs_call *call, int error)
934 {
935 	trace_afs_protocol_error(call, error, __builtin_return_address(0));
936 	return error;
937 }
938