1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <net/sock.h> 13 #include <net/af_rxrpc.h> 14 #include <rxrpc/packet.h> 15 #include "internal.h" 16 #include "afs_cm.h" 17 18 static struct socket *afs_socket; /* my RxRPC socket */ 19 static struct workqueue_struct *afs_async_calls; 20 static atomic_t afs_outstanding_calls; 21 static atomic_t afs_outstanding_skbs; 22 23 static void afs_wake_up_call_waiter(struct afs_call *); 24 static int afs_wait_for_call_to_complete(struct afs_call *); 25 static void afs_wake_up_async_call(struct afs_call *); 26 static int afs_dont_wait_for_call_to_complete(struct afs_call *); 27 static void afs_process_async_call(struct work_struct *); 28 static void afs_rx_interceptor(struct sock *, unsigned long, struct sk_buff *); 29 static int afs_deliver_cm_op_id(struct afs_call *, struct sk_buff *, bool); 30 31 /* synchronous call management */ 32 const struct afs_wait_mode afs_sync_call = { 33 .rx_wakeup = afs_wake_up_call_waiter, 34 .wait = afs_wait_for_call_to_complete, 35 }; 36 37 /* asynchronous call management */ 38 const struct afs_wait_mode afs_async_call = { 39 .rx_wakeup = afs_wake_up_async_call, 40 .wait = afs_dont_wait_for_call_to_complete, 41 }; 42 43 /* asynchronous incoming call management */ 44 static const struct afs_wait_mode afs_async_incoming_call = { 45 .rx_wakeup = afs_wake_up_async_call, 46 }; 47 48 /* asynchronous incoming call initial processing */ 49 static const struct afs_call_type afs_RXCMxxxx = { 50 .name = "CB.xxxx", 51 .deliver = afs_deliver_cm_op_id, 52 .abort_to_error = afs_abort_to_error, 53 }; 54 55 static void afs_collect_incoming_call(struct work_struct *); 56 57 static struct sk_buff_head afs_incoming_calls; 58 static DECLARE_WORK(afs_collect_incoming_call_work, afs_collect_incoming_call); 59 60 /* 61 * open an RxRPC socket and bind it to be a server for callback notifications 62 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 63 */ 64 int afs_open_socket(void) 65 { 66 struct sockaddr_rxrpc srx; 67 struct socket *socket; 68 int ret; 69 70 _enter(""); 71 72 skb_queue_head_init(&afs_incoming_calls); 73 74 afs_async_calls = create_singlethread_workqueue("kafsd"); 75 if (!afs_async_calls) { 76 _leave(" = -ENOMEM [wq]"); 77 return -ENOMEM; 78 } 79 80 ret = sock_create_kern(AF_RXRPC, SOCK_DGRAM, PF_INET, &socket); 81 if (ret < 0) { 82 destroy_workqueue(afs_async_calls); 83 _leave(" = %d [socket]", ret); 84 return ret; 85 } 86 87 socket->sk->sk_allocation = GFP_NOFS; 88 89 /* bind the callback manager's address to make this a server socket */ 90 srx.srx_family = AF_RXRPC; 91 srx.srx_service = CM_SERVICE; 92 srx.transport_type = SOCK_DGRAM; 93 srx.transport_len = sizeof(srx.transport.sin); 94 srx.transport.sin.sin_family = AF_INET; 95 srx.transport.sin.sin_port = htons(AFS_CM_PORT); 96 memset(&srx.transport.sin.sin_addr, 0, 97 sizeof(srx.transport.sin.sin_addr)); 98 99 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 100 if (ret < 0) { 101 sock_release(socket); 102 _leave(" = %d [bind]", ret); 103 return ret; 104 } 105 106 rxrpc_kernel_intercept_rx_messages(socket, afs_rx_interceptor); 107 108 afs_socket = socket; 109 _leave(" = 0"); 110 return 0; 111 } 112 113 /* 114 * close the RxRPC socket AFS was using 115 */ 116 void afs_close_socket(void) 117 { 118 _enter(""); 119 120 sock_release(afs_socket); 121 122 _debug("dework"); 123 destroy_workqueue(afs_async_calls); 124 125 ASSERTCMP(atomic_read(&afs_outstanding_skbs), ==, 0); 126 ASSERTCMP(atomic_read(&afs_outstanding_calls), ==, 0); 127 _leave(""); 128 } 129 130 /* 131 * note that the data in a socket buffer is now delivered and that the buffer 132 * should be freed 133 */ 134 static void afs_data_delivered(struct sk_buff *skb) 135 { 136 if (!skb) { 137 _debug("DLVR NULL [%d]", atomic_read(&afs_outstanding_skbs)); 138 dump_stack(); 139 } else { 140 _debug("DLVR %p{%u} [%d]", 141 skb, skb->mark, atomic_read(&afs_outstanding_skbs)); 142 if (atomic_dec_return(&afs_outstanding_skbs) == -1) 143 BUG(); 144 rxrpc_kernel_data_delivered(skb); 145 } 146 } 147 148 /* 149 * free a socket buffer 150 */ 151 static void afs_free_skb(struct sk_buff *skb) 152 { 153 if (!skb) { 154 _debug("FREE NULL [%d]", atomic_read(&afs_outstanding_skbs)); 155 dump_stack(); 156 } else { 157 _debug("FREE %p{%u} [%d]", 158 skb, skb->mark, atomic_read(&afs_outstanding_skbs)); 159 if (atomic_dec_return(&afs_outstanding_skbs) == -1) 160 BUG(); 161 rxrpc_kernel_free_skb(skb); 162 } 163 } 164 165 /* 166 * free a call 167 */ 168 static void afs_free_call(struct afs_call *call) 169 { 170 _debug("DONE %p{%s} [%d]", 171 call, call->type->name, atomic_read(&afs_outstanding_calls)); 172 if (atomic_dec_return(&afs_outstanding_calls) == -1) 173 BUG(); 174 175 ASSERTCMP(call->rxcall, ==, NULL); 176 ASSERT(!work_pending(&call->async_work)); 177 ASSERT(skb_queue_empty(&call->rx_queue)); 178 ASSERT(call->type->name != NULL); 179 180 kfree(call->request); 181 kfree(call); 182 } 183 184 /* 185 * allocate a call with flat request and reply buffers 186 */ 187 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type, 188 size_t request_size, size_t reply_size) 189 { 190 struct afs_call *call; 191 192 call = kzalloc(sizeof(*call), GFP_NOFS); 193 if (!call) 194 goto nomem_call; 195 196 _debug("CALL %p{%s} [%d]", 197 call, type->name, atomic_read(&afs_outstanding_calls)); 198 atomic_inc(&afs_outstanding_calls); 199 200 call->type = type; 201 call->request_size = request_size; 202 call->reply_max = reply_size; 203 204 if (request_size) { 205 call->request = kmalloc(request_size, GFP_NOFS); 206 if (!call->request) 207 goto nomem_free; 208 } 209 210 if (reply_size) { 211 call->buffer = kmalloc(reply_size, GFP_NOFS); 212 if (!call->buffer) 213 goto nomem_free; 214 } 215 216 init_waitqueue_head(&call->waitq); 217 skb_queue_head_init(&call->rx_queue); 218 return call; 219 220 nomem_free: 221 afs_free_call(call); 222 nomem_call: 223 return NULL; 224 } 225 226 /* 227 * clean up a call with flat buffer 228 */ 229 void afs_flat_call_destructor(struct afs_call *call) 230 { 231 _enter(""); 232 233 kfree(call->request); 234 call->request = NULL; 235 kfree(call->buffer); 236 call->buffer = NULL; 237 } 238 239 /* 240 * attach the data from a bunch of pages on an inode to a call 241 */ 242 int afs_send_pages(struct afs_call *call, struct msghdr *msg, struct kvec *iov) 243 { 244 struct page *pages[8]; 245 unsigned count, n, loop, offset, to; 246 pgoff_t first = call->first, last = call->last; 247 int ret; 248 249 _enter(""); 250 251 offset = call->first_offset; 252 call->first_offset = 0; 253 254 do { 255 _debug("attach %lx-%lx", first, last); 256 257 count = last - first + 1; 258 if (count > ARRAY_SIZE(pages)) 259 count = ARRAY_SIZE(pages); 260 n = find_get_pages_contig(call->mapping, first, count, pages); 261 ASSERTCMP(n, ==, count); 262 263 loop = 0; 264 do { 265 msg->msg_flags = 0; 266 to = PAGE_SIZE; 267 if (first + loop >= last) 268 to = call->last_to; 269 else 270 msg->msg_flags = MSG_MORE; 271 iov->iov_base = kmap(pages[loop]) + offset; 272 iov->iov_len = to - offset; 273 offset = 0; 274 275 _debug("- range %u-%u%s", 276 offset, to, msg->msg_flags ? " [more]" : ""); 277 msg->msg_iov = (struct iovec *) iov; 278 msg->msg_iovlen = 1; 279 280 /* have to change the state *before* sending the last 281 * packet as RxRPC might give us the reply before it 282 * returns from sending the request */ 283 if (first + loop >= last) 284 call->state = AFS_CALL_AWAIT_REPLY; 285 ret = rxrpc_kernel_send_data(call->rxcall, msg, 286 to - offset); 287 kunmap(pages[loop]); 288 if (ret < 0) 289 break; 290 } while (++loop < count); 291 first += count; 292 293 for (loop = 0; loop < count; loop++) 294 put_page(pages[loop]); 295 if (ret < 0) 296 break; 297 } while (first <= last); 298 299 _leave(" = %d", ret); 300 return ret; 301 } 302 303 /* 304 * initiate a call 305 */ 306 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp, 307 const struct afs_wait_mode *wait_mode) 308 { 309 struct sockaddr_rxrpc srx; 310 struct rxrpc_call *rxcall; 311 struct msghdr msg; 312 struct kvec iov[1]; 313 int ret; 314 315 _enter("%x,{%d},", addr->s_addr, ntohs(call->port)); 316 317 ASSERT(call->type != NULL); 318 ASSERT(call->type->name != NULL); 319 320 _debug("____MAKE %p{%s,%x} [%d]____", 321 call, call->type->name, key_serial(call->key), 322 atomic_read(&afs_outstanding_calls)); 323 324 call->wait_mode = wait_mode; 325 INIT_WORK(&call->async_work, afs_process_async_call); 326 327 memset(&srx, 0, sizeof(srx)); 328 srx.srx_family = AF_RXRPC; 329 srx.srx_service = call->service_id; 330 srx.transport_type = SOCK_DGRAM; 331 srx.transport_len = sizeof(srx.transport.sin); 332 srx.transport.sin.sin_family = AF_INET; 333 srx.transport.sin.sin_port = call->port; 334 memcpy(&srx.transport.sin.sin_addr, addr, 4); 335 336 /* create a call */ 337 rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key, 338 (unsigned long) call, gfp); 339 call->key = NULL; 340 if (IS_ERR(rxcall)) { 341 ret = PTR_ERR(rxcall); 342 goto error_kill_call; 343 } 344 345 call->rxcall = rxcall; 346 347 /* send the request */ 348 iov[0].iov_base = call->request; 349 iov[0].iov_len = call->request_size; 350 351 msg.msg_name = NULL; 352 msg.msg_namelen = 0; 353 msg.msg_iov = (struct iovec *) iov; 354 msg.msg_iovlen = 1; 355 msg.msg_control = NULL; 356 msg.msg_controllen = 0; 357 msg.msg_flags = (call->send_pages ? MSG_MORE : 0); 358 359 /* have to change the state *before* sending the last packet as RxRPC 360 * might give us the reply before it returns from sending the 361 * request */ 362 if (!call->send_pages) 363 call->state = AFS_CALL_AWAIT_REPLY; 364 ret = rxrpc_kernel_send_data(rxcall, &msg, call->request_size); 365 if (ret < 0) 366 goto error_do_abort; 367 368 if (call->send_pages) { 369 ret = afs_send_pages(call, &msg, iov); 370 if (ret < 0) 371 goto error_do_abort; 372 } 373 374 /* at this point, an async call may no longer exist as it may have 375 * already completed */ 376 return wait_mode->wait(call); 377 378 error_do_abort: 379 rxrpc_kernel_abort_call(rxcall, RX_USER_ABORT); 380 rxrpc_kernel_end_call(rxcall); 381 call->rxcall = NULL; 382 error_kill_call: 383 call->type->destructor(call); 384 afs_free_call(call); 385 _leave(" = %d", ret); 386 return ret; 387 } 388 389 /* 390 * handles intercepted messages that were arriving in the socket's Rx queue 391 * - called with the socket receive queue lock held to ensure message ordering 392 * - called with softirqs disabled 393 */ 394 static void afs_rx_interceptor(struct sock *sk, unsigned long user_call_ID, 395 struct sk_buff *skb) 396 { 397 struct afs_call *call = (struct afs_call *) user_call_ID; 398 399 _enter("%p,,%u", call, skb->mark); 400 401 _debug("ICPT %p{%u} [%d]", 402 skb, skb->mark, atomic_read(&afs_outstanding_skbs)); 403 404 ASSERTCMP(sk, ==, afs_socket->sk); 405 atomic_inc(&afs_outstanding_skbs); 406 407 if (!call) { 408 /* its an incoming call for our callback service */ 409 skb_queue_tail(&afs_incoming_calls, skb); 410 schedule_work(&afs_collect_incoming_call_work); 411 } else { 412 /* route the messages directly to the appropriate call */ 413 skb_queue_tail(&call->rx_queue, skb); 414 call->wait_mode->rx_wakeup(call); 415 } 416 417 _leave(""); 418 } 419 420 /* 421 * deliver messages to a call 422 */ 423 static void afs_deliver_to_call(struct afs_call *call) 424 { 425 struct sk_buff *skb; 426 bool last; 427 u32 abort_code; 428 int ret; 429 430 _enter(""); 431 432 while ((call->state == AFS_CALL_AWAIT_REPLY || 433 call->state == AFS_CALL_AWAIT_OP_ID || 434 call->state == AFS_CALL_AWAIT_REQUEST || 435 call->state == AFS_CALL_AWAIT_ACK) && 436 (skb = skb_dequeue(&call->rx_queue))) { 437 switch (skb->mark) { 438 case RXRPC_SKB_MARK_DATA: 439 _debug("Rcv DATA"); 440 last = rxrpc_kernel_is_data_last(skb); 441 ret = call->type->deliver(call, skb, last); 442 switch (ret) { 443 case 0: 444 if (last && 445 call->state == AFS_CALL_AWAIT_REPLY) 446 call->state = AFS_CALL_COMPLETE; 447 break; 448 case -ENOTCONN: 449 abort_code = RX_CALL_DEAD; 450 goto do_abort; 451 case -ENOTSUPP: 452 abort_code = RX_INVALID_OPERATION; 453 goto do_abort; 454 default: 455 abort_code = RXGEN_CC_UNMARSHAL; 456 if (call->state != AFS_CALL_AWAIT_REPLY) 457 abort_code = RXGEN_SS_UNMARSHAL; 458 do_abort: 459 rxrpc_kernel_abort_call(call->rxcall, 460 abort_code); 461 call->error = ret; 462 call->state = AFS_CALL_ERROR; 463 break; 464 } 465 afs_data_delivered(skb); 466 skb = NULL; 467 continue; 468 case RXRPC_SKB_MARK_FINAL_ACK: 469 _debug("Rcv ACK"); 470 call->state = AFS_CALL_COMPLETE; 471 break; 472 case RXRPC_SKB_MARK_BUSY: 473 _debug("Rcv BUSY"); 474 call->error = -EBUSY; 475 call->state = AFS_CALL_BUSY; 476 break; 477 case RXRPC_SKB_MARK_REMOTE_ABORT: 478 abort_code = rxrpc_kernel_get_abort_code(skb); 479 call->error = call->type->abort_to_error(abort_code); 480 call->state = AFS_CALL_ABORTED; 481 _debug("Rcv ABORT %u -> %d", abort_code, call->error); 482 break; 483 case RXRPC_SKB_MARK_NET_ERROR: 484 call->error = -rxrpc_kernel_get_error_number(skb); 485 call->state = AFS_CALL_ERROR; 486 _debug("Rcv NET ERROR %d", call->error); 487 break; 488 case RXRPC_SKB_MARK_LOCAL_ERROR: 489 call->error = -rxrpc_kernel_get_error_number(skb); 490 call->state = AFS_CALL_ERROR; 491 _debug("Rcv LOCAL ERROR %d", call->error); 492 break; 493 default: 494 BUG(); 495 break; 496 } 497 498 afs_free_skb(skb); 499 } 500 501 /* make sure the queue is empty if the call is done with (we might have 502 * aborted the call early because of an unmarshalling error) */ 503 if (call->state >= AFS_CALL_COMPLETE) { 504 while ((skb = skb_dequeue(&call->rx_queue))) 505 afs_free_skb(skb); 506 if (call->incoming) { 507 rxrpc_kernel_end_call(call->rxcall); 508 call->rxcall = NULL; 509 call->type->destructor(call); 510 afs_free_call(call); 511 } 512 } 513 514 _leave(""); 515 } 516 517 /* 518 * wait synchronously for a call to complete 519 */ 520 static int afs_wait_for_call_to_complete(struct afs_call *call) 521 { 522 struct sk_buff *skb; 523 int ret; 524 525 DECLARE_WAITQUEUE(myself, current); 526 527 _enter(""); 528 529 add_wait_queue(&call->waitq, &myself); 530 for (;;) { 531 set_current_state(TASK_INTERRUPTIBLE); 532 533 /* deliver any messages that are in the queue */ 534 if (!skb_queue_empty(&call->rx_queue)) { 535 __set_current_state(TASK_RUNNING); 536 afs_deliver_to_call(call); 537 continue; 538 } 539 540 ret = call->error; 541 if (call->state >= AFS_CALL_COMPLETE) 542 break; 543 ret = -EINTR; 544 if (signal_pending(current)) 545 break; 546 schedule(); 547 } 548 549 remove_wait_queue(&call->waitq, &myself); 550 __set_current_state(TASK_RUNNING); 551 552 /* kill the call */ 553 if (call->state < AFS_CALL_COMPLETE) { 554 _debug("call incomplete"); 555 rxrpc_kernel_abort_call(call->rxcall, RX_CALL_DEAD); 556 while ((skb = skb_dequeue(&call->rx_queue))) 557 afs_free_skb(skb); 558 } 559 560 _debug("call complete"); 561 rxrpc_kernel_end_call(call->rxcall); 562 call->rxcall = NULL; 563 call->type->destructor(call); 564 afs_free_call(call); 565 _leave(" = %d", ret); 566 return ret; 567 } 568 569 /* 570 * wake up a waiting call 571 */ 572 static void afs_wake_up_call_waiter(struct afs_call *call) 573 { 574 wake_up(&call->waitq); 575 } 576 577 /* 578 * wake up an asynchronous call 579 */ 580 static void afs_wake_up_async_call(struct afs_call *call) 581 { 582 _enter(""); 583 queue_work(afs_async_calls, &call->async_work); 584 } 585 586 /* 587 * put a call into asynchronous mode 588 * - mustn't touch the call descriptor as the call my have completed by the 589 * time we get here 590 */ 591 static int afs_dont_wait_for_call_to_complete(struct afs_call *call) 592 { 593 _enter(""); 594 return -EINPROGRESS; 595 } 596 597 /* 598 * delete an asynchronous call 599 */ 600 static void afs_delete_async_call(struct work_struct *work) 601 { 602 struct afs_call *call = 603 container_of(work, struct afs_call, async_work); 604 605 _enter(""); 606 607 afs_free_call(call); 608 609 _leave(""); 610 } 611 612 /* 613 * perform processing on an asynchronous call 614 * - on a multiple-thread workqueue this work item may try to run on several 615 * CPUs at the same time 616 */ 617 static void afs_process_async_call(struct work_struct *work) 618 { 619 struct afs_call *call = 620 container_of(work, struct afs_call, async_work); 621 622 _enter(""); 623 624 if (!skb_queue_empty(&call->rx_queue)) 625 afs_deliver_to_call(call); 626 627 if (call->state >= AFS_CALL_COMPLETE && call->wait_mode) { 628 if (call->wait_mode->async_complete) 629 call->wait_mode->async_complete(call->reply, 630 call->error); 631 call->reply = NULL; 632 633 /* kill the call */ 634 rxrpc_kernel_end_call(call->rxcall); 635 call->rxcall = NULL; 636 if (call->type->destructor) 637 call->type->destructor(call); 638 639 /* we can't just delete the call because the work item may be 640 * queued */ 641 PREPARE_WORK(&call->async_work, afs_delete_async_call); 642 queue_work(afs_async_calls, &call->async_work); 643 } 644 645 _leave(""); 646 } 647 648 /* 649 * empty a socket buffer into a flat reply buffer 650 */ 651 void afs_transfer_reply(struct afs_call *call, struct sk_buff *skb) 652 { 653 size_t len = skb->len; 654 655 if (skb_copy_bits(skb, 0, call->buffer + call->reply_size, len) < 0) 656 BUG(); 657 call->reply_size += len; 658 } 659 660 /* 661 * accept the backlog of incoming calls 662 */ 663 static void afs_collect_incoming_call(struct work_struct *work) 664 { 665 struct rxrpc_call *rxcall; 666 struct afs_call *call = NULL; 667 struct sk_buff *skb; 668 669 while ((skb = skb_dequeue(&afs_incoming_calls))) { 670 _debug("new call"); 671 672 /* don't need the notification */ 673 afs_free_skb(skb); 674 675 if (!call) { 676 call = kzalloc(sizeof(struct afs_call), GFP_KERNEL); 677 if (!call) { 678 rxrpc_kernel_reject_call(afs_socket); 679 return; 680 } 681 682 INIT_WORK(&call->async_work, afs_process_async_call); 683 call->wait_mode = &afs_async_incoming_call; 684 call->type = &afs_RXCMxxxx; 685 init_waitqueue_head(&call->waitq); 686 skb_queue_head_init(&call->rx_queue); 687 call->state = AFS_CALL_AWAIT_OP_ID; 688 689 _debug("CALL %p{%s} [%d]", 690 call, call->type->name, 691 atomic_read(&afs_outstanding_calls)); 692 atomic_inc(&afs_outstanding_calls); 693 } 694 695 rxcall = rxrpc_kernel_accept_call(afs_socket, 696 (unsigned long) call); 697 if (!IS_ERR(rxcall)) { 698 call->rxcall = rxcall; 699 call = NULL; 700 } 701 } 702 703 if (call) 704 afs_free_call(call); 705 } 706 707 /* 708 * grab the operation ID from an incoming cache manager call 709 */ 710 static int afs_deliver_cm_op_id(struct afs_call *call, struct sk_buff *skb, 711 bool last) 712 { 713 size_t len = skb->len; 714 void *oibuf = (void *) &call->operation_ID; 715 716 _enter("{%u},{%zu},%d", call->offset, len, last); 717 718 ASSERTCMP(call->offset, <, 4); 719 720 /* the operation ID forms the first four bytes of the request data */ 721 len = min_t(size_t, len, 4 - call->offset); 722 if (skb_copy_bits(skb, 0, oibuf + call->offset, len) < 0) 723 BUG(); 724 if (!pskb_pull(skb, len)) 725 BUG(); 726 call->offset += len; 727 728 if (call->offset < 4) { 729 if (last) { 730 _leave(" = -EBADMSG [op ID short]"); 731 return -EBADMSG; 732 } 733 _leave(" = 0 [incomplete]"); 734 return 0; 735 } 736 737 call->state = AFS_CALL_AWAIT_REQUEST; 738 739 /* ask the cache manager to route the call (it'll change the call type 740 * if successful) */ 741 if (!afs_cm_incoming_call(call)) 742 return -ENOTSUPP; 743 744 /* pass responsibility for the remainer of this message off to the 745 * cache manager op */ 746 return call->type->deliver(call, skb, last); 747 } 748 749 /* 750 * send an empty reply 751 */ 752 void afs_send_empty_reply(struct afs_call *call) 753 { 754 struct msghdr msg; 755 struct iovec iov[1]; 756 757 _enter(""); 758 759 iov[0].iov_base = NULL; 760 iov[0].iov_len = 0; 761 msg.msg_name = NULL; 762 msg.msg_namelen = 0; 763 msg.msg_iov = iov; 764 msg.msg_iovlen = 0; 765 msg.msg_control = NULL; 766 msg.msg_controllen = 0; 767 msg.msg_flags = 0; 768 769 call->state = AFS_CALL_AWAIT_ACK; 770 switch (rxrpc_kernel_send_data(call->rxcall, &msg, 0)) { 771 case 0: 772 _leave(" [replied]"); 773 return; 774 775 case -ENOMEM: 776 _debug("oom"); 777 rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT); 778 default: 779 rxrpc_kernel_end_call(call->rxcall); 780 call->rxcall = NULL; 781 call->type->destructor(call); 782 afs_free_call(call); 783 _leave(" [error]"); 784 return; 785 } 786 } 787 788 /* 789 * send a simple reply 790 */ 791 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 792 { 793 struct msghdr msg; 794 struct iovec iov[1]; 795 int n; 796 797 _enter(""); 798 799 iov[0].iov_base = (void *) buf; 800 iov[0].iov_len = len; 801 msg.msg_name = NULL; 802 msg.msg_namelen = 0; 803 msg.msg_iov = iov; 804 msg.msg_iovlen = 1; 805 msg.msg_control = NULL; 806 msg.msg_controllen = 0; 807 msg.msg_flags = 0; 808 809 call->state = AFS_CALL_AWAIT_ACK; 810 n = rxrpc_kernel_send_data(call->rxcall, &msg, len); 811 if (n >= 0) { 812 _leave(" [replied]"); 813 return; 814 } 815 if (n == -ENOMEM) { 816 _debug("oom"); 817 rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT); 818 } 819 rxrpc_kernel_end_call(call->rxcall); 820 call->rxcall = NULL; 821 call->type->destructor(call); 822 afs_free_call(call); 823 _leave(" [error]"); 824 } 825 826 /* 827 * extract a piece of data from the received data socket buffers 828 */ 829 int afs_extract_data(struct afs_call *call, struct sk_buff *skb, 830 bool last, void *buf, size_t count) 831 { 832 size_t len = skb->len; 833 834 _enter("{%u},{%zu},%d,,%zu", call->offset, len, last, count); 835 836 ASSERTCMP(call->offset, <, count); 837 838 len = min_t(size_t, len, count - call->offset); 839 if (skb_copy_bits(skb, 0, buf + call->offset, len) < 0 || 840 !pskb_pull(skb, len)) 841 BUG(); 842 call->offset += len; 843 844 if (call->offset < count) { 845 if (last) { 846 _leave(" = -EBADMSG [%d < %zu]", call->offset, count); 847 return -EBADMSG; 848 } 849 _leave(" = -EAGAIN"); 850 return -EAGAIN; 851 } 852 return 0; 853 } 854