xref: /openbmc/linux/fs/afs/rxrpc.c (revision b664e06d)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
19 #include "protocol_yfs.h"
20 
21 struct workqueue_struct *afs_async_calls;
22 
23 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_delete_async_call(struct work_struct *);
26 static void afs_process_async_call(struct work_struct *);
27 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
28 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
29 static int afs_deliver_cm_op_id(struct afs_call *);
30 
31 /* asynchronous incoming call initial processing */
32 static const struct afs_call_type afs_RXCMxxxx = {
33 	.name		= "CB.xxxx",
34 	.deliver	= afs_deliver_cm_op_id,
35 };
36 
37 /*
38  * open an RxRPC socket and bind it to be a server for callback notifications
39  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
40  */
41 int afs_open_socket(struct afs_net *net)
42 {
43 	struct sockaddr_rxrpc srx;
44 	struct socket *socket;
45 	unsigned int min_level;
46 	int ret;
47 
48 	_enter("");
49 
50 	ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
51 	if (ret < 0)
52 		goto error_1;
53 
54 	socket->sk->sk_allocation = GFP_NOFS;
55 
56 	/* bind the callback manager's address to make this a server socket */
57 	memset(&srx, 0, sizeof(srx));
58 	srx.srx_family			= AF_RXRPC;
59 	srx.srx_service			= CM_SERVICE;
60 	srx.transport_type		= SOCK_DGRAM;
61 	srx.transport_len		= sizeof(srx.transport.sin6);
62 	srx.transport.sin6.sin6_family	= AF_INET6;
63 	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
64 
65 	min_level = RXRPC_SECURITY_ENCRYPT;
66 	ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
67 				(void *)&min_level, sizeof(min_level));
68 	if (ret < 0)
69 		goto error_2;
70 
71 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
72 	if (ret == -EADDRINUSE) {
73 		srx.transport.sin6.sin6_port = 0;
74 		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
75 	}
76 	if (ret < 0)
77 		goto error_2;
78 
79 	srx.srx_service = YFS_CM_SERVICE;
80 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
81 	if (ret < 0)
82 		goto error_2;
83 
84 	/* Ideally, we'd turn on service upgrade here, but we can't because
85 	 * OpenAFS is buggy and leaks the userStatus field from packet to
86 	 * packet and between FS packets and CB packets - so if we try to do an
87 	 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
88 	 * it sends back to us.
89 	 */
90 
91 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
92 					   afs_rx_discard_new_call);
93 
94 	ret = kernel_listen(socket, INT_MAX);
95 	if (ret < 0)
96 		goto error_2;
97 
98 	net->socket = socket;
99 	afs_charge_preallocation(&net->charge_preallocation_work);
100 	_leave(" = 0");
101 	return 0;
102 
103 error_2:
104 	sock_release(socket);
105 error_1:
106 	_leave(" = %d", ret);
107 	return ret;
108 }
109 
110 /*
111  * close the RxRPC socket AFS was using
112  */
113 void afs_close_socket(struct afs_net *net)
114 {
115 	_enter("");
116 
117 	kernel_listen(net->socket, 0);
118 	flush_workqueue(afs_async_calls);
119 
120 	if (net->spare_incoming_call) {
121 		afs_put_call(net->spare_incoming_call);
122 		net->spare_incoming_call = NULL;
123 	}
124 
125 	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
126 	wait_var_event(&net->nr_outstanding_calls,
127 		       !atomic_read(&net->nr_outstanding_calls));
128 	_debug("no outstanding calls");
129 
130 	kernel_sock_shutdown(net->socket, SHUT_RDWR);
131 	flush_workqueue(afs_async_calls);
132 	sock_release(net->socket);
133 
134 	_debug("dework");
135 	_leave("");
136 }
137 
138 /*
139  * Allocate a call.
140  */
141 static struct afs_call *afs_alloc_call(struct afs_net *net,
142 				       const struct afs_call_type *type,
143 				       gfp_t gfp)
144 {
145 	struct afs_call *call;
146 	int o;
147 
148 	call = kzalloc(sizeof(*call), gfp);
149 	if (!call)
150 		return NULL;
151 
152 	call->type = type;
153 	call->net = net;
154 	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
155 	atomic_set(&call->usage, 1);
156 	INIT_WORK(&call->async_work, afs_process_async_call);
157 	init_waitqueue_head(&call->waitq);
158 	spin_lock_init(&call->state_lock);
159 	call->_iter = &call->iter;
160 
161 	o = atomic_inc_return(&net->nr_outstanding_calls);
162 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
163 		       __builtin_return_address(0));
164 	return call;
165 }
166 
167 /*
168  * Dispose of a reference on a call.
169  */
170 void afs_put_call(struct afs_call *call)
171 {
172 	struct afs_net *net = call->net;
173 	int n = atomic_dec_return(&call->usage);
174 	int o = atomic_read(&net->nr_outstanding_calls);
175 
176 	trace_afs_call(call, afs_call_trace_put, n + 1, o,
177 		       __builtin_return_address(0));
178 
179 	ASSERTCMP(n, >=, 0);
180 	if (n == 0) {
181 		ASSERT(!work_pending(&call->async_work));
182 		ASSERT(call->type->name != NULL);
183 
184 		if (call->rxcall) {
185 			rxrpc_kernel_end_call(net->socket, call->rxcall);
186 			call->rxcall = NULL;
187 		}
188 		if (call->type->destructor)
189 			call->type->destructor(call);
190 
191 		afs_put_server(call->net, call->server);
192 		afs_put_cb_interest(call->net, call->cbi);
193 		afs_put_addrlist(call->alist);
194 		kfree(call->request);
195 
196 		trace_afs_call(call, afs_call_trace_free, 0, o,
197 			       __builtin_return_address(0));
198 		kfree(call);
199 
200 		o = atomic_dec_return(&net->nr_outstanding_calls);
201 		if (o == 0)
202 			wake_up_var(&net->nr_outstanding_calls);
203 	}
204 }
205 
206 static struct afs_call *afs_get_call(struct afs_call *call,
207 				     enum afs_call_trace why)
208 {
209 	int u = atomic_inc_return(&call->usage);
210 
211 	trace_afs_call(call, why, u,
212 		       atomic_read(&call->net->nr_outstanding_calls),
213 		       __builtin_return_address(0));
214 	return call;
215 }
216 
217 /*
218  * Queue the call for actual work.
219  */
220 static void afs_queue_call_work(struct afs_call *call)
221 {
222 	if (call->type->work) {
223 		INIT_WORK(&call->work, call->type->work);
224 
225 		afs_get_call(call, afs_call_trace_work);
226 		if (!queue_work(afs_wq, &call->work))
227 			afs_put_call(call);
228 	}
229 }
230 
231 /*
232  * allocate a call with flat request and reply buffers
233  */
234 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
235 				     const struct afs_call_type *type,
236 				     size_t request_size, size_t reply_max)
237 {
238 	struct afs_call *call;
239 
240 	call = afs_alloc_call(net, type, GFP_NOFS);
241 	if (!call)
242 		goto nomem_call;
243 
244 	if (request_size) {
245 		call->request_size = request_size;
246 		call->request = kmalloc(request_size, GFP_NOFS);
247 		if (!call->request)
248 			goto nomem_free;
249 	}
250 
251 	if (reply_max) {
252 		call->reply_max = reply_max;
253 		call->buffer = kmalloc(reply_max, GFP_NOFS);
254 		if (!call->buffer)
255 			goto nomem_free;
256 	}
257 
258 	afs_extract_to_buf(call, call->reply_max);
259 	call->operation_ID = type->op;
260 	init_waitqueue_head(&call->waitq);
261 	return call;
262 
263 nomem_free:
264 	afs_put_call(call);
265 nomem_call:
266 	return NULL;
267 }
268 
269 /*
270  * clean up a call with flat buffer
271  */
272 void afs_flat_call_destructor(struct afs_call *call)
273 {
274 	_enter("");
275 
276 	kfree(call->request);
277 	call->request = NULL;
278 	kfree(call->buffer);
279 	call->buffer = NULL;
280 }
281 
282 #define AFS_BVEC_MAX 8
283 
284 /*
285  * Load the given bvec with the next few pages.
286  */
287 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
288 			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
289 			  unsigned offset)
290 {
291 	struct page *pages[AFS_BVEC_MAX];
292 	unsigned int nr, n, i, to, bytes = 0;
293 
294 	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
295 	n = find_get_pages_contig(call->mapping, first, nr, pages);
296 	ASSERTCMP(n, ==, nr);
297 
298 	msg->msg_flags |= MSG_MORE;
299 	for (i = 0; i < nr; i++) {
300 		to = PAGE_SIZE;
301 		if (first + i >= last) {
302 			to = call->last_to;
303 			msg->msg_flags &= ~MSG_MORE;
304 		}
305 		bv[i].bv_page = pages[i];
306 		bv[i].bv_len = to - offset;
307 		bv[i].bv_offset = offset;
308 		bytes += to - offset;
309 		offset = 0;
310 	}
311 
312 	iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
313 }
314 
315 /*
316  * Advance the AFS call state when the RxRPC call ends the transmit phase.
317  */
318 static void afs_notify_end_request_tx(struct sock *sock,
319 				      struct rxrpc_call *rxcall,
320 				      unsigned long call_user_ID)
321 {
322 	struct afs_call *call = (struct afs_call *)call_user_ID;
323 
324 	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
325 }
326 
327 /*
328  * attach the data from a bunch of pages on an inode to a call
329  */
330 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
331 {
332 	struct bio_vec bv[AFS_BVEC_MAX];
333 	unsigned int bytes, nr, loop, offset;
334 	pgoff_t first = call->first, last = call->last;
335 	int ret;
336 
337 	offset = call->first_offset;
338 	call->first_offset = 0;
339 
340 	do {
341 		afs_load_bvec(call, msg, bv, first, last, offset);
342 		trace_afs_send_pages(call, msg, first, last, offset);
343 
344 		offset = 0;
345 		bytes = msg->msg_iter.count;
346 		nr = msg->msg_iter.nr_segs;
347 
348 		ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
349 					     bytes, afs_notify_end_request_tx);
350 		for (loop = 0; loop < nr; loop++)
351 			put_page(bv[loop].bv_page);
352 		if (ret < 0)
353 			break;
354 
355 		first += nr;
356 	} while (first <= last);
357 
358 	trace_afs_sent_pages(call, call->first, last, first, ret);
359 	return ret;
360 }
361 
362 /*
363  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
364  * error is stored into the call struct, which the caller must check for.
365  */
366 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
367 {
368 	struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
369 	struct rxrpc_call *rxcall;
370 	struct msghdr msg;
371 	struct kvec iov[1];
372 	s64 tx_total_len;
373 	int ret;
374 
375 	_enter(",{%pISp},", &srx->transport);
376 
377 	ASSERT(call->type != NULL);
378 	ASSERT(call->type->name != NULL);
379 
380 	_debug("____MAKE %p{%s,%x} [%d]____",
381 	       call, call->type->name, key_serial(call->key),
382 	       atomic_read(&call->net->nr_outstanding_calls));
383 
384 	call->addr_ix = ac->index;
385 	call->alist = afs_get_addrlist(ac->alist);
386 
387 	/* Work out the length we're going to transmit.  This is awkward for
388 	 * calls such as FS.StoreData where there's an extra injection of data
389 	 * after the initial fixed part.
390 	 */
391 	tx_total_len = call->request_size;
392 	if (call->send_pages) {
393 		if (call->last == call->first) {
394 			tx_total_len += call->last_to - call->first_offset;
395 		} else {
396 			/* It looks mathematically like you should be able to
397 			 * combine the following lines with the ones above, but
398 			 * unsigned arithmetic is fun when it wraps...
399 			 */
400 			tx_total_len += PAGE_SIZE - call->first_offset;
401 			tx_total_len += call->last_to;
402 			tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
403 		}
404 	}
405 
406 	/* If the call is going to be asynchronous, we need an extra ref for
407 	 * the call to hold itself so the caller need not hang on to its ref.
408 	 */
409 	if (call->async)
410 		afs_get_call(call, afs_call_trace_get);
411 
412 	/* create a call */
413 	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
414 					 (unsigned long)call,
415 					 tx_total_len, gfp,
416 					 (call->async ?
417 					  afs_wake_up_async_call :
418 					  afs_wake_up_call_waiter),
419 					 call->upgrade,
420 					 call->intr,
421 					 call->debug_id);
422 	if (IS_ERR(rxcall)) {
423 		ret = PTR_ERR(rxcall);
424 		call->error = ret;
425 		goto error_kill_call;
426 	}
427 
428 	call->rxcall = rxcall;
429 
430 	if (call->max_lifespan)
431 		rxrpc_kernel_set_max_life(call->net->socket, rxcall,
432 					  call->max_lifespan);
433 
434 	/* send the request */
435 	iov[0].iov_base	= call->request;
436 	iov[0].iov_len	= call->request_size;
437 
438 	msg.msg_name		= NULL;
439 	msg.msg_namelen		= 0;
440 	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
441 	msg.msg_control		= NULL;
442 	msg.msg_controllen	= 0;
443 	msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
444 
445 	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
446 				     &msg, call->request_size,
447 				     afs_notify_end_request_tx);
448 	if (ret < 0)
449 		goto error_do_abort;
450 
451 	if (call->send_pages) {
452 		ret = afs_send_pages(call, &msg);
453 		if (ret < 0)
454 			goto error_do_abort;
455 	}
456 
457 	/* Note that at this point, we may have received the reply or an abort
458 	 * - and an asynchronous call may already have completed.
459 	 *
460 	 * afs_wait_for_call_to_complete(call, ac)
461 	 * must be called to synchronously clean up.
462 	 */
463 	return;
464 
465 error_do_abort:
466 	if (ret != -ECONNABORTED) {
467 		rxrpc_kernel_abort_call(call->net->socket, rxcall,
468 					RX_USER_ABORT, ret, "KSD");
469 	} else {
470 		iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
471 		rxrpc_kernel_recv_data(call->net->socket, rxcall,
472 				       &msg.msg_iter, false,
473 				       &call->abort_code, &call->service_id);
474 		ac->abort_code = call->abort_code;
475 		ac->responded = true;
476 	}
477 	call->error = ret;
478 	trace_afs_call_done(call);
479 error_kill_call:
480 	if (call->type->done)
481 		call->type->done(call);
482 
483 	/* We need to dispose of the extra ref we grabbed for an async call.
484 	 * The call, however, might be queued on afs_async_calls and we need to
485 	 * make sure we don't get any more notifications that might requeue it.
486 	 */
487 	if (call->rxcall) {
488 		rxrpc_kernel_end_call(call->net->socket, call->rxcall);
489 		call->rxcall = NULL;
490 	}
491 	if (call->async) {
492 		if (cancel_work_sync(&call->async_work))
493 			afs_put_call(call);
494 		afs_put_call(call);
495 	}
496 
497 	ac->error = ret;
498 	call->state = AFS_CALL_COMPLETE;
499 	_leave(" = %d", ret);
500 }
501 
502 /*
503  * deliver messages to a call
504  */
505 static void afs_deliver_to_call(struct afs_call *call)
506 {
507 	enum afs_call_state state;
508 	u32 abort_code, remote_abort = 0;
509 	int ret;
510 
511 	_enter("%s", call->type->name);
512 
513 	while (state = READ_ONCE(call->state),
514 	       state == AFS_CALL_CL_AWAIT_REPLY ||
515 	       state == AFS_CALL_SV_AWAIT_OP_ID ||
516 	       state == AFS_CALL_SV_AWAIT_REQUEST ||
517 	       state == AFS_CALL_SV_AWAIT_ACK
518 	       ) {
519 		if (state == AFS_CALL_SV_AWAIT_ACK) {
520 			iov_iter_kvec(&call->iter, READ, NULL, 0, 0);
521 			ret = rxrpc_kernel_recv_data(call->net->socket,
522 						     call->rxcall, &call->iter,
523 						     false, &remote_abort,
524 						     &call->service_id);
525 			trace_afs_receive_data(call, &call->iter, false, ret);
526 
527 			if (ret == -EINPROGRESS || ret == -EAGAIN)
528 				return;
529 			if (ret < 0 || ret == 1) {
530 				if (ret == 1)
531 					ret = 0;
532 				goto call_complete;
533 			}
534 			return;
535 		}
536 
537 		if (!call->have_reply_time &&
538 		    rxrpc_kernel_get_reply_time(call->net->socket,
539 						call->rxcall,
540 						&call->reply_time))
541 			call->have_reply_time = true;
542 
543 		ret = call->type->deliver(call);
544 		state = READ_ONCE(call->state);
545 		switch (ret) {
546 		case 0:
547 			afs_queue_call_work(call);
548 			if (state == AFS_CALL_CL_PROC_REPLY) {
549 				if (call->cbi)
550 					set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
551 						&call->cbi->server->flags);
552 				goto call_complete;
553 			}
554 			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
555 			goto done;
556 		case -EINPROGRESS:
557 		case -EAGAIN:
558 			goto out;
559 		case -ECONNABORTED:
560 			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
561 			goto done;
562 		case -ENOTSUPP:
563 			abort_code = RXGEN_OPCODE;
564 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
565 						abort_code, ret, "KIV");
566 			goto local_abort;
567 		case -EIO:
568 			pr_err("kAFS: Call %u in bad state %u\n",
569 			       call->debug_id, state);
570 			/* Fall through */
571 		case -ENODATA:
572 		case -EBADMSG:
573 		case -EMSGSIZE:
574 			abort_code = RXGEN_CC_UNMARSHAL;
575 			if (state != AFS_CALL_CL_AWAIT_REPLY)
576 				abort_code = RXGEN_SS_UNMARSHAL;
577 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
578 						abort_code, ret, "KUM");
579 			goto local_abort;
580 		default:
581 			abort_code = RX_USER_ABORT;
582 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
583 						abort_code, ret, "KER");
584 			goto local_abort;
585 		}
586 	}
587 
588 done:
589 	if (call->type->done)
590 		call->type->done(call);
591 	if (state == AFS_CALL_COMPLETE && call->incoming)
592 		afs_put_call(call);
593 out:
594 	_leave("");
595 	return;
596 
597 local_abort:
598 	abort_code = 0;
599 call_complete:
600 	afs_set_call_complete(call, ret, remote_abort);
601 	state = AFS_CALL_COMPLETE;
602 	goto done;
603 }
604 
605 /*
606  * Wait synchronously for a call to complete and clean up the call struct.
607  */
608 long afs_wait_for_call_to_complete(struct afs_call *call,
609 				   struct afs_addr_cursor *ac)
610 {
611 	signed long rtt2, timeout;
612 	long ret;
613 	bool stalled = false;
614 	u64 rtt;
615 	u32 life, last_life;
616 	bool rxrpc_complete = false;
617 
618 	DECLARE_WAITQUEUE(myself, current);
619 
620 	_enter("");
621 
622 	ret = call->error;
623 	if (ret < 0)
624 		goto out;
625 
626 	rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
627 	rtt2 = nsecs_to_jiffies64(rtt) * 2;
628 	if (rtt2 < 2)
629 		rtt2 = 2;
630 
631 	timeout = rtt2;
632 	rxrpc_kernel_check_life(call->net->socket, call->rxcall, &last_life);
633 
634 	add_wait_queue(&call->waitq, &myself);
635 	for (;;) {
636 		set_current_state(TASK_UNINTERRUPTIBLE);
637 
638 		/* deliver any messages that are in the queue */
639 		if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
640 		    call->need_attention) {
641 			call->need_attention = false;
642 			__set_current_state(TASK_RUNNING);
643 			afs_deliver_to_call(call);
644 			continue;
645 		}
646 
647 		if (afs_check_call_state(call, AFS_CALL_COMPLETE))
648 			break;
649 
650 		if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall, &life)) {
651 			/* rxrpc terminated the call. */
652 			rxrpc_complete = true;
653 			break;
654 		}
655 
656 		if (call->intr && timeout == 0 &&
657 		    life == last_life && signal_pending(current)) {
658 			if (stalled)
659 				break;
660 			__set_current_state(TASK_RUNNING);
661 			rxrpc_kernel_probe_life(call->net->socket, call->rxcall);
662 			timeout = rtt2;
663 			stalled = true;
664 			continue;
665 		}
666 
667 		if (life != last_life) {
668 			timeout = rtt2;
669 			last_life = life;
670 			stalled = false;
671 		}
672 
673 		timeout = schedule_timeout(timeout);
674 	}
675 
676 	remove_wait_queue(&call->waitq, &myself);
677 	__set_current_state(TASK_RUNNING);
678 
679 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
680 		if (rxrpc_complete) {
681 			afs_set_call_complete(call, call->error, call->abort_code);
682 		} else {
683 			/* Kill off the call if it's still live. */
684 			_debug("call interrupted");
685 			if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
686 						    RX_USER_ABORT, -EINTR, "KWI"))
687 				afs_set_call_complete(call, -EINTR, 0);
688 		}
689 	}
690 
691 	spin_lock_bh(&call->state_lock);
692 	ac->abort_code = call->abort_code;
693 	ac->error = call->error;
694 	spin_unlock_bh(&call->state_lock);
695 
696 	ret = ac->error;
697 	switch (ret) {
698 	case 0:
699 		ret = call->ret0;
700 		call->ret0 = 0;
701 
702 		/* Fall through */
703 	case -ECONNABORTED:
704 		ac->responded = true;
705 		break;
706 	}
707 
708 out:
709 	_debug("call complete");
710 	afs_put_call(call);
711 	_leave(" = %p", (void *)ret);
712 	return ret;
713 }
714 
715 /*
716  * wake up a waiting call
717  */
718 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
719 				    unsigned long call_user_ID)
720 {
721 	struct afs_call *call = (struct afs_call *)call_user_ID;
722 
723 	call->need_attention = true;
724 	wake_up(&call->waitq);
725 }
726 
727 /*
728  * wake up an asynchronous call
729  */
730 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
731 				   unsigned long call_user_ID)
732 {
733 	struct afs_call *call = (struct afs_call *)call_user_ID;
734 	int u;
735 
736 	trace_afs_notify_call(rxcall, call);
737 	call->need_attention = true;
738 
739 	u = atomic_fetch_add_unless(&call->usage, 1, 0);
740 	if (u != 0) {
741 		trace_afs_call(call, afs_call_trace_wake, u,
742 			       atomic_read(&call->net->nr_outstanding_calls),
743 			       __builtin_return_address(0));
744 
745 		if (!queue_work(afs_async_calls, &call->async_work))
746 			afs_put_call(call);
747 	}
748 }
749 
750 /*
751  * Delete an asynchronous call.  The work item carries a ref to the call struct
752  * that we need to release.
753  */
754 static void afs_delete_async_call(struct work_struct *work)
755 {
756 	struct afs_call *call = container_of(work, struct afs_call, async_work);
757 
758 	_enter("");
759 
760 	afs_put_call(call);
761 
762 	_leave("");
763 }
764 
765 /*
766  * Perform I/O processing on an asynchronous call.  The work item carries a ref
767  * to the call struct that we either need to release or to pass on.
768  */
769 static void afs_process_async_call(struct work_struct *work)
770 {
771 	struct afs_call *call = container_of(work, struct afs_call, async_work);
772 
773 	_enter("");
774 
775 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
776 		call->need_attention = false;
777 		afs_deliver_to_call(call);
778 	}
779 
780 	if (call->state == AFS_CALL_COMPLETE) {
781 		/* We have two refs to release - one from the alloc and one
782 		 * queued with the work item - and we can't just deallocate the
783 		 * call because the work item may be queued again.
784 		 */
785 		call->async_work.func = afs_delete_async_call;
786 		if (!queue_work(afs_async_calls, &call->async_work))
787 			afs_put_call(call);
788 	}
789 
790 	afs_put_call(call);
791 	_leave("");
792 }
793 
794 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
795 {
796 	struct afs_call *call = (struct afs_call *)user_call_ID;
797 
798 	call->rxcall = rxcall;
799 }
800 
801 /*
802  * Charge the incoming call preallocation.
803  */
804 void afs_charge_preallocation(struct work_struct *work)
805 {
806 	struct afs_net *net =
807 		container_of(work, struct afs_net, charge_preallocation_work);
808 	struct afs_call *call = net->spare_incoming_call;
809 
810 	for (;;) {
811 		if (!call) {
812 			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
813 			if (!call)
814 				break;
815 
816 			call->async = true;
817 			call->state = AFS_CALL_SV_AWAIT_OP_ID;
818 			init_waitqueue_head(&call->waitq);
819 			afs_extract_to_tmp(call);
820 		}
821 
822 		if (rxrpc_kernel_charge_accept(net->socket,
823 					       afs_wake_up_async_call,
824 					       afs_rx_attach,
825 					       (unsigned long)call,
826 					       GFP_KERNEL,
827 					       call->debug_id) < 0)
828 			break;
829 		call = NULL;
830 	}
831 	net->spare_incoming_call = call;
832 }
833 
834 /*
835  * Discard a preallocated call when a socket is shut down.
836  */
837 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
838 				    unsigned long user_call_ID)
839 {
840 	struct afs_call *call = (struct afs_call *)user_call_ID;
841 
842 	call->rxcall = NULL;
843 	afs_put_call(call);
844 }
845 
846 /*
847  * Notification of an incoming call.
848  */
849 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
850 			    unsigned long user_call_ID)
851 {
852 	struct afs_net *net = afs_sock2net(sk);
853 
854 	queue_work(afs_wq, &net->charge_preallocation_work);
855 }
856 
857 /*
858  * Grab the operation ID from an incoming cache manager call.  The socket
859  * buffer is discarded on error or if we don't yet have sufficient data.
860  */
861 static int afs_deliver_cm_op_id(struct afs_call *call)
862 {
863 	int ret;
864 
865 	_enter("{%zu}", iov_iter_count(call->_iter));
866 
867 	/* the operation ID forms the first four bytes of the request data */
868 	ret = afs_extract_data(call, true);
869 	if (ret < 0)
870 		return ret;
871 
872 	call->operation_ID = ntohl(call->tmp);
873 	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
874 
875 	/* ask the cache manager to route the call (it'll change the call type
876 	 * if successful) */
877 	if (!afs_cm_incoming_call(call))
878 		return -ENOTSUPP;
879 
880 	trace_afs_cb_call(call);
881 
882 	/* pass responsibility for the remainer of this message off to the
883 	 * cache manager op */
884 	return call->type->deliver(call);
885 }
886 
887 /*
888  * Advance the AFS call state when an RxRPC service call ends the transmit
889  * phase.
890  */
891 static void afs_notify_end_reply_tx(struct sock *sock,
892 				    struct rxrpc_call *rxcall,
893 				    unsigned long call_user_ID)
894 {
895 	struct afs_call *call = (struct afs_call *)call_user_ID;
896 
897 	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
898 }
899 
900 /*
901  * send an empty reply
902  */
903 void afs_send_empty_reply(struct afs_call *call)
904 {
905 	struct afs_net *net = call->net;
906 	struct msghdr msg;
907 
908 	_enter("");
909 
910 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
911 
912 	msg.msg_name		= NULL;
913 	msg.msg_namelen		= 0;
914 	iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
915 	msg.msg_control		= NULL;
916 	msg.msg_controllen	= 0;
917 	msg.msg_flags		= 0;
918 
919 	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
920 				       afs_notify_end_reply_tx)) {
921 	case 0:
922 		_leave(" [replied]");
923 		return;
924 
925 	case -ENOMEM:
926 		_debug("oom");
927 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
928 					RX_USER_ABORT, -ENOMEM, "KOO");
929 		/* Fall through */
930 	default:
931 		_leave(" [error]");
932 		return;
933 	}
934 }
935 
936 /*
937  * send a simple reply
938  */
939 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
940 {
941 	struct afs_net *net = call->net;
942 	struct msghdr msg;
943 	struct kvec iov[1];
944 	int n;
945 
946 	_enter("");
947 
948 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
949 
950 	iov[0].iov_base		= (void *) buf;
951 	iov[0].iov_len		= len;
952 	msg.msg_name		= NULL;
953 	msg.msg_namelen		= 0;
954 	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
955 	msg.msg_control		= NULL;
956 	msg.msg_controllen	= 0;
957 	msg.msg_flags		= 0;
958 
959 	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
960 				   afs_notify_end_reply_tx);
961 	if (n >= 0) {
962 		/* Success */
963 		_leave(" [replied]");
964 		return;
965 	}
966 
967 	if (n == -ENOMEM) {
968 		_debug("oom");
969 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
970 					RX_USER_ABORT, -ENOMEM, "KOO");
971 	}
972 	_leave(" [error]");
973 }
974 
975 /*
976  * Extract a piece of data from the received data socket buffers.
977  */
978 int afs_extract_data(struct afs_call *call, bool want_more)
979 {
980 	struct afs_net *net = call->net;
981 	struct iov_iter *iter = call->_iter;
982 	enum afs_call_state state;
983 	u32 remote_abort = 0;
984 	int ret;
985 
986 	_enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
987 
988 	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
989 				     want_more, &remote_abort,
990 				     &call->service_id);
991 	if (ret == 0 || ret == -EAGAIN)
992 		return ret;
993 
994 	state = READ_ONCE(call->state);
995 	if (ret == 1) {
996 		switch (state) {
997 		case AFS_CALL_CL_AWAIT_REPLY:
998 			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
999 			break;
1000 		case AFS_CALL_SV_AWAIT_REQUEST:
1001 			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
1002 			break;
1003 		case AFS_CALL_COMPLETE:
1004 			kdebug("prem complete %d", call->error);
1005 			return afs_io_error(call, afs_io_error_extract);
1006 		default:
1007 			break;
1008 		}
1009 		return 0;
1010 	}
1011 
1012 	afs_set_call_complete(call, ret, remote_abort);
1013 	return ret;
1014 }
1015 
1016 /*
1017  * Log protocol error production.
1018  */
1019 noinline int afs_protocol_error(struct afs_call *call, int error,
1020 				enum afs_eproto_cause cause)
1021 {
1022 	trace_afs_protocol_error(call, error, cause);
1023 	return error;
1024 }
1025