1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Maintain an RxRPC server socket to do AFS communications through 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/sched/signal.h> 10 11 #include <net/sock.h> 12 #include <net/af_rxrpc.h> 13 #include "internal.h" 14 #include "afs_cm.h" 15 #include "protocol_yfs.h" 16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS 17 #include <trace/events/rxrpc.h> 18 19 struct workqueue_struct *afs_async_calls; 20 21 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 22 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 23 static void afs_process_async_call(struct work_struct *); 24 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 25 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 26 static int afs_deliver_cm_op_id(struct afs_call *); 27 28 /* asynchronous incoming call initial processing */ 29 static const struct afs_call_type afs_RXCMxxxx = { 30 .name = "CB.xxxx", 31 .deliver = afs_deliver_cm_op_id, 32 }; 33 34 /* 35 * open an RxRPC socket and bind it to be a server for callback notifications 36 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 37 */ 38 int afs_open_socket(struct afs_net *net) 39 { 40 struct sockaddr_rxrpc srx; 41 struct socket *socket; 42 int ret; 43 44 _enter(""); 45 46 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 47 if (ret < 0) 48 goto error_1; 49 50 socket->sk->sk_allocation = GFP_NOFS; 51 52 /* bind the callback manager's address to make this a server socket */ 53 memset(&srx, 0, sizeof(srx)); 54 srx.srx_family = AF_RXRPC; 55 srx.srx_service = CM_SERVICE; 56 srx.transport_type = SOCK_DGRAM; 57 srx.transport_len = sizeof(srx.transport.sin6); 58 srx.transport.sin6.sin6_family = AF_INET6; 59 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 60 61 ret = rxrpc_sock_set_min_security_level(socket->sk, 62 RXRPC_SECURITY_ENCRYPT); 63 if (ret < 0) 64 goto error_2; 65 66 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 67 if (ret == -EADDRINUSE) { 68 srx.transport.sin6.sin6_port = 0; 69 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 70 } 71 if (ret < 0) 72 goto error_2; 73 74 srx.srx_service = YFS_CM_SERVICE; 75 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 76 if (ret < 0) 77 goto error_2; 78 79 /* Ideally, we'd turn on service upgrade here, but we can't because 80 * OpenAFS is buggy and leaks the userStatus field from packet to 81 * packet and between FS packets and CB packets - so if we try to do an 82 * upgrade on an FS packet, OpenAFS will leak that into the CB packet 83 * it sends back to us. 84 */ 85 86 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 87 afs_rx_discard_new_call); 88 89 ret = kernel_listen(socket, INT_MAX); 90 if (ret < 0) 91 goto error_2; 92 93 net->socket = socket; 94 afs_charge_preallocation(&net->charge_preallocation_work); 95 _leave(" = 0"); 96 return 0; 97 98 error_2: 99 sock_release(socket); 100 error_1: 101 _leave(" = %d", ret); 102 return ret; 103 } 104 105 /* 106 * close the RxRPC socket AFS was using 107 */ 108 void afs_close_socket(struct afs_net *net) 109 { 110 _enter(""); 111 112 kernel_listen(net->socket, 0); 113 flush_workqueue(afs_async_calls); 114 115 if (net->spare_incoming_call) { 116 afs_put_call(net->spare_incoming_call); 117 net->spare_incoming_call = NULL; 118 } 119 120 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 121 wait_var_event(&net->nr_outstanding_calls, 122 !atomic_read(&net->nr_outstanding_calls)); 123 _debug("no outstanding calls"); 124 125 kernel_sock_shutdown(net->socket, SHUT_RDWR); 126 flush_workqueue(afs_async_calls); 127 sock_release(net->socket); 128 129 _debug("dework"); 130 _leave(""); 131 } 132 133 /* 134 * Allocate a call. 135 */ 136 static struct afs_call *afs_alloc_call(struct afs_net *net, 137 const struct afs_call_type *type, 138 gfp_t gfp) 139 { 140 struct afs_call *call; 141 int o; 142 143 call = kzalloc(sizeof(*call), gfp); 144 if (!call) 145 return NULL; 146 147 call->type = type; 148 call->net = net; 149 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 150 refcount_set(&call->ref, 1); 151 INIT_WORK(&call->async_work, afs_process_async_call); 152 init_waitqueue_head(&call->waitq); 153 spin_lock_init(&call->state_lock); 154 call->iter = &call->def_iter; 155 156 o = atomic_inc_return(&net->nr_outstanding_calls); 157 trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o, 158 __builtin_return_address(0)); 159 return call; 160 } 161 162 /* 163 * Dispose of a reference on a call. 164 */ 165 void afs_put_call(struct afs_call *call) 166 { 167 struct afs_net *net = call->net; 168 unsigned int debug_id = call->debug_id; 169 bool zero; 170 int r, o; 171 172 zero = __refcount_dec_and_test(&call->ref, &r); 173 o = atomic_read(&net->nr_outstanding_calls); 174 trace_afs_call(debug_id, afs_call_trace_put, r - 1, o, 175 __builtin_return_address(0)); 176 177 if (zero) { 178 ASSERT(!work_pending(&call->async_work)); 179 ASSERT(call->type->name != NULL); 180 181 if (call->rxcall) { 182 rxrpc_kernel_shutdown_call(net->socket, call->rxcall); 183 rxrpc_kernel_put_call(net->socket, call->rxcall); 184 call->rxcall = NULL; 185 } 186 if (call->type->destructor) 187 call->type->destructor(call); 188 189 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call); 190 afs_put_addrlist(call->alist); 191 kfree(call->request); 192 193 trace_afs_call(call->debug_id, afs_call_trace_free, 0, o, 194 __builtin_return_address(0)); 195 kfree(call); 196 197 o = atomic_dec_return(&net->nr_outstanding_calls); 198 if (o == 0) 199 wake_up_var(&net->nr_outstanding_calls); 200 } 201 } 202 203 static struct afs_call *afs_get_call(struct afs_call *call, 204 enum afs_call_trace why) 205 { 206 int r; 207 208 __refcount_inc(&call->ref, &r); 209 210 trace_afs_call(call->debug_id, why, r + 1, 211 atomic_read(&call->net->nr_outstanding_calls), 212 __builtin_return_address(0)); 213 return call; 214 } 215 216 /* 217 * Queue the call for actual work. 218 */ 219 static void afs_queue_call_work(struct afs_call *call) 220 { 221 if (call->type->work) { 222 INIT_WORK(&call->work, call->type->work); 223 224 afs_get_call(call, afs_call_trace_work); 225 if (!queue_work(afs_wq, &call->work)) 226 afs_put_call(call); 227 } 228 } 229 230 /* 231 * allocate a call with flat request and reply buffers 232 */ 233 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 234 const struct afs_call_type *type, 235 size_t request_size, size_t reply_max) 236 { 237 struct afs_call *call; 238 239 call = afs_alloc_call(net, type, GFP_NOFS); 240 if (!call) 241 goto nomem_call; 242 243 if (request_size) { 244 call->request_size = request_size; 245 call->request = kmalloc(request_size, GFP_NOFS); 246 if (!call->request) 247 goto nomem_free; 248 } 249 250 if (reply_max) { 251 call->reply_max = reply_max; 252 call->buffer = kmalloc(reply_max, GFP_NOFS); 253 if (!call->buffer) 254 goto nomem_free; 255 } 256 257 afs_extract_to_buf(call, call->reply_max); 258 call->operation_ID = type->op; 259 init_waitqueue_head(&call->waitq); 260 return call; 261 262 nomem_free: 263 afs_put_call(call); 264 nomem_call: 265 return NULL; 266 } 267 268 /* 269 * clean up a call with flat buffer 270 */ 271 void afs_flat_call_destructor(struct afs_call *call) 272 { 273 _enter(""); 274 275 kfree(call->request); 276 call->request = NULL; 277 kfree(call->buffer); 278 call->buffer = NULL; 279 } 280 281 /* 282 * Advance the AFS call state when the RxRPC call ends the transmit phase. 283 */ 284 static void afs_notify_end_request_tx(struct sock *sock, 285 struct rxrpc_call *rxcall, 286 unsigned long call_user_ID) 287 { 288 struct afs_call *call = (struct afs_call *)call_user_ID; 289 290 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 291 } 292 293 /* 294 * Initiate a call and synchronously queue up the parameters for dispatch. Any 295 * error is stored into the call struct, which the caller must check for. 296 */ 297 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp) 298 { 299 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; 300 struct rxrpc_call *rxcall; 301 struct msghdr msg; 302 struct kvec iov[1]; 303 size_t len; 304 s64 tx_total_len; 305 int ret; 306 307 _enter(",{%pISp},", &srx->transport); 308 309 ASSERT(call->type != NULL); 310 ASSERT(call->type->name != NULL); 311 312 _debug("____MAKE %p{%s,%x} [%d]____", 313 call, call->type->name, key_serial(call->key), 314 atomic_read(&call->net->nr_outstanding_calls)); 315 316 call->addr_ix = ac->index; 317 call->alist = afs_get_addrlist(ac->alist); 318 319 /* Work out the length we're going to transmit. This is awkward for 320 * calls such as FS.StoreData where there's an extra injection of data 321 * after the initial fixed part. 322 */ 323 tx_total_len = call->request_size; 324 if (call->write_iter) 325 tx_total_len += iov_iter_count(call->write_iter); 326 327 /* If the call is going to be asynchronous, we need an extra ref for 328 * the call to hold itself so the caller need not hang on to its ref. 329 */ 330 if (call->async) { 331 afs_get_call(call, afs_call_trace_get); 332 call->drop_ref = true; 333 } 334 335 /* create a call */ 336 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 337 (unsigned long)call, 338 tx_total_len, 339 call->max_lifespan, 340 gfp, 341 (call->async ? 342 afs_wake_up_async_call : 343 afs_wake_up_call_waiter), 344 call->upgrade, 345 (call->intr ? RXRPC_PREINTERRUPTIBLE : 346 RXRPC_UNINTERRUPTIBLE), 347 call->debug_id); 348 if (IS_ERR(rxcall)) { 349 ret = PTR_ERR(rxcall); 350 call->error = ret; 351 goto error_kill_call; 352 } 353 354 call->rxcall = rxcall; 355 call->issue_time = ktime_get_real(); 356 357 /* send the request */ 358 iov[0].iov_base = call->request; 359 iov[0].iov_len = call->request_size; 360 361 msg.msg_name = NULL; 362 msg.msg_namelen = 0; 363 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size); 364 msg.msg_control = NULL; 365 msg.msg_controllen = 0; 366 msg.msg_flags = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0); 367 368 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 369 &msg, call->request_size, 370 afs_notify_end_request_tx); 371 if (ret < 0) 372 goto error_do_abort; 373 374 if (call->write_iter) { 375 msg.msg_iter = *call->write_iter; 376 msg.msg_flags &= ~MSG_MORE; 377 trace_afs_send_data(call, &msg); 378 379 ret = rxrpc_kernel_send_data(call->net->socket, 380 call->rxcall, &msg, 381 iov_iter_count(&msg.msg_iter), 382 afs_notify_end_request_tx); 383 *call->write_iter = msg.msg_iter; 384 385 trace_afs_sent_data(call, &msg, ret); 386 if (ret < 0) 387 goto error_do_abort; 388 } 389 390 /* Note that at this point, we may have received the reply or an abort 391 * - and an asynchronous call may already have completed. 392 * 393 * afs_wait_for_call_to_complete(call, ac) 394 * must be called to synchronously clean up. 395 */ 396 return; 397 398 error_do_abort: 399 if (ret != -ECONNABORTED) { 400 rxrpc_kernel_abort_call(call->net->socket, rxcall, 401 RX_USER_ABORT, ret, 402 afs_abort_send_data_error); 403 } else { 404 len = 0; 405 iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0); 406 rxrpc_kernel_recv_data(call->net->socket, rxcall, 407 &msg.msg_iter, &len, false, 408 &call->abort_code, &call->service_id); 409 ac->abort_code = call->abort_code; 410 ac->responded = true; 411 } 412 call->error = ret; 413 trace_afs_call_done(call); 414 error_kill_call: 415 if (call->type->done) 416 call->type->done(call); 417 418 /* We need to dispose of the extra ref we grabbed for an async call. 419 * The call, however, might be queued on afs_async_calls and we need to 420 * make sure we don't get any more notifications that might requeue it. 421 */ 422 if (call->rxcall) 423 rxrpc_kernel_shutdown_call(call->net->socket, call->rxcall); 424 if (call->async) { 425 if (cancel_work_sync(&call->async_work)) 426 afs_put_call(call); 427 afs_put_call(call); 428 } 429 430 ac->error = ret; 431 call->state = AFS_CALL_COMPLETE; 432 _leave(" = %d", ret); 433 } 434 435 /* 436 * Log remote abort codes that indicate that we have a protocol disagreement 437 * with the server. 438 */ 439 static void afs_log_error(struct afs_call *call, s32 remote_abort) 440 { 441 static int max = 0; 442 const char *msg; 443 int m; 444 445 switch (remote_abort) { 446 case RX_EOF: msg = "unexpected EOF"; break; 447 case RXGEN_CC_MARSHAL: msg = "client marshalling"; break; 448 case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling"; break; 449 case RXGEN_SS_MARSHAL: msg = "server marshalling"; break; 450 case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling"; break; 451 case RXGEN_DECODE: msg = "opcode decode"; break; 452 case RXGEN_SS_XDRFREE: msg = "server XDR cleanup"; break; 453 case RXGEN_CC_XDRFREE: msg = "client XDR cleanup"; break; 454 case -32: msg = "insufficient data"; break; 455 default: 456 return; 457 } 458 459 m = max; 460 if (m < 3) { 461 max = m + 1; 462 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n", 463 msg, call->type->name, 464 &call->alist->addrs[call->addr_ix].transport); 465 } 466 } 467 468 /* 469 * deliver messages to a call 470 */ 471 static void afs_deliver_to_call(struct afs_call *call) 472 { 473 enum afs_call_state state; 474 size_t len; 475 u32 abort_code, remote_abort = 0; 476 int ret; 477 478 _enter("%s", call->type->name); 479 480 while (state = READ_ONCE(call->state), 481 state == AFS_CALL_CL_AWAIT_REPLY || 482 state == AFS_CALL_SV_AWAIT_OP_ID || 483 state == AFS_CALL_SV_AWAIT_REQUEST || 484 state == AFS_CALL_SV_AWAIT_ACK 485 ) { 486 if (state == AFS_CALL_SV_AWAIT_ACK) { 487 len = 0; 488 iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0); 489 ret = rxrpc_kernel_recv_data(call->net->socket, 490 call->rxcall, &call->def_iter, 491 &len, false, &remote_abort, 492 &call->service_id); 493 trace_afs_receive_data(call, &call->def_iter, false, ret); 494 495 if (ret == -EINPROGRESS || ret == -EAGAIN) 496 return; 497 if (ret < 0 || ret == 1) { 498 if (ret == 1) 499 ret = 0; 500 goto call_complete; 501 } 502 return; 503 } 504 505 ret = call->type->deliver(call); 506 state = READ_ONCE(call->state); 507 if (ret == 0 && call->unmarshalling_error) 508 ret = -EBADMSG; 509 switch (ret) { 510 case 0: 511 afs_queue_call_work(call); 512 if (state == AFS_CALL_CL_PROC_REPLY) { 513 if (call->op) 514 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 515 &call->op->server->flags); 516 goto call_complete; 517 } 518 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 519 goto done; 520 case -EINPROGRESS: 521 case -EAGAIN: 522 goto out; 523 case -ECONNABORTED: 524 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 525 afs_log_error(call, call->abort_code); 526 goto done; 527 case -ENOTSUPP: 528 abort_code = RXGEN_OPCODE; 529 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 530 abort_code, ret, 531 afs_abort_op_not_supported); 532 goto local_abort; 533 case -EIO: 534 pr_err("kAFS: Call %u in bad state %u\n", 535 call->debug_id, state); 536 fallthrough; 537 case -ENODATA: 538 case -EBADMSG: 539 case -EMSGSIZE: 540 case -ENOMEM: 541 case -EFAULT: 542 abort_code = RXGEN_CC_UNMARSHAL; 543 if (state != AFS_CALL_CL_AWAIT_REPLY) 544 abort_code = RXGEN_SS_UNMARSHAL; 545 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 546 abort_code, ret, 547 afs_abort_unmarshal_error); 548 goto local_abort; 549 default: 550 abort_code = RX_CALL_DEAD; 551 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 552 abort_code, ret, 553 afs_abort_general_error); 554 goto local_abort; 555 } 556 } 557 558 done: 559 if (call->type->done) 560 call->type->done(call); 561 out: 562 _leave(""); 563 return; 564 565 local_abort: 566 abort_code = 0; 567 call_complete: 568 afs_set_call_complete(call, ret, remote_abort); 569 state = AFS_CALL_COMPLETE; 570 goto done; 571 } 572 573 /* 574 * Wait synchronously for a call to complete and clean up the call struct. 575 */ 576 long afs_wait_for_call_to_complete(struct afs_call *call, 577 struct afs_addr_cursor *ac) 578 { 579 long ret; 580 bool rxrpc_complete = false; 581 582 DECLARE_WAITQUEUE(myself, current); 583 584 _enter(""); 585 586 ret = call->error; 587 if (ret < 0) 588 goto out; 589 590 add_wait_queue(&call->waitq, &myself); 591 for (;;) { 592 set_current_state(TASK_UNINTERRUPTIBLE); 593 594 /* deliver any messages that are in the queue */ 595 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 596 call->need_attention) { 597 call->need_attention = false; 598 __set_current_state(TASK_RUNNING); 599 afs_deliver_to_call(call); 600 continue; 601 } 602 603 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 604 break; 605 606 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) { 607 /* rxrpc terminated the call. */ 608 rxrpc_complete = true; 609 break; 610 } 611 612 schedule(); 613 } 614 615 remove_wait_queue(&call->waitq, &myself); 616 __set_current_state(TASK_RUNNING); 617 618 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 619 if (rxrpc_complete) { 620 afs_set_call_complete(call, call->error, call->abort_code); 621 } else { 622 /* Kill off the call if it's still live. */ 623 _debug("call interrupted"); 624 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 625 RX_USER_ABORT, -EINTR, 626 afs_abort_interrupted)) 627 afs_set_call_complete(call, -EINTR, 0); 628 } 629 } 630 631 spin_lock_bh(&call->state_lock); 632 ac->abort_code = call->abort_code; 633 ac->error = call->error; 634 spin_unlock_bh(&call->state_lock); 635 636 ret = ac->error; 637 switch (ret) { 638 case 0: 639 ret = call->ret0; 640 call->ret0 = 0; 641 642 fallthrough; 643 case -ECONNABORTED: 644 ac->responded = true; 645 break; 646 } 647 648 out: 649 _debug("call complete"); 650 afs_put_call(call); 651 _leave(" = %p", (void *)ret); 652 return ret; 653 } 654 655 /* 656 * wake up a waiting call 657 */ 658 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 659 unsigned long call_user_ID) 660 { 661 struct afs_call *call = (struct afs_call *)call_user_ID; 662 663 call->need_attention = true; 664 wake_up(&call->waitq); 665 } 666 667 /* 668 * wake up an asynchronous call 669 */ 670 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 671 unsigned long call_user_ID) 672 { 673 struct afs_call *call = (struct afs_call *)call_user_ID; 674 int r; 675 676 trace_afs_notify_call(rxcall, call); 677 call->need_attention = true; 678 679 if (__refcount_inc_not_zero(&call->ref, &r)) { 680 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1, 681 atomic_read(&call->net->nr_outstanding_calls), 682 __builtin_return_address(0)); 683 684 if (!queue_work(afs_async_calls, &call->async_work)) 685 afs_put_call(call); 686 } 687 } 688 689 /* 690 * Perform I/O processing on an asynchronous call. The work item carries a ref 691 * to the call struct that we either need to release or to pass on. 692 */ 693 static void afs_process_async_call(struct work_struct *work) 694 { 695 struct afs_call *call = container_of(work, struct afs_call, async_work); 696 697 _enter(""); 698 699 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 700 call->need_attention = false; 701 afs_deliver_to_call(call); 702 } 703 704 afs_put_call(call); 705 _leave(""); 706 } 707 708 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 709 { 710 struct afs_call *call = (struct afs_call *)user_call_ID; 711 712 call->rxcall = rxcall; 713 } 714 715 /* 716 * Charge the incoming call preallocation. 717 */ 718 void afs_charge_preallocation(struct work_struct *work) 719 { 720 struct afs_net *net = 721 container_of(work, struct afs_net, charge_preallocation_work); 722 struct afs_call *call = net->spare_incoming_call; 723 724 for (;;) { 725 if (!call) { 726 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 727 if (!call) 728 break; 729 730 call->drop_ref = true; 731 call->async = true; 732 call->state = AFS_CALL_SV_AWAIT_OP_ID; 733 init_waitqueue_head(&call->waitq); 734 afs_extract_to_tmp(call); 735 } 736 737 if (rxrpc_kernel_charge_accept(net->socket, 738 afs_wake_up_async_call, 739 afs_rx_attach, 740 (unsigned long)call, 741 GFP_KERNEL, 742 call->debug_id) < 0) 743 break; 744 call = NULL; 745 } 746 net->spare_incoming_call = call; 747 } 748 749 /* 750 * Discard a preallocated call when a socket is shut down. 751 */ 752 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 753 unsigned long user_call_ID) 754 { 755 struct afs_call *call = (struct afs_call *)user_call_ID; 756 757 call->rxcall = NULL; 758 afs_put_call(call); 759 } 760 761 /* 762 * Notification of an incoming call. 763 */ 764 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 765 unsigned long user_call_ID) 766 { 767 struct afs_net *net = afs_sock2net(sk); 768 769 queue_work(afs_wq, &net->charge_preallocation_work); 770 } 771 772 /* 773 * Grab the operation ID from an incoming cache manager call. The socket 774 * buffer is discarded on error or if we don't yet have sufficient data. 775 */ 776 static int afs_deliver_cm_op_id(struct afs_call *call) 777 { 778 int ret; 779 780 _enter("{%zu}", iov_iter_count(call->iter)); 781 782 /* the operation ID forms the first four bytes of the request data */ 783 ret = afs_extract_data(call, true); 784 if (ret < 0) 785 return ret; 786 787 call->operation_ID = ntohl(call->tmp); 788 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 789 790 /* ask the cache manager to route the call (it'll change the call type 791 * if successful) */ 792 if (!afs_cm_incoming_call(call)) 793 return -ENOTSUPP; 794 795 trace_afs_cb_call(call); 796 797 /* pass responsibility for the remainer of this message off to the 798 * cache manager op */ 799 return call->type->deliver(call); 800 } 801 802 /* 803 * Advance the AFS call state when an RxRPC service call ends the transmit 804 * phase. 805 */ 806 static void afs_notify_end_reply_tx(struct sock *sock, 807 struct rxrpc_call *rxcall, 808 unsigned long call_user_ID) 809 { 810 struct afs_call *call = (struct afs_call *)call_user_ID; 811 812 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 813 } 814 815 /* 816 * send an empty reply 817 */ 818 void afs_send_empty_reply(struct afs_call *call) 819 { 820 struct afs_net *net = call->net; 821 struct msghdr msg; 822 823 _enter(""); 824 825 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 826 827 msg.msg_name = NULL; 828 msg.msg_namelen = 0; 829 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0); 830 msg.msg_control = NULL; 831 msg.msg_controllen = 0; 832 msg.msg_flags = 0; 833 834 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 835 afs_notify_end_reply_tx)) { 836 case 0: 837 _leave(" [replied]"); 838 return; 839 840 case -ENOMEM: 841 _debug("oom"); 842 rxrpc_kernel_abort_call(net->socket, call->rxcall, 843 RXGEN_SS_MARSHAL, -ENOMEM, 844 afs_abort_oom); 845 fallthrough; 846 default: 847 _leave(" [error]"); 848 return; 849 } 850 } 851 852 /* 853 * send a simple reply 854 */ 855 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 856 { 857 struct afs_net *net = call->net; 858 struct msghdr msg; 859 struct kvec iov[1]; 860 int n; 861 862 _enter(""); 863 864 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 865 866 iov[0].iov_base = (void *) buf; 867 iov[0].iov_len = len; 868 msg.msg_name = NULL; 869 msg.msg_namelen = 0; 870 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len); 871 msg.msg_control = NULL; 872 msg.msg_controllen = 0; 873 msg.msg_flags = 0; 874 875 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 876 afs_notify_end_reply_tx); 877 if (n >= 0) { 878 /* Success */ 879 _leave(" [replied]"); 880 return; 881 } 882 883 if (n == -ENOMEM) { 884 _debug("oom"); 885 rxrpc_kernel_abort_call(net->socket, call->rxcall, 886 RXGEN_SS_MARSHAL, -ENOMEM, 887 afs_abort_oom); 888 } 889 _leave(" [error]"); 890 } 891 892 /* 893 * Extract a piece of data from the received data socket buffers. 894 */ 895 int afs_extract_data(struct afs_call *call, bool want_more) 896 { 897 struct afs_net *net = call->net; 898 struct iov_iter *iter = call->iter; 899 enum afs_call_state state; 900 u32 remote_abort = 0; 901 int ret; 902 903 _enter("{%s,%zu,%zu},%d", 904 call->type->name, call->iov_len, iov_iter_count(iter), want_more); 905 906 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, 907 &call->iov_len, want_more, &remote_abort, 908 &call->service_id); 909 trace_afs_receive_data(call, call->iter, want_more, ret); 910 if (ret == 0 || ret == -EAGAIN) 911 return ret; 912 913 state = READ_ONCE(call->state); 914 if (ret == 1) { 915 switch (state) { 916 case AFS_CALL_CL_AWAIT_REPLY: 917 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 918 break; 919 case AFS_CALL_SV_AWAIT_REQUEST: 920 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 921 break; 922 case AFS_CALL_COMPLETE: 923 kdebug("prem complete %d", call->error); 924 return afs_io_error(call, afs_io_error_extract); 925 default: 926 break; 927 } 928 return 0; 929 } 930 931 afs_set_call_complete(call, ret, remote_abort); 932 return ret; 933 } 934 935 /* 936 * Log protocol error production. 937 */ 938 noinline int afs_protocol_error(struct afs_call *call, 939 enum afs_eproto_cause cause) 940 { 941 trace_afs_protocol_error(call, cause); 942 if (call) 943 call->unmarshalling_error = true; 944 return -EBADMSG; 945 } 946