1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 15 #include <net/sock.h> 16 #include <net/af_rxrpc.h> 17 #include <rxrpc/packet.h> 18 #include "internal.h" 19 #include "afs_cm.h" 20 21 struct socket *afs_socket; /* my RxRPC socket */ 22 static struct workqueue_struct *afs_async_calls; 23 static struct afs_call *afs_spare_incoming_call; 24 atomic_t afs_outstanding_calls; 25 26 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 27 static int afs_wait_for_call_to_complete(struct afs_call *); 28 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 29 static void afs_process_async_call(struct work_struct *); 30 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 31 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 32 static int afs_deliver_cm_op_id(struct afs_call *); 33 34 /* asynchronous incoming call initial processing */ 35 static const struct afs_call_type afs_RXCMxxxx = { 36 .name = "CB.xxxx", 37 .deliver = afs_deliver_cm_op_id, 38 .abort_to_error = afs_abort_to_error, 39 }; 40 41 static void afs_charge_preallocation(struct work_struct *); 42 43 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation); 44 45 static int afs_wait_atomic_t(atomic_t *p) 46 { 47 schedule(); 48 return 0; 49 } 50 51 /* 52 * open an RxRPC socket and bind it to be a server for callback notifications 53 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 54 */ 55 int afs_open_socket(void) 56 { 57 struct sockaddr_rxrpc srx; 58 struct socket *socket; 59 int ret; 60 61 _enter(""); 62 63 ret = -ENOMEM; 64 afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0); 65 if (!afs_async_calls) 66 goto error_0; 67 68 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket); 69 if (ret < 0) 70 goto error_1; 71 72 socket->sk->sk_allocation = GFP_NOFS; 73 74 /* bind the callback manager's address to make this a server socket */ 75 srx.srx_family = AF_RXRPC; 76 srx.srx_service = CM_SERVICE; 77 srx.transport_type = SOCK_DGRAM; 78 srx.transport_len = sizeof(srx.transport.sin); 79 srx.transport.sin.sin_family = AF_INET; 80 srx.transport.sin.sin_port = htons(AFS_CM_PORT); 81 memset(&srx.transport.sin.sin_addr, 0, 82 sizeof(srx.transport.sin.sin_addr)); 83 84 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 85 if (ret < 0) 86 goto error_2; 87 88 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 89 afs_rx_discard_new_call); 90 91 ret = kernel_listen(socket, INT_MAX); 92 if (ret < 0) 93 goto error_2; 94 95 afs_socket = socket; 96 afs_charge_preallocation(NULL); 97 _leave(" = 0"); 98 return 0; 99 100 error_2: 101 sock_release(socket); 102 error_1: 103 destroy_workqueue(afs_async_calls); 104 error_0: 105 _leave(" = %d", ret); 106 return ret; 107 } 108 109 /* 110 * close the RxRPC socket AFS was using 111 */ 112 void afs_close_socket(void) 113 { 114 _enter(""); 115 116 kernel_listen(afs_socket, 0); 117 flush_workqueue(afs_async_calls); 118 119 if (afs_spare_incoming_call) { 120 afs_put_call(afs_spare_incoming_call); 121 afs_spare_incoming_call = NULL; 122 } 123 124 _debug("outstanding %u", atomic_read(&afs_outstanding_calls)); 125 wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t, 126 TASK_UNINTERRUPTIBLE); 127 _debug("no outstanding calls"); 128 129 kernel_sock_shutdown(afs_socket, SHUT_RDWR); 130 flush_workqueue(afs_async_calls); 131 sock_release(afs_socket); 132 133 _debug("dework"); 134 destroy_workqueue(afs_async_calls); 135 _leave(""); 136 } 137 138 /* 139 * Allocate a call. 140 */ 141 static struct afs_call *afs_alloc_call(const struct afs_call_type *type, 142 gfp_t gfp) 143 { 144 struct afs_call *call; 145 int o; 146 147 call = kzalloc(sizeof(*call), gfp); 148 if (!call) 149 return NULL; 150 151 call->type = type; 152 atomic_set(&call->usage, 1); 153 INIT_WORK(&call->async_work, afs_process_async_call); 154 init_waitqueue_head(&call->waitq); 155 156 o = atomic_inc_return(&afs_outstanding_calls); 157 trace_afs_call(call, afs_call_trace_alloc, 1, o, 158 __builtin_return_address(0)); 159 return call; 160 } 161 162 /* 163 * Dispose of a reference on a call. 164 */ 165 void afs_put_call(struct afs_call *call) 166 { 167 int n = atomic_dec_return(&call->usage); 168 int o = atomic_read(&afs_outstanding_calls); 169 170 trace_afs_call(call, afs_call_trace_put, n + 1, o, 171 __builtin_return_address(0)); 172 173 ASSERTCMP(n, >=, 0); 174 if (n == 0) { 175 ASSERT(!work_pending(&call->async_work)); 176 ASSERT(call->type->name != NULL); 177 178 if (call->rxcall) { 179 rxrpc_kernel_end_call(afs_socket, call->rxcall); 180 call->rxcall = NULL; 181 } 182 if (call->type->destructor) 183 call->type->destructor(call); 184 185 kfree(call->request); 186 kfree(call); 187 188 o = atomic_dec_return(&afs_outstanding_calls); 189 trace_afs_call(call, afs_call_trace_free, 0, o, 190 __builtin_return_address(0)); 191 if (o == 0) 192 wake_up_atomic_t(&afs_outstanding_calls); 193 } 194 } 195 196 /* 197 * Queue the call for actual work. Returns 0 unconditionally for convenience. 198 */ 199 int afs_queue_call_work(struct afs_call *call) 200 { 201 int u = atomic_inc_return(&call->usage); 202 203 trace_afs_call(call, afs_call_trace_work, u, 204 atomic_read(&afs_outstanding_calls), 205 __builtin_return_address(0)); 206 207 INIT_WORK(&call->work, call->type->work); 208 209 if (!queue_work(afs_wq, &call->work)) 210 afs_put_call(call); 211 return 0; 212 } 213 214 /* 215 * allocate a call with flat request and reply buffers 216 */ 217 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type, 218 size_t request_size, size_t reply_max) 219 { 220 struct afs_call *call; 221 222 call = afs_alloc_call(type, GFP_NOFS); 223 if (!call) 224 goto nomem_call; 225 226 if (request_size) { 227 call->request_size = request_size; 228 call->request = kmalloc(request_size, GFP_NOFS); 229 if (!call->request) 230 goto nomem_free; 231 } 232 233 if (reply_max) { 234 call->reply_max = reply_max; 235 call->buffer = kmalloc(reply_max, GFP_NOFS); 236 if (!call->buffer) 237 goto nomem_free; 238 } 239 240 init_waitqueue_head(&call->waitq); 241 return call; 242 243 nomem_free: 244 afs_put_call(call); 245 nomem_call: 246 return NULL; 247 } 248 249 /* 250 * clean up a call with flat buffer 251 */ 252 void afs_flat_call_destructor(struct afs_call *call) 253 { 254 _enter(""); 255 256 kfree(call->request); 257 call->request = NULL; 258 kfree(call->buffer); 259 call->buffer = NULL; 260 } 261 262 /* 263 * attach the data from a bunch of pages on an inode to a call 264 */ 265 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 266 { 267 struct page *pages[8]; 268 unsigned count, n, loop, offset, to; 269 pgoff_t first = call->first, last = call->last; 270 int ret; 271 272 _enter(""); 273 274 offset = call->first_offset; 275 call->first_offset = 0; 276 277 do { 278 _debug("attach %lx-%lx", first, last); 279 280 count = last - first + 1; 281 if (count > ARRAY_SIZE(pages)) 282 count = ARRAY_SIZE(pages); 283 n = find_get_pages_contig(call->mapping, first, count, pages); 284 ASSERTCMP(n, ==, count); 285 286 loop = 0; 287 do { 288 struct bio_vec bvec = {.bv_page = pages[loop], 289 .bv_offset = offset}; 290 msg->msg_flags = 0; 291 to = PAGE_SIZE; 292 if (first + loop >= last) 293 to = call->last_to; 294 else 295 msg->msg_flags = MSG_MORE; 296 bvec.bv_len = to - offset; 297 offset = 0; 298 299 _debug("- range %u-%u%s", 300 offset, to, msg->msg_flags ? " [more]" : ""); 301 iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, 302 &bvec, 1, to - offset); 303 304 /* have to change the state *before* sending the last 305 * packet as RxRPC might give us the reply before it 306 * returns from sending the request */ 307 if (first + loop >= last) 308 call->state = AFS_CALL_AWAIT_REPLY; 309 ret = rxrpc_kernel_send_data(afs_socket, call->rxcall, 310 msg, to - offset); 311 if (ret < 0) 312 break; 313 } while (++loop < count); 314 first += count; 315 316 for (loop = 0; loop < count; loop++) 317 put_page(pages[loop]); 318 if (ret < 0) 319 break; 320 } while (first <= last); 321 322 _leave(" = %d", ret); 323 return ret; 324 } 325 326 /* 327 * initiate a call 328 */ 329 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp, 330 bool async) 331 { 332 struct sockaddr_rxrpc srx; 333 struct rxrpc_call *rxcall; 334 struct msghdr msg; 335 struct kvec iov[1]; 336 int ret; 337 338 _enter("%x,{%d},", addr->s_addr, ntohs(call->port)); 339 340 ASSERT(call->type != NULL); 341 ASSERT(call->type->name != NULL); 342 343 _debug("____MAKE %p{%s,%x} [%d]____", 344 call, call->type->name, key_serial(call->key), 345 atomic_read(&afs_outstanding_calls)); 346 347 call->async = async; 348 349 memset(&srx, 0, sizeof(srx)); 350 srx.srx_family = AF_RXRPC; 351 srx.srx_service = call->service_id; 352 srx.transport_type = SOCK_DGRAM; 353 srx.transport_len = sizeof(srx.transport.sin); 354 srx.transport.sin.sin_family = AF_INET; 355 srx.transport.sin.sin_port = call->port; 356 memcpy(&srx.transport.sin.sin_addr, addr, 4); 357 358 /* create a call */ 359 rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key, 360 (unsigned long) call, gfp, 361 (async ? 362 afs_wake_up_async_call : 363 afs_wake_up_call_waiter)); 364 call->key = NULL; 365 if (IS_ERR(rxcall)) { 366 ret = PTR_ERR(rxcall); 367 goto error_kill_call; 368 } 369 370 call->rxcall = rxcall; 371 372 /* send the request */ 373 iov[0].iov_base = call->request; 374 iov[0].iov_len = call->request_size; 375 376 msg.msg_name = NULL; 377 msg.msg_namelen = 0; 378 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, 379 call->request_size); 380 msg.msg_control = NULL; 381 msg.msg_controllen = 0; 382 msg.msg_flags = (call->send_pages ? MSG_MORE : 0); 383 384 /* have to change the state *before* sending the last packet as RxRPC 385 * might give us the reply before it returns from sending the 386 * request */ 387 if (!call->send_pages) 388 call->state = AFS_CALL_AWAIT_REPLY; 389 ret = rxrpc_kernel_send_data(afs_socket, rxcall, 390 &msg, call->request_size); 391 if (ret < 0) 392 goto error_do_abort; 393 394 if (call->send_pages) { 395 ret = afs_send_pages(call, &msg); 396 if (ret < 0) 397 goto error_do_abort; 398 } 399 400 /* at this point, an async call may no longer exist as it may have 401 * already completed */ 402 if (call->async) 403 return -EINPROGRESS; 404 405 return afs_wait_for_call_to_complete(call); 406 407 error_do_abort: 408 rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT, -ret, "KSD"); 409 error_kill_call: 410 afs_put_call(call); 411 _leave(" = %d", ret); 412 return ret; 413 } 414 415 /* 416 * deliver messages to a call 417 */ 418 static void afs_deliver_to_call(struct afs_call *call) 419 { 420 u32 abort_code; 421 int ret; 422 423 _enter("%s", call->type->name); 424 425 while (call->state == AFS_CALL_AWAIT_REPLY || 426 call->state == AFS_CALL_AWAIT_OP_ID || 427 call->state == AFS_CALL_AWAIT_REQUEST || 428 call->state == AFS_CALL_AWAIT_ACK 429 ) { 430 if (call->state == AFS_CALL_AWAIT_ACK) { 431 size_t offset = 0; 432 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, 433 NULL, 0, &offset, false, 434 &call->abort_code); 435 trace_afs_recv_data(call, 0, offset, false, ret); 436 437 if (ret == -EINPROGRESS || ret == -EAGAIN) 438 return; 439 if (ret == 1 || ret < 0) { 440 call->state = AFS_CALL_COMPLETE; 441 goto done; 442 } 443 return; 444 } 445 446 ret = call->type->deliver(call); 447 switch (ret) { 448 case 0: 449 if (call->state == AFS_CALL_AWAIT_REPLY) 450 call->state = AFS_CALL_COMPLETE; 451 goto done; 452 case -EINPROGRESS: 453 case -EAGAIN: 454 goto out; 455 case -ENOTCONN: 456 abort_code = RX_CALL_DEAD; 457 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 458 abort_code, -ret, "KNC"); 459 goto do_abort; 460 case -ENOTSUPP: 461 abort_code = RX_INVALID_OPERATION; 462 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 463 abort_code, -ret, "KIV"); 464 goto do_abort; 465 case -ENODATA: 466 case -EBADMSG: 467 case -EMSGSIZE: 468 default: 469 abort_code = RXGEN_CC_UNMARSHAL; 470 if (call->state != AFS_CALL_AWAIT_REPLY) 471 abort_code = RXGEN_SS_UNMARSHAL; 472 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 473 abort_code, EBADMSG, "KUM"); 474 goto do_abort; 475 } 476 } 477 478 done: 479 if (call->state == AFS_CALL_COMPLETE && call->incoming) 480 afs_put_call(call); 481 out: 482 _leave(""); 483 return; 484 485 do_abort: 486 call->error = ret; 487 call->state = AFS_CALL_COMPLETE; 488 goto done; 489 } 490 491 /* 492 * wait synchronously for a call to complete 493 */ 494 static int afs_wait_for_call_to_complete(struct afs_call *call) 495 { 496 const char *abort_why; 497 int ret; 498 499 DECLARE_WAITQUEUE(myself, current); 500 501 _enter(""); 502 503 add_wait_queue(&call->waitq, &myself); 504 for (;;) { 505 set_current_state(TASK_INTERRUPTIBLE); 506 507 /* deliver any messages that are in the queue */ 508 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 509 call->need_attention = false; 510 __set_current_state(TASK_RUNNING); 511 afs_deliver_to_call(call); 512 continue; 513 } 514 515 abort_why = "KWC"; 516 ret = call->error; 517 if (call->state == AFS_CALL_COMPLETE) 518 break; 519 abort_why = "KWI"; 520 ret = -EINTR; 521 if (signal_pending(current)) 522 break; 523 schedule(); 524 } 525 526 remove_wait_queue(&call->waitq, &myself); 527 __set_current_state(TASK_RUNNING); 528 529 /* kill the call */ 530 if (call->state < AFS_CALL_COMPLETE) { 531 _debug("call incomplete"); 532 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 533 RX_CALL_DEAD, -ret, abort_why); 534 } 535 536 _debug("call complete"); 537 afs_put_call(call); 538 _leave(" = %d", ret); 539 return ret; 540 } 541 542 /* 543 * wake up a waiting call 544 */ 545 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 546 unsigned long call_user_ID) 547 { 548 struct afs_call *call = (struct afs_call *)call_user_ID; 549 550 call->need_attention = true; 551 wake_up(&call->waitq); 552 } 553 554 /* 555 * wake up an asynchronous call 556 */ 557 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 558 unsigned long call_user_ID) 559 { 560 struct afs_call *call = (struct afs_call *)call_user_ID; 561 int u; 562 563 trace_afs_notify_call(rxcall, call); 564 call->need_attention = true; 565 566 u = __atomic_add_unless(&call->usage, 1, 0); 567 if (u != 0) { 568 trace_afs_call(call, afs_call_trace_wake, u, 569 atomic_read(&afs_outstanding_calls), 570 __builtin_return_address(0)); 571 572 if (!queue_work(afs_async_calls, &call->async_work)) 573 afs_put_call(call); 574 } 575 } 576 577 /* 578 * Delete an asynchronous call. The work item carries a ref to the call struct 579 * that we need to release. 580 */ 581 static void afs_delete_async_call(struct work_struct *work) 582 { 583 struct afs_call *call = container_of(work, struct afs_call, async_work); 584 585 _enter(""); 586 587 afs_put_call(call); 588 589 _leave(""); 590 } 591 592 /* 593 * Perform I/O processing on an asynchronous call. The work item carries a ref 594 * to the call struct that we either need to release or to pass on. 595 */ 596 static void afs_process_async_call(struct work_struct *work) 597 { 598 struct afs_call *call = container_of(work, struct afs_call, async_work); 599 600 _enter(""); 601 602 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 603 call->need_attention = false; 604 afs_deliver_to_call(call); 605 } 606 607 if (call->state == AFS_CALL_COMPLETE) { 608 call->reply = NULL; 609 610 /* We have two refs to release - one from the alloc and one 611 * queued with the work item - and we can't just deallocate the 612 * call because the work item may be queued again. 613 */ 614 call->async_work.func = afs_delete_async_call; 615 if (!queue_work(afs_async_calls, &call->async_work)) 616 afs_put_call(call); 617 } 618 619 afs_put_call(call); 620 _leave(""); 621 } 622 623 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 624 { 625 struct afs_call *call = (struct afs_call *)user_call_ID; 626 627 call->rxcall = rxcall; 628 } 629 630 /* 631 * Charge the incoming call preallocation. 632 */ 633 static void afs_charge_preallocation(struct work_struct *work) 634 { 635 struct afs_call *call = afs_spare_incoming_call; 636 637 for (;;) { 638 if (!call) { 639 call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL); 640 if (!call) 641 break; 642 643 call->async = true; 644 call->state = AFS_CALL_AWAIT_OP_ID; 645 init_waitqueue_head(&call->waitq); 646 } 647 648 if (rxrpc_kernel_charge_accept(afs_socket, 649 afs_wake_up_async_call, 650 afs_rx_attach, 651 (unsigned long)call, 652 GFP_KERNEL) < 0) 653 break; 654 call = NULL; 655 } 656 afs_spare_incoming_call = call; 657 } 658 659 /* 660 * Discard a preallocated call when a socket is shut down. 661 */ 662 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 663 unsigned long user_call_ID) 664 { 665 struct afs_call *call = (struct afs_call *)user_call_ID; 666 667 call->rxcall = NULL; 668 afs_put_call(call); 669 } 670 671 /* 672 * Notification of an incoming call. 673 */ 674 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 675 unsigned long user_call_ID) 676 { 677 queue_work(afs_wq, &afs_charge_preallocation_work); 678 } 679 680 /* 681 * Grab the operation ID from an incoming cache manager call. The socket 682 * buffer is discarded on error or if we don't yet have sufficient data. 683 */ 684 static int afs_deliver_cm_op_id(struct afs_call *call) 685 { 686 int ret; 687 688 _enter("{%zu}", call->offset); 689 690 ASSERTCMP(call->offset, <, 4); 691 692 /* the operation ID forms the first four bytes of the request data */ 693 ret = afs_extract_data(call, &call->tmp, 4, true); 694 if (ret < 0) 695 return ret; 696 697 call->operation_ID = ntohl(call->tmp); 698 call->state = AFS_CALL_AWAIT_REQUEST; 699 call->offset = 0; 700 701 /* ask the cache manager to route the call (it'll change the call type 702 * if successful) */ 703 if (!afs_cm_incoming_call(call)) 704 return -ENOTSUPP; 705 706 trace_afs_cb_call(call); 707 708 /* pass responsibility for the remainer of this message off to the 709 * cache manager op */ 710 return call->type->deliver(call); 711 } 712 713 /* 714 * send an empty reply 715 */ 716 void afs_send_empty_reply(struct afs_call *call) 717 { 718 struct msghdr msg; 719 720 _enter(""); 721 722 msg.msg_name = NULL; 723 msg.msg_namelen = 0; 724 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); 725 msg.msg_control = NULL; 726 msg.msg_controllen = 0; 727 msg.msg_flags = 0; 728 729 call->state = AFS_CALL_AWAIT_ACK; 730 switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) { 731 case 0: 732 _leave(" [replied]"); 733 return; 734 735 case -ENOMEM: 736 _debug("oom"); 737 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 738 RX_USER_ABORT, ENOMEM, "KOO"); 739 default: 740 _leave(" [error]"); 741 return; 742 } 743 } 744 745 /* 746 * send a simple reply 747 */ 748 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 749 { 750 struct msghdr msg; 751 struct kvec iov[1]; 752 int n; 753 754 _enter(""); 755 756 iov[0].iov_base = (void *) buf; 757 iov[0].iov_len = len; 758 msg.msg_name = NULL; 759 msg.msg_namelen = 0; 760 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); 761 msg.msg_control = NULL; 762 msg.msg_controllen = 0; 763 msg.msg_flags = 0; 764 765 call->state = AFS_CALL_AWAIT_ACK; 766 n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len); 767 if (n >= 0) { 768 /* Success */ 769 _leave(" [replied]"); 770 return; 771 } 772 773 if (n == -ENOMEM) { 774 _debug("oom"); 775 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 776 RX_USER_ABORT, ENOMEM, "KOO"); 777 } 778 _leave(" [error]"); 779 } 780 781 /* 782 * Extract a piece of data from the received data socket buffers. 783 */ 784 int afs_extract_data(struct afs_call *call, void *buf, size_t count, 785 bool want_more) 786 { 787 int ret; 788 789 _enter("{%s,%zu},,%zu,%d", 790 call->type->name, call->offset, count, want_more); 791 792 ASSERTCMP(call->offset, <=, count); 793 794 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, 795 buf, count, &call->offset, 796 want_more, &call->abort_code); 797 trace_afs_recv_data(call, count, call->offset, want_more, ret); 798 if (ret == 0 || ret == -EAGAIN) 799 return ret; 800 801 if (ret == 1) { 802 switch (call->state) { 803 case AFS_CALL_AWAIT_REPLY: 804 call->state = AFS_CALL_COMPLETE; 805 break; 806 case AFS_CALL_AWAIT_REQUEST: 807 call->state = AFS_CALL_REPLYING; 808 break; 809 default: 810 break; 811 } 812 return 0; 813 } 814 815 if (ret == -ECONNABORTED) 816 call->error = call->type->abort_to_error(call->abort_code); 817 else 818 call->error = ret; 819 call->state = AFS_CALL_COMPLETE; 820 return ret; 821 } 822