1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 15 #include <net/sock.h> 16 #include <net/af_rxrpc.h> 17 #include "internal.h" 18 #include "afs_cm.h" 19 20 struct workqueue_struct *afs_async_calls; 21 22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 23 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *); 24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 25 static void afs_process_async_call(struct work_struct *); 26 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 27 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 28 static int afs_deliver_cm_op_id(struct afs_call *); 29 30 /* asynchronous incoming call initial processing */ 31 static const struct afs_call_type afs_RXCMxxxx = { 32 .name = "CB.xxxx", 33 .deliver = afs_deliver_cm_op_id, 34 }; 35 36 /* 37 * open an RxRPC socket and bind it to be a server for callback notifications 38 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 39 */ 40 int afs_open_socket(struct afs_net *net) 41 { 42 struct sockaddr_rxrpc srx; 43 struct socket *socket; 44 unsigned int min_level; 45 int ret; 46 47 _enter(""); 48 49 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 50 if (ret < 0) 51 goto error_1; 52 53 socket->sk->sk_allocation = GFP_NOFS; 54 55 /* bind the callback manager's address to make this a server socket */ 56 memset(&srx, 0, sizeof(srx)); 57 srx.srx_family = AF_RXRPC; 58 srx.srx_service = CM_SERVICE; 59 srx.transport_type = SOCK_DGRAM; 60 srx.transport_len = sizeof(srx.transport.sin6); 61 srx.transport.sin6.sin6_family = AF_INET6; 62 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 63 64 min_level = RXRPC_SECURITY_ENCRYPT; 65 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL, 66 (void *)&min_level, sizeof(min_level)); 67 if (ret < 0) 68 goto error_2; 69 70 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 71 if (ret == -EADDRINUSE) { 72 srx.transport.sin6.sin6_port = 0; 73 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 74 } 75 if (ret < 0) 76 goto error_2; 77 78 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 79 afs_rx_discard_new_call); 80 81 ret = kernel_listen(socket, INT_MAX); 82 if (ret < 0) 83 goto error_2; 84 85 net->socket = socket; 86 afs_charge_preallocation(&net->charge_preallocation_work); 87 _leave(" = 0"); 88 return 0; 89 90 error_2: 91 sock_release(socket); 92 error_1: 93 _leave(" = %d", ret); 94 return ret; 95 } 96 97 /* 98 * close the RxRPC socket AFS was using 99 */ 100 void afs_close_socket(struct afs_net *net) 101 { 102 _enter(""); 103 104 kernel_listen(net->socket, 0); 105 flush_workqueue(afs_async_calls); 106 107 if (net->spare_incoming_call) { 108 afs_put_call(net->spare_incoming_call); 109 net->spare_incoming_call = NULL; 110 } 111 112 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 113 wait_var_event(&net->nr_outstanding_calls, 114 !atomic_read(&net->nr_outstanding_calls)); 115 _debug("no outstanding calls"); 116 117 kernel_sock_shutdown(net->socket, SHUT_RDWR); 118 flush_workqueue(afs_async_calls); 119 sock_release(net->socket); 120 121 _debug("dework"); 122 _leave(""); 123 } 124 125 /* 126 * Allocate a call. 127 */ 128 static struct afs_call *afs_alloc_call(struct afs_net *net, 129 const struct afs_call_type *type, 130 gfp_t gfp) 131 { 132 struct afs_call *call; 133 int o; 134 135 call = kzalloc(sizeof(*call), gfp); 136 if (!call) 137 return NULL; 138 139 call->type = type; 140 call->net = net; 141 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 142 atomic_set(&call->usage, 1); 143 INIT_WORK(&call->async_work, afs_process_async_call); 144 init_waitqueue_head(&call->waitq); 145 spin_lock_init(&call->state_lock); 146 147 o = atomic_inc_return(&net->nr_outstanding_calls); 148 trace_afs_call(call, afs_call_trace_alloc, 1, o, 149 __builtin_return_address(0)); 150 return call; 151 } 152 153 /* 154 * Dispose of a reference on a call. 155 */ 156 void afs_put_call(struct afs_call *call) 157 { 158 struct afs_net *net = call->net; 159 int n = atomic_dec_return(&call->usage); 160 int o = atomic_read(&net->nr_outstanding_calls); 161 162 trace_afs_call(call, afs_call_trace_put, n + 1, o, 163 __builtin_return_address(0)); 164 165 ASSERTCMP(n, >=, 0); 166 if (n == 0) { 167 ASSERT(!work_pending(&call->async_work)); 168 ASSERT(call->type->name != NULL); 169 170 if (call->rxcall) { 171 rxrpc_kernel_end_call(net->socket, call->rxcall); 172 call->rxcall = NULL; 173 } 174 if (call->type->destructor) 175 call->type->destructor(call); 176 177 afs_put_server(call->net, call->cm_server); 178 afs_put_cb_interest(call->net, call->cbi); 179 kfree(call->request); 180 181 trace_afs_call(call, afs_call_trace_free, 0, o, 182 __builtin_return_address(0)); 183 kfree(call); 184 185 o = atomic_dec_return(&net->nr_outstanding_calls); 186 if (o == 0) 187 wake_up_var(&net->nr_outstanding_calls); 188 } 189 } 190 191 /* 192 * Queue the call for actual work. Returns 0 unconditionally for convenience. 193 */ 194 int afs_queue_call_work(struct afs_call *call) 195 { 196 int u = atomic_inc_return(&call->usage); 197 198 trace_afs_call(call, afs_call_trace_work, u, 199 atomic_read(&call->net->nr_outstanding_calls), 200 __builtin_return_address(0)); 201 202 INIT_WORK(&call->work, call->type->work); 203 204 if (!queue_work(afs_wq, &call->work)) 205 afs_put_call(call); 206 return 0; 207 } 208 209 /* 210 * allocate a call with flat request and reply buffers 211 */ 212 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 213 const struct afs_call_type *type, 214 size_t request_size, size_t reply_max) 215 { 216 struct afs_call *call; 217 218 call = afs_alloc_call(net, type, GFP_NOFS); 219 if (!call) 220 goto nomem_call; 221 222 if (request_size) { 223 call->request_size = request_size; 224 call->request = kmalloc(request_size, GFP_NOFS); 225 if (!call->request) 226 goto nomem_free; 227 } 228 229 if (reply_max) { 230 call->reply_max = reply_max; 231 call->buffer = kmalloc(reply_max, GFP_NOFS); 232 if (!call->buffer) 233 goto nomem_free; 234 } 235 236 call->operation_ID = type->op; 237 init_waitqueue_head(&call->waitq); 238 return call; 239 240 nomem_free: 241 afs_put_call(call); 242 nomem_call: 243 return NULL; 244 } 245 246 /* 247 * clean up a call with flat buffer 248 */ 249 void afs_flat_call_destructor(struct afs_call *call) 250 { 251 _enter(""); 252 253 kfree(call->request); 254 call->request = NULL; 255 kfree(call->buffer); 256 call->buffer = NULL; 257 } 258 259 #define AFS_BVEC_MAX 8 260 261 /* 262 * Load the given bvec with the next few pages. 263 */ 264 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, 265 struct bio_vec *bv, pgoff_t first, pgoff_t last, 266 unsigned offset) 267 { 268 struct page *pages[AFS_BVEC_MAX]; 269 unsigned int nr, n, i, to, bytes = 0; 270 271 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); 272 n = find_get_pages_contig(call->mapping, first, nr, pages); 273 ASSERTCMP(n, ==, nr); 274 275 msg->msg_flags |= MSG_MORE; 276 for (i = 0; i < nr; i++) { 277 to = PAGE_SIZE; 278 if (first + i >= last) { 279 to = call->last_to; 280 msg->msg_flags &= ~MSG_MORE; 281 } 282 bv[i].bv_page = pages[i]; 283 bv[i].bv_len = to - offset; 284 bv[i].bv_offset = offset; 285 bytes += to - offset; 286 offset = 0; 287 } 288 289 iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes); 290 } 291 292 /* 293 * Advance the AFS call state when the RxRPC call ends the transmit phase. 294 */ 295 static void afs_notify_end_request_tx(struct sock *sock, 296 struct rxrpc_call *rxcall, 297 unsigned long call_user_ID) 298 { 299 struct afs_call *call = (struct afs_call *)call_user_ID; 300 301 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 302 } 303 304 /* 305 * attach the data from a bunch of pages on an inode to a call 306 */ 307 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 308 { 309 struct bio_vec bv[AFS_BVEC_MAX]; 310 unsigned int bytes, nr, loop, offset; 311 pgoff_t first = call->first, last = call->last; 312 int ret; 313 314 offset = call->first_offset; 315 call->first_offset = 0; 316 317 do { 318 afs_load_bvec(call, msg, bv, first, last, offset); 319 trace_afs_send_pages(call, msg, first, last, offset); 320 321 offset = 0; 322 bytes = msg->msg_iter.count; 323 nr = msg->msg_iter.nr_segs; 324 325 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg, 326 bytes, afs_notify_end_request_tx); 327 for (loop = 0; loop < nr; loop++) 328 put_page(bv[loop].bv_page); 329 if (ret < 0) 330 break; 331 332 first += nr; 333 } while (first <= last); 334 335 trace_afs_sent_pages(call, call->first, last, first, ret); 336 return ret; 337 } 338 339 /* 340 * initiate a call 341 */ 342 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, 343 gfp_t gfp, bool async) 344 { 345 struct sockaddr_rxrpc *srx = ac->addr; 346 struct rxrpc_call *rxcall; 347 struct msghdr msg; 348 struct kvec iov[1]; 349 size_t offset; 350 s64 tx_total_len; 351 int ret; 352 353 _enter(",{%pISp},", &srx->transport); 354 355 ASSERT(call->type != NULL); 356 ASSERT(call->type->name != NULL); 357 358 _debug("____MAKE %p{%s,%x} [%d]____", 359 call, call->type->name, key_serial(call->key), 360 atomic_read(&call->net->nr_outstanding_calls)); 361 362 call->async = async; 363 364 /* Work out the length we're going to transmit. This is awkward for 365 * calls such as FS.StoreData where there's an extra injection of data 366 * after the initial fixed part. 367 */ 368 tx_total_len = call->request_size; 369 if (call->send_pages) { 370 if (call->last == call->first) { 371 tx_total_len += call->last_to - call->first_offset; 372 } else { 373 /* It looks mathematically like you should be able to 374 * combine the following lines with the ones above, but 375 * unsigned arithmetic is fun when it wraps... 376 */ 377 tx_total_len += PAGE_SIZE - call->first_offset; 378 tx_total_len += call->last_to; 379 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE; 380 } 381 } 382 383 /* create a call */ 384 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 385 (unsigned long)call, 386 tx_total_len, gfp, 387 (async ? 388 afs_wake_up_async_call : 389 afs_wake_up_call_waiter), 390 call->upgrade, 391 call->debug_id); 392 if (IS_ERR(rxcall)) { 393 ret = PTR_ERR(rxcall); 394 goto error_kill_call; 395 } 396 397 call->rxcall = rxcall; 398 399 /* send the request */ 400 iov[0].iov_base = call->request; 401 iov[0].iov_len = call->request_size; 402 403 msg.msg_name = NULL; 404 msg.msg_namelen = 0; 405 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, 406 call->request_size); 407 msg.msg_control = NULL; 408 msg.msg_controllen = 0; 409 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); 410 411 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 412 &msg, call->request_size, 413 afs_notify_end_request_tx); 414 if (ret < 0) 415 goto error_do_abort; 416 417 if (call->send_pages) { 418 ret = afs_send_pages(call, &msg); 419 if (ret < 0) 420 goto error_do_abort; 421 } 422 423 /* at this point, an async call may no longer exist as it may have 424 * already completed */ 425 if (call->async) 426 return -EINPROGRESS; 427 428 return afs_wait_for_call_to_complete(call, ac); 429 430 error_do_abort: 431 call->state = AFS_CALL_COMPLETE; 432 if (ret != -ECONNABORTED) { 433 rxrpc_kernel_abort_call(call->net->socket, rxcall, 434 RX_USER_ABORT, ret, "KSD"); 435 } else { 436 offset = 0; 437 rxrpc_kernel_recv_data(call->net->socket, rxcall, NULL, 438 0, &offset, false, &call->abort_code, 439 &call->service_id); 440 ac->abort_code = call->abort_code; 441 ac->responded = true; 442 } 443 call->error = ret; 444 trace_afs_call_done(call); 445 error_kill_call: 446 afs_put_call(call); 447 ac->error = ret; 448 _leave(" = %d", ret); 449 return ret; 450 } 451 452 /* 453 * deliver messages to a call 454 */ 455 static void afs_deliver_to_call(struct afs_call *call) 456 { 457 enum afs_call_state state; 458 u32 abort_code, remote_abort = 0; 459 int ret; 460 461 _enter("%s", call->type->name); 462 463 while (state = READ_ONCE(call->state), 464 state == AFS_CALL_CL_AWAIT_REPLY || 465 state == AFS_CALL_SV_AWAIT_OP_ID || 466 state == AFS_CALL_SV_AWAIT_REQUEST || 467 state == AFS_CALL_SV_AWAIT_ACK 468 ) { 469 if (state == AFS_CALL_SV_AWAIT_ACK) { 470 size_t offset = 0; 471 ret = rxrpc_kernel_recv_data(call->net->socket, 472 call->rxcall, 473 NULL, 0, &offset, false, 474 &remote_abort, 475 &call->service_id); 476 trace_afs_recv_data(call, 0, offset, false, ret); 477 478 if (ret == -EINPROGRESS || ret == -EAGAIN) 479 return; 480 if (ret < 0 || ret == 1) { 481 if (ret == 1) 482 ret = 0; 483 goto call_complete; 484 } 485 return; 486 } 487 488 ret = call->type->deliver(call); 489 state = READ_ONCE(call->state); 490 switch (ret) { 491 case 0: 492 if (state == AFS_CALL_CL_PROC_REPLY) { 493 if (call->cbi) 494 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 495 &call->cbi->server->flags); 496 goto call_complete; 497 } 498 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 499 goto done; 500 case -EINPROGRESS: 501 case -EAGAIN: 502 goto out; 503 case -EIO: 504 case -ECONNABORTED: 505 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 506 goto done; 507 case -ENOTSUPP: 508 abort_code = RXGEN_OPCODE; 509 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 510 abort_code, ret, "KIV"); 511 goto local_abort; 512 case -ENODATA: 513 case -EBADMSG: 514 case -EMSGSIZE: 515 default: 516 abort_code = RXGEN_CC_UNMARSHAL; 517 if (state != AFS_CALL_CL_AWAIT_REPLY) 518 abort_code = RXGEN_SS_UNMARSHAL; 519 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 520 abort_code, -EBADMSG, "KUM"); 521 goto local_abort; 522 } 523 } 524 525 done: 526 if (state == AFS_CALL_COMPLETE && call->incoming) 527 afs_put_call(call); 528 out: 529 _leave(""); 530 return; 531 532 local_abort: 533 abort_code = 0; 534 call_complete: 535 afs_set_call_complete(call, ret, remote_abort); 536 state = AFS_CALL_COMPLETE; 537 goto done; 538 } 539 540 /* 541 * wait synchronously for a call to complete 542 */ 543 static long afs_wait_for_call_to_complete(struct afs_call *call, 544 struct afs_addr_cursor *ac) 545 { 546 signed long rtt2, timeout; 547 long ret; 548 u64 rtt; 549 u32 life, last_life; 550 551 DECLARE_WAITQUEUE(myself, current); 552 553 _enter(""); 554 555 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall); 556 rtt2 = nsecs_to_jiffies64(rtt) * 2; 557 if (rtt2 < 2) 558 rtt2 = 2; 559 560 timeout = rtt2; 561 last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); 562 563 add_wait_queue(&call->waitq, &myself); 564 for (;;) { 565 set_current_state(TASK_UNINTERRUPTIBLE); 566 567 /* deliver any messages that are in the queue */ 568 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 569 call->need_attention) { 570 call->need_attention = false; 571 __set_current_state(TASK_RUNNING); 572 afs_deliver_to_call(call); 573 continue; 574 } 575 576 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 577 break; 578 579 life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); 580 if (timeout == 0 && 581 life == last_life && signal_pending(current)) 582 break; 583 584 if (life != last_life) { 585 timeout = rtt2; 586 last_life = life; 587 } 588 589 timeout = schedule_timeout(timeout); 590 } 591 592 remove_wait_queue(&call->waitq, &myself); 593 __set_current_state(TASK_RUNNING); 594 595 /* Kill off the call if it's still live. */ 596 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 597 _debug("call interrupted"); 598 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 599 RX_USER_ABORT, -EINTR, "KWI")) 600 afs_set_call_complete(call, -EINTR, 0); 601 } 602 603 spin_lock_bh(&call->state_lock); 604 ac->abort_code = call->abort_code; 605 ac->error = call->error; 606 spin_unlock_bh(&call->state_lock); 607 608 ret = ac->error; 609 switch (ret) { 610 case 0: 611 if (call->ret_reply0) { 612 ret = (long)call->reply[0]; 613 call->reply[0] = NULL; 614 } 615 /* Fall through */ 616 case -ECONNABORTED: 617 ac->responded = true; 618 break; 619 } 620 621 _debug("call complete"); 622 afs_put_call(call); 623 _leave(" = %p", (void *)ret); 624 return ret; 625 } 626 627 /* 628 * wake up a waiting call 629 */ 630 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 631 unsigned long call_user_ID) 632 { 633 struct afs_call *call = (struct afs_call *)call_user_ID; 634 635 call->need_attention = true; 636 wake_up(&call->waitq); 637 } 638 639 /* 640 * wake up an asynchronous call 641 */ 642 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 643 unsigned long call_user_ID) 644 { 645 struct afs_call *call = (struct afs_call *)call_user_ID; 646 int u; 647 648 trace_afs_notify_call(rxcall, call); 649 call->need_attention = true; 650 651 u = __atomic_add_unless(&call->usage, 1, 0); 652 if (u != 0) { 653 trace_afs_call(call, afs_call_trace_wake, u, 654 atomic_read(&call->net->nr_outstanding_calls), 655 __builtin_return_address(0)); 656 657 if (!queue_work(afs_async_calls, &call->async_work)) 658 afs_put_call(call); 659 } 660 } 661 662 /* 663 * Delete an asynchronous call. The work item carries a ref to the call struct 664 * that we need to release. 665 */ 666 static void afs_delete_async_call(struct work_struct *work) 667 { 668 struct afs_call *call = container_of(work, struct afs_call, async_work); 669 670 _enter(""); 671 672 afs_put_call(call); 673 674 _leave(""); 675 } 676 677 /* 678 * Perform I/O processing on an asynchronous call. The work item carries a ref 679 * to the call struct that we either need to release or to pass on. 680 */ 681 static void afs_process_async_call(struct work_struct *work) 682 { 683 struct afs_call *call = container_of(work, struct afs_call, async_work); 684 685 _enter(""); 686 687 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 688 call->need_attention = false; 689 afs_deliver_to_call(call); 690 } 691 692 if (call->state == AFS_CALL_COMPLETE) { 693 call->reply[0] = NULL; 694 695 /* We have two refs to release - one from the alloc and one 696 * queued with the work item - and we can't just deallocate the 697 * call because the work item may be queued again. 698 */ 699 call->async_work.func = afs_delete_async_call; 700 if (!queue_work(afs_async_calls, &call->async_work)) 701 afs_put_call(call); 702 } 703 704 afs_put_call(call); 705 _leave(""); 706 } 707 708 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 709 { 710 struct afs_call *call = (struct afs_call *)user_call_ID; 711 712 call->rxcall = rxcall; 713 } 714 715 /* 716 * Charge the incoming call preallocation. 717 */ 718 void afs_charge_preallocation(struct work_struct *work) 719 { 720 struct afs_net *net = 721 container_of(work, struct afs_net, charge_preallocation_work); 722 struct afs_call *call = net->spare_incoming_call; 723 724 for (;;) { 725 if (!call) { 726 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 727 if (!call) 728 break; 729 730 call->async = true; 731 call->state = AFS_CALL_SV_AWAIT_OP_ID; 732 init_waitqueue_head(&call->waitq); 733 } 734 735 if (rxrpc_kernel_charge_accept(net->socket, 736 afs_wake_up_async_call, 737 afs_rx_attach, 738 (unsigned long)call, 739 GFP_KERNEL, 740 call->debug_id) < 0) 741 break; 742 call = NULL; 743 } 744 net->spare_incoming_call = call; 745 } 746 747 /* 748 * Discard a preallocated call when a socket is shut down. 749 */ 750 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 751 unsigned long user_call_ID) 752 { 753 struct afs_call *call = (struct afs_call *)user_call_ID; 754 755 call->rxcall = NULL; 756 afs_put_call(call); 757 } 758 759 /* 760 * Notification of an incoming call. 761 */ 762 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 763 unsigned long user_call_ID) 764 { 765 struct afs_net *net = afs_sock2net(sk); 766 767 queue_work(afs_wq, &net->charge_preallocation_work); 768 } 769 770 /* 771 * Grab the operation ID from an incoming cache manager call. The socket 772 * buffer is discarded on error or if we don't yet have sufficient data. 773 */ 774 static int afs_deliver_cm_op_id(struct afs_call *call) 775 { 776 int ret; 777 778 _enter("{%zu}", call->offset); 779 780 ASSERTCMP(call->offset, <, 4); 781 782 /* the operation ID forms the first four bytes of the request data */ 783 ret = afs_extract_data(call, &call->tmp, 4, true); 784 if (ret < 0) 785 return ret; 786 787 call->operation_ID = ntohl(call->tmp); 788 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 789 call->offset = 0; 790 791 /* ask the cache manager to route the call (it'll change the call type 792 * if successful) */ 793 if (!afs_cm_incoming_call(call)) 794 return -ENOTSUPP; 795 796 trace_afs_cb_call(call); 797 798 /* pass responsibility for the remainer of this message off to the 799 * cache manager op */ 800 return call->type->deliver(call); 801 } 802 803 /* 804 * Advance the AFS call state when an RxRPC service call ends the transmit 805 * phase. 806 */ 807 static void afs_notify_end_reply_tx(struct sock *sock, 808 struct rxrpc_call *rxcall, 809 unsigned long call_user_ID) 810 { 811 struct afs_call *call = (struct afs_call *)call_user_ID; 812 813 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 814 } 815 816 /* 817 * send an empty reply 818 */ 819 void afs_send_empty_reply(struct afs_call *call) 820 { 821 struct afs_net *net = call->net; 822 struct msghdr msg; 823 824 _enter(""); 825 826 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 827 828 msg.msg_name = NULL; 829 msg.msg_namelen = 0; 830 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); 831 msg.msg_control = NULL; 832 msg.msg_controllen = 0; 833 msg.msg_flags = 0; 834 835 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 836 afs_notify_end_reply_tx)) { 837 case 0: 838 _leave(" [replied]"); 839 return; 840 841 case -ENOMEM: 842 _debug("oom"); 843 rxrpc_kernel_abort_call(net->socket, call->rxcall, 844 RX_USER_ABORT, -ENOMEM, "KOO"); 845 default: 846 _leave(" [error]"); 847 return; 848 } 849 } 850 851 /* 852 * send a simple reply 853 */ 854 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 855 { 856 struct afs_net *net = call->net; 857 struct msghdr msg; 858 struct kvec iov[1]; 859 int n; 860 861 _enter(""); 862 863 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 864 865 iov[0].iov_base = (void *) buf; 866 iov[0].iov_len = len; 867 msg.msg_name = NULL; 868 msg.msg_namelen = 0; 869 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); 870 msg.msg_control = NULL; 871 msg.msg_controllen = 0; 872 msg.msg_flags = 0; 873 874 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 875 afs_notify_end_reply_tx); 876 if (n >= 0) { 877 /* Success */ 878 _leave(" [replied]"); 879 return; 880 } 881 882 if (n == -ENOMEM) { 883 _debug("oom"); 884 rxrpc_kernel_abort_call(net->socket, call->rxcall, 885 RX_USER_ABORT, -ENOMEM, "KOO"); 886 } 887 _leave(" [error]"); 888 } 889 890 /* 891 * Extract a piece of data from the received data socket buffers. 892 */ 893 int afs_extract_data(struct afs_call *call, void *buf, size_t count, 894 bool want_more) 895 { 896 struct afs_net *net = call->net; 897 enum afs_call_state state; 898 u32 remote_abort = 0; 899 int ret; 900 901 _enter("{%s,%zu},,%zu,%d", 902 call->type->name, call->offset, count, want_more); 903 904 ASSERTCMP(call->offset, <=, count); 905 906 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, 907 buf, count, &call->offset, 908 want_more, &remote_abort, 909 &call->service_id); 910 trace_afs_recv_data(call, count, call->offset, want_more, ret); 911 if (ret == 0 || ret == -EAGAIN) 912 return ret; 913 914 state = READ_ONCE(call->state); 915 if (ret == 1) { 916 switch (state) { 917 case AFS_CALL_CL_AWAIT_REPLY: 918 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 919 break; 920 case AFS_CALL_SV_AWAIT_REQUEST: 921 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 922 break; 923 case AFS_CALL_COMPLETE: 924 kdebug("prem complete %d", call->error); 925 return -EIO; 926 default: 927 break; 928 } 929 return 0; 930 } 931 932 afs_set_call_complete(call, ret, remote_abort); 933 return ret; 934 } 935 936 /* 937 * Log protocol error production. 938 */ 939 noinline int afs_protocol_error(struct afs_call *call, int error) 940 { 941 trace_afs_protocol_error(call, error, __builtin_return_address(0)); 942 return error; 943 } 944