1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 15 #include <net/sock.h> 16 #include <net/af_rxrpc.h> 17 #include <rxrpc/packet.h> 18 #include "internal.h" 19 #include "afs_cm.h" 20 21 struct socket *afs_socket; /* my RxRPC socket */ 22 static struct workqueue_struct *afs_async_calls; 23 static struct afs_call *afs_spare_incoming_call; 24 atomic_t afs_outstanding_calls; 25 26 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 27 static int afs_wait_for_call_to_complete(struct afs_call *); 28 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 29 static void afs_process_async_call(struct work_struct *); 30 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 31 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 32 static int afs_deliver_cm_op_id(struct afs_call *); 33 34 /* asynchronous incoming call initial processing */ 35 static const struct afs_call_type afs_RXCMxxxx = { 36 .name = "CB.xxxx", 37 .deliver = afs_deliver_cm_op_id, 38 .abort_to_error = afs_abort_to_error, 39 }; 40 41 static void afs_charge_preallocation(struct work_struct *); 42 43 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation); 44 45 static int afs_wait_atomic_t(atomic_t *p) 46 { 47 schedule(); 48 return 0; 49 } 50 51 /* 52 * open an RxRPC socket and bind it to be a server for callback notifications 53 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 54 */ 55 int afs_open_socket(void) 56 { 57 struct sockaddr_rxrpc srx; 58 struct socket *socket; 59 int ret; 60 61 _enter(""); 62 63 ret = -ENOMEM; 64 afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0); 65 if (!afs_async_calls) 66 goto error_0; 67 68 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket); 69 if (ret < 0) 70 goto error_1; 71 72 socket->sk->sk_allocation = GFP_NOFS; 73 74 /* bind the callback manager's address to make this a server socket */ 75 srx.srx_family = AF_RXRPC; 76 srx.srx_service = CM_SERVICE; 77 srx.transport_type = SOCK_DGRAM; 78 srx.transport_len = sizeof(srx.transport.sin); 79 srx.transport.sin.sin_family = AF_INET; 80 srx.transport.sin.sin_port = htons(AFS_CM_PORT); 81 memset(&srx.transport.sin.sin_addr, 0, 82 sizeof(srx.transport.sin.sin_addr)); 83 84 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 85 if (ret < 0) 86 goto error_2; 87 88 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 89 afs_rx_discard_new_call); 90 91 ret = kernel_listen(socket, INT_MAX); 92 if (ret < 0) 93 goto error_2; 94 95 afs_socket = socket; 96 afs_charge_preallocation(NULL); 97 _leave(" = 0"); 98 return 0; 99 100 error_2: 101 sock_release(socket); 102 error_1: 103 destroy_workqueue(afs_async_calls); 104 error_0: 105 _leave(" = %d", ret); 106 return ret; 107 } 108 109 /* 110 * close the RxRPC socket AFS was using 111 */ 112 void afs_close_socket(void) 113 { 114 _enter(""); 115 116 kernel_listen(afs_socket, 0); 117 flush_workqueue(afs_async_calls); 118 119 if (afs_spare_incoming_call) { 120 afs_put_call(afs_spare_incoming_call); 121 afs_spare_incoming_call = NULL; 122 } 123 124 _debug("outstanding %u", atomic_read(&afs_outstanding_calls)); 125 wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t, 126 TASK_UNINTERRUPTIBLE); 127 _debug("no outstanding calls"); 128 129 kernel_sock_shutdown(afs_socket, SHUT_RDWR); 130 flush_workqueue(afs_async_calls); 131 sock_release(afs_socket); 132 133 _debug("dework"); 134 destroy_workqueue(afs_async_calls); 135 _leave(""); 136 } 137 138 /* 139 * Allocate a call. 140 */ 141 static struct afs_call *afs_alloc_call(const struct afs_call_type *type, 142 gfp_t gfp) 143 { 144 struct afs_call *call; 145 int o; 146 147 call = kzalloc(sizeof(*call), gfp); 148 if (!call) 149 return NULL; 150 151 call->type = type; 152 atomic_set(&call->usage, 1); 153 INIT_WORK(&call->async_work, afs_process_async_call); 154 init_waitqueue_head(&call->waitq); 155 156 o = atomic_inc_return(&afs_outstanding_calls); 157 trace_afs_call(call, afs_call_trace_alloc, 1, o, 158 __builtin_return_address(0)); 159 return call; 160 } 161 162 /* 163 * Dispose of a reference on a call. 164 */ 165 void afs_put_call(struct afs_call *call) 166 { 167 int n = atomic_dec_return(&call->usage); 168 int o = atomic_read(&afs_outstanding_calls); 169 170 trace_afs_call(call, afs_call_trace_put, n + 1, o, 171 __builtin_return_address(0)); 172 173 ASSERTCMP(n, >=, 0); 174 if (n == 0) { 175 ASSERT(!work_pending(&call->async_work)); 176 ASSERT(call->type->name != NULL); 177 178 if (call->rxcall) { 179 rxrpc_kernel_end_call(afs_socket, call->rxcall); 180 call->rxcall = NULL; 181 } 182 if (call->type->destructor) 183 call->type->destructor(call); 184 185 kfree(call->request); 186 kfree(call); 187 188 o = atomic_dec_return(&afs_outstanding_calls); 189 trace_afs_call(call, afs_call_trace_free, 0, o, 190 __builtin_return_address(0)); 191 if (o == 0) 192 wake_up_atomic_t(&afs_outstanding_calls); 193 } 194 } 195 196 /* 197 * Queue the call for actual work. Returns 0 unconditionally for convenience. 198 */ 199 int afs_queue_call_work(struct afs_call *call) 200 { 201 int u = atomic_inc_return(&call->usage); 202 203 trace_afs_call(call, afs_call_trace_work, u, 204 atomic_read(&afs_outstanding_calls), 205 __builtin_return_address(0)); 206 207 INIT_WORK(&call->work, call->type->work); 208 209 if (!queue_work(afs_wq, &call->work)) 210 afs_put_call(call); 211 return 0; 212 } 213 214 /* 215 * allocate a call with flat request and reply buffers 216 */ 217 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type, 218 size_t request_size, size_t reply_max) 219 { 220 struct afs_call *call; 221 222 call = afs_alloc_call(type, GFP_NOFS); 223 if (!call) 224 goto nomem_call; 225 226 if (request_size) { 227 call->request_size = request_size; 228 call->request = kmalloc(request_size, GFP_NOFS); 229 if (!call->request) 230 goto nomem_free; 231 } 232 233 if (reply_max) { 234 call->reply_max = reply_max; 235 call->buffer = kmalloc(reply_max, GFP_NOFS); 236 if (!call->buffer) 237 goto nomem_free; 238 } 239 240 init_waitqueue_head(&call->waitq); 241 return call; 242 243 nomem_free: 244 afs_put_call(call); 245 nomem_call: 246 return NULL; 247 } 248 249 /* 250 * clean up a call with flat buffer 251 */ 252 void afs_flat_call_destructor(struct afs_call *call) 253 { 254 _enter(""); 255 256 kfree(call->request); 257 call->request = NULL; 258 kfree(call->buffer); 259 call->buffer = NULL; 260 } 261 262 #define AFS_BVEC_MAX 8 263 264 /* 265 * Load the given bvec with the next few pages. 266 */ 267 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, 268 struct bio_vec *bv, pgoff_t first, pgoff_t last, 269 unsigned offset) 270 { 271 struct page *pages[AFS_BVEC_MAX]; 272 unsigned int nr, n, i, to, bytes = 0; 273 274 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); 275 n = find_get_pages_contig(call->mapping, first, nr, pages); 276 ASSERTCMP(n, ==, nr); 277 278 msg->msg_flags |= MSG_MORE; 279 for (i = 0; i < nr; i++) { 280 to = PAGE_SIZE; 281 if (first + i >= last) { 282 to = call->last_to; 283 msg->msg_flags &= ~MSG_MORE; 284 } 285 bv[i].bv_page = pages[i]; 286 bv[i].bv_len = to - offset; 287 bv[i].bv_offset = offset; 288 bytes += to - offset; 289 offset = 0; 290 } 291 292 iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes); 293 } 294 295 /* 296 * attach the data from a bunch of pages on an inode to a call 297 */ 298 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 299 { 300 struct bio_vec bv[AFS_BVEC_MAX]; 301 unsigned int bytes, nr, loop, offset; 302 pgoff_t first = call->first, last = call->last; 303 int ret; 304 305 offset = call->first_offset; 306 call->first_offset = 0; 307 308 do { 309 afs_load_bvec(call, msg, bv, first, last, offset); 310 offset = 0; 311 bytes = msg->msg_iter.count; 312 nr = msg->msg_iter.nr_segs; 313 314 /* Have to change the state *before* sending the last 315 * packet as RxRPC might give us the reply before it 316 * returns from sending the request. 317 */ 318 if (first + nr - 1 >= last) 319 call->state = AFS_CALL_AWAIT_REPLY; 320 ret = rxrpc_kernel_send_data(afs_socket, call->rxcall, 321 msg, bytes); 322 for (loop = 0; loop < nr; loop++) 323 put_page(bv[loop].bv_page); 324 if (ret < 0) 325 break; 326 327 first += nr; 328 } while (first <= last); 329 330 return ret; 331 } 332 333 /* 334 * initiate a call 335 */ 336 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp, 337 bool async) 338 { 339 struct sockaddr_rxrpc srx; 340 struct rxrpc_call *rxcall; 341 struct msghdr msg; 342 struct kvec iov[1]; 343 size_t offset; 344 u32 abort_code; 345 int ret; 346 347 _enter("%x,{%d},", addr->s_addr, ntohs(call->port)); 348 349 ASSERT(call->type != NULL); 350 ASSERT(call->type->name != NULL); 351 352 _debug("____MAKE %p{%s,%x} [%d]____", 353 call, call->type->name, key_serial(call->key), 354 atomic_read(&afs_outstanding_calls)); 355 356 call->async = async; 357 358 memset(&srx, 0, sizeof(srx)); 359 srx.srx_family = AF_RXRPC; 360 srx.srx_service = call->service_id; 361 srx.transport_type = SOCK_DGRAM; 362 srx.transport_len = sizeof(srx.transport.sin); 363 srx.transport.sin.sin_family = AF_INET; 364 srx.transport.sin.sin_port = call->port; 365 memcpy(&srx.transport.sin.sin_addr, addr, 4); 366 367 /* create a call */ 368 rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key, 369 (unsigned long) call, gfp, 370 (async ? 371 afs_wake_up_async_call : 372 afs_wake_up_call_waiter)); 373 call->key = NULL; 374 if (IS_ERR(rxcall)) { 375 ret = PTR_ERR(rxcall); 376 goto error_kill_call; 377 } 378 379 call->rxcall = rxcall; 380 381 /* send the request */ 382 iov[0].iov_base = call->request; 383 iov[0].iov_len = call->request_size; 384 385 msg.msg_name = NULL; 386 msg.msg_namelen = 0; 387 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, 388 call->request_size); 389 msg.msg_control = NULL; 390 msg.msg_controllen = 0; 391 msg.msg_flags = (call->send_pages ? MSG_MORE : 0); 392 393 /* We have to change the state *before* sending the last packet as 394 * rxrpc might give us the reply before it returns from sending the 395 * request. Further, if the send fails, we may already have been given 396 * a notification and may have collected it. 397 */ 398 if (!call->send_pages) 399 call->state = AFS_CALL_AWAIT_REPLY; 400 ret = rxrpc_kernel_send_data(afs_socket, rxcall, 401 &msg, call->request_size); 402 if (ret < 0) 403 goto error_do_abort; 404 405 if (call->send_pages) { 406 ret = afs_send_pages(call, &msg); 407 if (ret < 0) 408 goto error_do_abort; 409 } 410 411 /* at this point, an async call may no longer exist as it may have 412 * already completed */ 413 if (call->async) 414 return -EINPROGRESS; 415 416 return afs_wait_for_call_to_complete(call); 417 418 error_do_abort: 419 call->state = AFS_CALL_COMPLETE; 420 if (ret != -ECONNABORTED) { 421 rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT, 422 -ret, "KSD"); 423 } else { 424 abort_code = 0; 425 offset = 0; 426 rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset, 427 false, &abort_code); 428 ret = call->type->abort_to_error(abort_code); 429 } 430 error_kill_call: 431 afs_put_call(call); 432 _leave(" = %d", ret); 433 return ret; 434 } 435 436 /* 437 * deliver messages to a call 438 */ 439 static void afs_deliver_to_call(struct afs_call *call) 440 { 441 u32 abort_code; 442 int ret; 443 444 _enter("%s", call->type->name); 445 446 while (call->state == AFS_CALL_AWAIT_REPLY || 447 call->state == AFS_CALL_AWAIT_OP_ID || 448 call->state == AFS_CALL_AWAIT_REQUEST || 449 call->state == AFS_CALL_AWAIT_ACK 450 ) { 451 if (call->state == AFS_CALL_AWAIT_ACK) { 452 size_t offset = 0; 453 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, 454 NULL, 0, &offset, false, 455 &call->abort_code); 456 trace_afs_recv_data(call, 0, offset, false, ret); 457 458 if (ret == -EINPROGRESS || ret == -EAGAIN) 459 return; 460 if (ret == 1 || ret < 0) { 461 call->state = AFS_CALL_COMPLETE; 462 goto done; 463 } 464 return; 465 } 466 467 ret = call->type->deliver(call); 468 switch (ret) { 469 case 0: 470 if (call->state == AFS_CALL_AWAIT_REPLY) 471 call->state = AFS_CALL_COMPLETE; 472 goto done; 473 case -EINPROGRESS: 474 case -EAGAIN: 475 goto out; 476 case -ECONNABORTED: 477 goto call_complete; 478 case -ENOTCONN: 479 abort_code = RX_CALL_DEAD; 480 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 481 abort_code, -ret, "KNC"); 482 goto save_error; 483 case -ENOTSUPP: 484 abort_code = RXGEN_OPCODE; 485 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 486 abort_code, -ret, "KIV"); 487 goto save_error; 488 case -ENODATA: 489 case -EBADMSG: 490 case -EMSGSIZE: 491 default: 492 abort_code = RXGEN_CC_UNMARSHAL; 493 if (call->state != AFS_CALL_AWAIT_REPLY) 494 abort_code = RXGEN_SS_UNMARSHAL; 495 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 496 abort_code, EBADMSG, "KUM"); 497 goto save_error; 498 } 499 } 500 501 done: 502 if (call->state == AFS_CALL_COMPLETE && call->incoming) 503 afs_put_call(call); 504 out: 505 _leave(""); 506 return; 507 508 save_error: 509 call->error = ret; 510 call_complete: 511 call->state = AFS_CALL_COMPLETE; 512 goto done; 513 } 514 515 /* 516 * wait synchronously for a call to complete 517 */ 518 static int afs_wait_for_call_to_complete(struct afs_call *call) 519 { 520 int ret; 521 522 DECLARE_WAITQUEUE(myself, current); 523 524 _enter(""); 525 526 add_wait_queue(&call->waitq, &myself); 527 for (;;) { 528 set_current_state(TASK_INTERRUPTIBLE); 529 530 /* deliver any messages that are in the queue */ 531 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 532 call->need_attention = false; 533 __set_current_state(TASK_RUNNING); 534 afs_deliver_to_call(call); 535 continue; 536 } 537 538 if (call->state == AFS_CALL_COMPLETE || 539 signal_pending(current)) 540 break; 541 schedule(); 542 } 543 544 remove_wait_queue(&call->waitq, &myself); 545 __set_current_state(TASK_RUNNING); 546 547 /* Kill off the call if it's still live. */ 548 if (call->state < AFS_CALL_COMPLETE) { 549 _debug("call interrupted"); 550 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 551 RX_USER_ABORT, -EINTR, "KWI"); 552 } 553 554 ret = call->error; 555 _debug("call complete"); 556 afs_put_call(call); 557 _leave(" = %d", ret); 558 return ret; 559 } 560 561 /* 562 * wake up a waiting call 563 */ 564 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 565 unsigned long call_user_ID) 566 { 567 struct afs_call *call = (struct afs_call *)call_user_ID; 568 569 call->need_attention = true; 570 wake_up(&call->waitq); 571 } 572 573 /* 574 * wake up an asynchronous call 575 */ 576 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 577 unsigned long call_user_ID) 578 { 579 struct afs_call *call = (struct afs_call *)call_user_ID; 580 int u; 581 582 trace_afs_notify_call(rxcall, call); 583 call->need_attention = true; 584 585 u = __atomic_add_unless(&call->usage, 1, 0); 586 if (u != 0) { 587 trace_afs_call(call, afs_call_trace_wake, u, 588 atomic_read(&afs_outstanding_calls), 589 __builtin_return_address(0)); 590 591 if (!queue_work(afs_async_calls, &call->async_work)) 592 afs_put_call(call); 593 } 594 } 595 596 /* 597 * Delete an asynchronous call. The work item carries a ref to the call struct 598 * that we need to release. 599 */ 600 static void afs_delete_async_call(struct work_struct *work) 601 { 602 struct afs_call *call = container_of(work, struct afs_call, async_work); 603 604 _enter(""); 605 606 afs_put_call(call); 607 608 _leave(""); 609 } 610 611 /* 612 * Perform I/O processing on an asynchronous call. The work item carries a ref 613 * to the call struct that we either need to release or to pass on. 614 */ 615 static void afs_process_async_call(struct work_struct *work) 616 { 617 struct afs_call *call = container_of(work, struct afs_call, async_work); 618 619 _enter(""); 620 621 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 622 call->need_attention = false; 623 afs_deliver_to_call(call); 624 } 625 626 if (call->state == AFS_CALL_COMPLETE) { 627 call->reply = NULL; 628 629 /* We have two refs to release - one from the alloc and one 630 * queued with the work item - and we can't just deallocate the 631 * call because the work item may be queued again. 632 */ 633 call->async_work.func = afs_delete_async_call; 634 if (!queue_work(afs_async_calls, &call->async_work)) 635 afs_put_call(call); 636 } 637 638 afs_put_call(call); 639 _leave(""); 640 } 641 642 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 643 { 644 struct afs_call *call = (struct afs_call *)user_call_ID; 645 646 call->rxcall = rxcall; 647 } 648 649 /* 650 * Charge the incoming call preallocation. 651 */ 652 static void afs_charge_preallocation(struct work_struct *work) 653 { 654 struct afs_call *call = afs_spare_incoming_call; 655 656 for (;;) { 657 if (!call) { 658 call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL); 659 if (!call) 660 break; 661 662 call->async = true; 663 call->state = AFS_CALL_AWAIT_OP_ID; 664 init_waitqueue_head(&call->waitq); 665 } 666 667 if (rxrpc_kernel_charge_accept(afs_socket, 668 afs_wake_up_async_call, 669 afs_rx_attach, 670 (unsigned long)call, 671 GFP_KERNEL) < 0) 672 break; 673 call = NULL; 674 } 675 afs_spare_incoming_call = call; 676 } 677 678 /* 679 * Discard a preallocated call when a socket is shut down. 680 */ 681 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 682 unsigned long user_call_ID) 683 { 684 struct afs_call *call = (struct afs_call *)user_call_ID; 685 686 call->rxcall = NULL; 687 afs_put_call(call); 688 } 689 690 /* 691 * Notification of an incoming call. 692 */ 693 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 694 unsigned long user_call_ID) 695 { 696 queue_work(afs_wq, &afs_charge_preallocation_work); 697 } 698 699 /* 700 * Grab the operation ID from an incoming cache manager call. The socket 701 * buffer is discarded on error or if we don't yet have sufficient data. 702 */ 703 static int afs_deliver_cm_op_id(struct afs_call *call) 704 { 705 int ret; 706 707 _enter("{%zu}", call->offset); 708 709 ASSERTCMP(call->offset, <, 4); 710 711 /* the operation ID forms the first four bytes of the request data */ 712 ret = afs_extract_data(call, &call->tmp, 4, true); 713 if (ret < 0) 714 return ret; 715 716 call->operation_ID = ntohl(call->tmp); 717 call->state = AFS_CALL_AWAIT_REQUEST; 718 call->offset = 0; 719 720 /* ask the cache manager to route the call (it'll change the call type 721 * if successful) */ 722 if (!afs_cm_incoming_call(call)) 723 return -ENOTSUPP; 724 725 trace_afs_cb_call(call); 726 727 /* pass responsibility for the remainer of this message off to the 728 * cache manager op */ 729 return call->type->deliver(call); 730 } 731 732 /* 733 * send an empty reply 734 */ 735 void afs_send_empty_reply(struct afs_call *call) 736 { 737 struct msghdr msg; 738 739 _enter(""); 740 741 msg.msg_name = NULL; 742 msg.msg_namelen = 0; 743 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); 744 msg.msg_control = NULL; 745 msg.msg_controllen = 0; 746 msg.msg_flags = 0; 747 748 call->state = AFS_CALL_AWAIT_ACK; 749 switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) { 750 case 0: 751 _leave(" [replied]"); 752 return; 753 754 case -ENOMEM: 755 _debug("oom"); 756 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 757 RX_USER_ABORT, ENOMEM, "KOO"); 758 default: 759 _leave(" [error]"); 760 return; 761 } 762 } 763 764 /* 765 * send a simple reply 766 */ 767 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 768 { 769 struct msghdr msg; 770 struct kvec iov[1]; 771 int n; 772 773 _enter(""); 774 775 iov[0].iov_base = (void *) buf; 776 iov[0].iov_len = len; 777 msg.msg_name = NULL; 778 msg.msg_namelen = 0; 779 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); 780 msg.msg_control = NULL; 781 msg.msg_controllen = 0; 782 msg.msg_flags = 0; 783 784 call->state = AFS_CALL_AWAIT_ACK; 785 n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len); 786 if (n >= 0) { 787 /* Success */ 788 _leave(" [replied]"); 789 return; 790 } 791 792 if (n == -ENOMEM) { 793 _debug("oom"); 794 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 795 RX_USER_ABORT, ENOMEM, "KOO"); 796 } 797 _leave(" [error]"); 798 } 799 800 /* 801 * Extract a piece of data from the received data socket buffers. 802 */ 803 int afs_extract_data(struct afs_call *call, void *buf, size_t count, 804 bool want_more) 805 { 806 int ret; 807 808 _enter("{%s,%zu},,%zu,%d", 809 call->type->name, call->offset, count, want_more); 810 811 ASSERTCMP(call->offset, <=, count); 812 813 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, 814 buf, count, &call->offset, 815 want_more, &call->abort_code); 816 trace_afs_recv_data(call, count, call->offset, want_more, ret); 817 if (ret == 0 || ret == -EAGAIN) 818 return ret; 819 820 if (ret == 1) { 821 switch (call->state) { 822 case AFS_CALL_AWAIT_REPLY: 823 call->state = AFS_CALL_COMPLETE; 824 break; 825 case AFS_CALL_AWAIT_REQUEST: 826 call->state = AFS_CALL_REPLYING; 827 break; 828 default: 829 break; 830 } 831 return 0; 832 } 833 834 if (ret == -ECONNABORTED) 835 call->error = call->type->abort_to_error(call->abort_code); 836 else 837 call->error = ret; 838 call->state = AFS_CALL_COMPLETE; 839 return ret; 840 } 841