1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 15 #include <net/sock.h> 16 #include <net/af_rxrpc.h> 17 #include <rxrpc/packet.h> 18 #include "internal.h" 19 #include "afs_cm.h" 20 21 struct socket *afs_socket; /* my RxRPC socket */ 22 static struct workqueue_struct *afs_async_calls; 23 static struct afs_call *afs_spare_incoming_call; 24 atomic_t afs_outstanding_calls; 25 26 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 27 static int afs_wait_for_call_to_complete(struct afs_call *); 28 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 29 static void afs_process_async_call(struct work_struct *); 30 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 31 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 32 static int afs_deliver_cm_op_id(struct afs_call *); 33 34 /* asynchronous incoming call initial processing */ 35 static const struct afs_call_type afs_RXCMxxxx = { 36 .name = "CB.xxxx", 37 .deliver = afs_deliver_cm_op_id, 38 .abort_to_error = afs_abort_to_error, 39 }; 40 41 static void afs_charge_preallocation(struct work_struct *); 42 43 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation); 44 45 static int afs_wait_atomic_t(atomic_t *p) 46 { 47 schedule(); 48 return 0; 49 } 50 51 /* 52 * open an RxRPC socket and bind it to be a server for callback notifications 53 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 54 */ 55 int afs_open_socket(void) 56 { 57 struct sockaddr_rxrpc srx; 58 struct socket *socket; 59 int ret; 60 61 _enter(""); 62 63 ret = -ENOMEM; 64 afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0); 65 if (!afs_async_calls) 66 goto error_0; 67 68 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket); 69 if (ret < 0) 70 goto error_1; 71 72 socket->sk->sk_allocation = GFP_NOFS; 73 74 /* bind the callback manager's address to make this a server socket */ 75 srx.srx_family = AF_RXRPC; 76 srx.srx_service = CM_SERVICE; 77 srx.transport_type = SOCK_DGRAM; 78 srx.transport_len = sizeof(srx.transport.sin); 79 srx.transport.sin.sin_family = AF_INET; 80 srx.transport.sin.sin_port = htons(AFS_CM_PORT); 81 memset(&srx.transport.sin.sin_addr, 0, 82 sizeof(srx.transport.sin.sin_addr)); 83 84 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 85 if (ret < 0) 86 goto error_2; 87 88 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 89 afs_rx_discard_new_call); 90 91 ret = kernel_listen(socket, INT_MAX); 92 if (ret < 0) 93 goto error_2; 94 95 afs_socket = socket; 96 afs_charge_preallocation(NULL); 97 _leave(" = 0"); 98 return 0; 99 100 error_2: 101 sock_release(socket); 102 error_1: 103 destroy_workqueue(afs_async_calls); 104 error_0: 105 _leave(" = %d", ret); 106 return ret; 107 } 108 109 /* 110 * close the RxRPC socket AFS was using 111 */ 112 void afs_close_socket(void) 113 { 114 _enter(""); 115 116 kernel_listen(afs_socket, 0); 117 flush_workqueue(afs_async_calls); 118 119 if (afs_spare_incoming_call) { 120 afs_put_call(afs_spare_incoming_call); 121 afs_spare_incoming_call = NULL; 122 } 123 124 _debug("outstanding %u", atomic_read(&afs_outstanding_calls)); 125 wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t, 126 TASK_UNINTERRUPTIBLE); 127 _debug("no outstanding calls"); 128 129 kernel_sock_shutdown(afs_socket, SHUT_RDWR); 130 flush_workqueue(afs_async_calls); 131 sock_release(afs_socket); 132 133 _debug("dework"); 134 destroy_workqueue(afs_async_calls); 135 _leave(""); 136 } 137 138 /* 139 * Allocate a call. 140 */ 141 static struct afs_call *afs_alloc_call(const struct afs_call_type *type, 142 gfp_t gfp) 143 { 144 struct afs_call *call; 145 int o; 146 147 call = kzalloc(sizeof(*call), gfp); 148 if (!call) 149 return NULL; 150 151 call->type = type; 152 atomic_set(&call->usage, 1); 153 INIT_WORK(&call->async_work, afs_process_async_call); 154 init_waitqueue_head(&call->waitq); 155 156 o = atomic_inc_return(&afs_outstanding_calls); 157 trace_afs_call(call, afs_call_trace_alloc, 1, o, 158 __builtin_return_address(0)); 159 return call; 160 } 161 162 /* 163 * Dispose of a reference on a call. 164 */ 165 void afs_put_call(struct afs_call *call) 166 { 167 int n = atomic_dec_return(&call->usage); 168 int o = atomic_read(&afs_outstanding_calls); 169 170 trace_afs_call(call, afs_call_trace_put, n + 1, o, 171 __builtin_return_address(0)); 172 173 ASSERTCMP(n, >=, 0); 174 if (n == 0) { 175 ASSERT(!work_pending(&call->async_work)); 176 ASSERT(call->type->name != NULL); 177 178 if (call->rxcall) { 179 rxrpc_kernel_end_call(afs_socket, call->rxcall); 180 call->rxcall = NULL; 181 } 182 if (call->type->destructor) 183 call->type->destructor(call); 184 185 kfree(call->request); 186 kfree(call); 187 188 o = atomic_dec_return(&afs_outstanding_calls); 189 trace_afs_call(call, afs_call_trace_free, 0, o, 190 __builtin_return_address(0)); 191 if (o == 0) 192 wake_up_atomic_t(&afs_outstanding_calls); 193 } 194 } 195 196 /* 197 * Queue the call for actual work. Returns 0 unconditionally for convenience. 198 */ 199 int afs_queue_call_work(struct afs_call *call) 200 { 201 int u = atomic_inc_return(&call->usage); 202 203 trace_afs_call(call, afs_call_trace_work, u, 204 atomic_read(&afs_outstanding_calls), 205 __builtin_return_address(0)); 206 207 INIT_WORK(&call->work, call->type->work); 208 209 if (!queue_work(afs_wq, &call->work)) 210 afs_put_call(call); 211 return 0; 212 } 213 214 /* 215 * allocate a call with flat request and reply buffers 216 */ 217 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type, 218 size_t request_size, size_t reply_max) 219 { 220 struct afs_call *call; 221 222 call = afs_alloc_call(type, GFP_NOFS); 223 if (!call) 224 goto nomem_call; 225 226 if (request_size) { 227 call->request_size = request_size; 228 call->request = kmalloc(request_size, GFP_NOFS); 229 if (!call->request) 230 goto nomem_free; 231 } 232 233 if (reply_max) { 234 call->reply_max = reply_max; 235 call->buffer = kmalloc(reply_max, GFP_NOFS); 236 if (!call->buffer) 237 goto nomem_free; 238 } 239 240 init_waitqueue_head(&call->waitq); 241 return call; 242 243 nomem_free: 244 afs_put_call(call); 245 nomem_call: 246 return NULL; 247 } 248 249 /* 250 * clean up a call with flat buffer 251 */ 252 void afs_flat_call_destructor(struct afs_call *call) 253 { 254 _enter(""); 255 256 kfree(call->request); 257 call->request = NULL; 258 kfree(call->buffer); 259 call->buffer = NULL; 260 } 261 262 #define AFS_BVEC_MAX 8 263 264 /* 265 * Load the given bvec with the next few pages. 266 */ 267 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, 268 struct bio_vec *bv, pgoff_t first, pgoff_t last, 269 unsigned offset) 270 { 271 struct page *pages[AFS_BVEC_MAX]; 272 unsigned int nr, n, i, to, bytes = 0; 273 274 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); 275 n = find_get_pages_contig(call->mapping, first, nr, pages); 276 ASSERTCMP(n, ==, nr); 277 278 msg->msg_flags |= MSG_MORE; 279 for (i = 0; i < nr; i++) { 280 to = PAGE_SIZE; 281 if (first + i >= last) { 282 to = call->last_to; 283 msg->msg_flags &= ~MSG_MORE; 284 } 285 bv[i].bv_page = pages[i]; 286 bv[i].bv_len = to - offset; 287 bv[i].bv_offset = offset; 288 bytes += to - offset; 289 offset = 0; 290 } 291 292 iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes); 293 } 294 295 /* 296 * attach the data from a bunch of pages on an inode to a call 297 */ 298 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 299 { 300 struct bio_vec bv[AFS_BVEC_MAX]; 301 unsigned int bytes, nr, loop, offset; 302 pgoff_t first = call->first, last = call->last; 303 int ret; 304 305 offset = call->first_offset; 306 call->first_offset = 0; 307 308 do { 309 afs_load_bvec(call, msg, bv, first, last, offset); 310 offset = 0; 311 bytes = msg->msg_iter.count; 312 nr = msg->msg_iter.nr_segs; 313 314 /* Have to change the state *before* sending the last 315 * packet as RxRPC might give us the reply before it 316 * returns from sending the request. 317 */ 318 if (first + nr - 1 >= last) 319 call->state = AFS_CALL_AWAIT_REPLY; 320 ret = rxrpc_kernel_send_data(afs_socket, call->rxcall, 321 msg, bytes); 322 for (loop = 0; loop < nr; loop++) 323 put_page(bv[loop].bv_page); 324 if (ret < 0) 325 break; 326 327 first += nr; 328 } while (first <= last); 329 330 return ret; 331 } 332 333 /* 334 * initiate a call 335 */ 336 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp, 337 bool async) 338 { 339 struct sockaddr_rxrpc srx; 340 struct rxrpc_call *rxcall; 341 struct msghdr msg; 342 struct kvec iov[1]; 343 size_t offset; 344 s64 tx_total_len; 345 u32 abort_code; 346 int ret; 347 348 _enter("%x,{%d},", addr->s_addr, ntohs(call->port)); 349 350 ASSERT(call->type != NULL); 351 ASSERT(call->type->name != NULL); 352 353 _debug("____MAKE %p{%s,%x} [%d]____", 354 call, call->type->name, key_serial(call->key), 355 atomic_read(&afs_outstanding_calls)); 356 357 call->async = async; 358 359 memset(&srx, 0, sizeof(srx)); 360 srx.srx_family = AF_RXRPC; 361 srx.srx_service = call->service_id; 362 srx.transport_type = SOCK_DGRAM; 363 srx.transport_len = sizeof(srx.transport.sin); 364 srx.transport.sin.sin_family = AF_INET; 365 srx.transport.sin.sin_port = call->port; 366 memcpy(&srx.transport.sin.sin_addr, addr, 4); 367 368 /* Work out the length we're going to transmit. This is awkward for 369 * calls such as FS.StoreData where there's an extra injection of data 370 * after the initial fixed part. 371 */ 372 tx_total_len = call->request_size; 373 if (call->send_pages) { 374 tx_total_len += call->last_to - call->first_offset; 375 tx_total_len += (call->last - call->first) * PAGE_SIZE; 376 } 377 378 /* create a call */ 379 rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key, 380 (unsigned long)call, 381 tx_total_len, gfp, 382 (async ? 383 afs_wake_up_async_call : 384 afs_wake_up_call_waiter)); 385 call->key = NULL; 386 if (IS_ERR(rxcall)) { 387 ret = PTR_ERR(rxcall); 388 goto error_kill_call; 389 } 390 391 call->rxcall = rxcall; 392 393 /* send the request */ 394 iov[0].iov_base = call->request; 395 iov[0].iov_len = call->request_size; 396 397 msg.msg_name = NULL; 398 msg.msg_namelen = 0; 399 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, 400 call->request_size); 401 msg.msg_control = NULL; 402 msg.msg_controllen = 0; 403 msg.msg_flags = (call->send_pages ? MSG_MORE : 0); 404 405 /* We have to change the state *before* sending the last packet as 406 * rxrpc might give us the reply before it returns from sending the 407 * request. Further, if the send fails, we may already have been given 408 * a notification and may have collected it. 409 */ 410 if (!call->send_pages) 411 call->state = AFS_CALL_AWAIT_REPLY; 412 ret = rxrpc_kernel_send_data(afs_socket, rxcall, 413 &msg, call->request_size); 414 if (ret < 0) 415 goto error_do_abort; 416 417 if (call->send_pages) { 418 ret = afs_send_pages(call, &msg); 419 if (ret < 0) 420 goto error_do_abort; 421 } 422 423 /* at this point, an async call may no longer exist as it may have 424 * already completed */ 425 if (call->async) 426 return -EINPROGRESS; 427 428 return afs_wait_for_call_to_complete(call); 429 430 error_do_abort: 431 call->state = AFS_CALL_COMPLETE; 432 if (ret != -ECONNABORTED) { 433 rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT, 434 ret, "KSD"); 435 } else { 436 abort_code = 0; 437 offset = 0; 438 rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset, 439 false, &abort_code); 440 ret = call->type->abort_to_error(abort_code); 441 } 442 error_kill_call: 443 afs_put_call(call); 444 _leave(" = %d", ret); 445 return ret; 446 } 447 448 /* 449 * deliver messages to a call 450 */ 451 static void afs_deliver_to_call(struct afs_call *call) 452 { 453 u32 abort_code; 454 int ret; 455 456 _enter("%s", call->type->name); 457 458 while (call->state == AFS_CALL_AWAIT_REPLY || 459 call->state == AFS_CALL_AWAIT_OP_ID || 460 call->state == AFS_CALL_AWAIT_REQUEST || 461 call->state == AFS_CALL_AWAIT_ACK 462 ) { 463 if (call->state == AFS_CALL_AWAIT_ACK) { 464 size_t offset = 0; 465 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, 466 NULL, 0, &offset, false, 467 &call->abort_code); 468 trace_afs_recv_data(call, 0, offset, false, ret); 469 470 if (ret == -EINPROGRESS || ret == -EAGAIN) 471 return; 472 if (ret == 1 || ret < 0) { 473 call->state = AFS_CALL_COMPLETE; 474 goto done; 475 } 476 return; 477 } 478 479 ret = call->type->deliver(call); 480 switch (ret) { 481 case 0: 482 if (call->state == AFS_CALL_AWAIT_REPLY) 483 call->state = AFS_CALL_COMPLETE; 484 goto done; 485 case -EINPROGRESS: 486 case -EAGAIN: 487 goto out; 488 case -ECONNABORTED: 489 goto call_complete; 490 case -ENOTCONN: 491 abort_code = RX_CALL_DEAD; 492 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 493 abort_code, ret, "KNC"); 494 goto save_error; 495 case -ENOTSUPP: 496 abort_code = RXGEN_OPCODE; 497 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 498 abort_code, ret, "KIV"); 499 goto save_error; 500 case -ENODATA: 501 case -EBADMSG: 502 case -EMSGSIZE: 503 default: 504 abort_code = RXGEN_CC_UNMARSHAL; 505 if (call->state != AFS_CALL_AWAIT_REPLY) 506 abort_code = RXGEN_SS_UNMARSHAL; 507 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 508 abort_code, -EBADMSG, "KUM"); 509 goto save_error; 510 } 511 } 512 513 done: 514 if (call->state == AFS_CALL_COMPLETE && call->incoming) 515 afs_put_call(call); 516 out: 517 _leave(""); 518 return; 519 520 save_error: 521 call->error = ret; 522 call_complete: 523 call->state = AFS_CALL_COMPLETE; 524 goto done; 525 } 526 527 /* 528 * wait synchronously for a call to complete 529 */ 530 static int afs_wait_for_call_to_complete(struct afs_call *call) 531 { 532 int ret; 533 534 DECLARE_WAITQUEUE(myself, current); 535 536 _enter(""); 537 538 add_wait_queue(&call->waitq, &myself); 539 for (;;) { 540 set_current_state(TASK_INTERRUPTIBLE); 541 542 /* deliver any messages that are in the queue */ 543 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 544 call->need_attention = false; 545 __set_current_state(TASK_RUNNING); 546 afs_deliver_to_call(call); 547 continue; 548 } 549 550 if (call->state == AFS_CALL_COMPLETE || 551 signal_pending(current)) 552 break; 553 schedule(); 554 } 555 556 remove_wait_queue(&call->waitq, &myself); 557 __set_current_state(TASK_RUNNING); 558 559 /* Kill off the call if it's still live. */ 560 if (call->state < AFS_CALL_COMPLETE) { 561 _debug("call interrupted"); 562 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 563 RX_USER_ABORT, -EINTR, "KWI"); 564 } 565 566 ret = call->error; 567 _debug("call complete"); 568 afs_put_call(call); 569 _leave(" = %d", ret); 570 return ret; 571 } 572 573 /* 574 * wake up a waiting call 575 */ 576 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 577 unsigned long call_user_ID) 578 { 579 struct afs_call *call = (struct afs_call *)call_user_ID; 580 581 call->need_attention = true; 582 wake_up(&call->waitq); 583 } 584 585 /* 586 * wake up an asynchronous call 587 */ 588 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 589 unsigned long call_user_ID) 590 { 591 struct afs_call *call = (struct afs_call *)call_user_ID; 592 int u; 593 594 trace_afs_notify_call(rxcall, call); 595 call->need_attention = true; 596 597 u = __atomic_add_unless(&call->usage, 1, 0); 598 if (u != 0) { 599 trace_afs_call(call, afs_call_trace_wake, u, 600 atomic_read(&afs_outstanding_calls), 601 __builtin_return_address(0)); 602 603 if (!queue_work(afs_async_calls, &call->async_work)) 604 afs_put_call(call); 605 } 606 } 607 608 /* 609 * Delete an asynchronous call. The work item carries a ref to the call struct 610 * that we need to release. 611 */ 612 static void afs_delete_async_call(struct work_struct *work) 613 { 614 struct afs_call *call = container_of(work, struct afs_call, async_work); 615 616 _enter(""); 617 618 afs_put_call(call); 619 620 _leave(""); 621 } 622 623 /* 624 * Perform I/O processing on an asynchronous call. The work item carries a ref 625 * to the call struct that we either need to release or to pass on. 626 */ 627 static void afs_process_async_call(struct work_struct *work) 628 { 629 struct afs_call *call = container_of(work, struct afs_call, async_work); 630 631 _enter(""); 632 633 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 634 call->need_attention = false; 635 afs_deliver_to_call(call); 636 } 637 638 if (call->state == AFS_CALL_COMPLETE) { 639 call->reply = NULL; 640 641 /* We have two refs to release - one from the alloc and one 642 * queued with the work item - and we can't just deallocate the 643 * call because the work item may be queued again. 644 */ 645 call->async_work.func = afs_delete_async_call; 646 if (!queue_work(afs_async_calls, &call->async_work)) 647 afs_put_call(call); 648 } 649 650 afs_put_call(call); 651 _leave(""); 652 } 653 654 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 655 { 656 struct afs_call *call = (struct afs_call *)user_call_ID; 657 658 call->rxcall = rxcall; 659 } 660 661 /* 662 * Charge the incoming call preallocation. 663 */ 664 static void afs_charge_preallocation(struct work_struct *work) 665 { 666 struct afs_call *call = afs_spare_incoming_call; 667 668 for (;;) { 669 if (!call) { 670 call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL); 671 if (!call) 672 break; 673 674 call->async = true; 675 call->state = AFS_CALL_AWAIT_OP_ID; 676 init_waitqueue_head(&call->waitq); 677 } 678 679 if (rxrpc_kernel_charge_accept(afs_socket, 680 afs_wake_up_async_call, 681 afs_rx_attach, 682 (unsigned long)call, 683 GFP_KERNEL) < 0) 684 break; 685 call = NULL; 686 } 687 afs_spare_incoming_call = call; 688 } 689 690 /* 691 * Discard a preallocated call when a socket is shut down. 692 */ 693 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 694 unsigned long user_call_ID) 695 { 696 struct afs_call *call = (struct afs_call *)user_call_ID; 697 698 call->rxcall = NULL; 699 afs_put_call(call); 700 } 701 702 /* 703 * Notification of an incoming call. 704 */ 705 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 706 unsigned long user_call_ID) 707 { 708 queue_work(afs_wq, &afs_charge_preallocation_work); 709 } 710 711 /* 712 * Grab the operation ID from an incoming cache manager call. The socket 713 * buffer is discarded on error or if we don't yet have sufficient data. 714 */ 715 static int afs_deliver_cm_op_id(struct afs_call *call) 716 { 717 int ret; 718 719 _enter("{%zu}", call->offset); 720 721 ASSERTCMP(call->offset, <, 4); 722 723 /* the operation ID forms the first four bytes of the request data */ 724 ret = afs_extract_data(call, &call->tmp, 4, true); 725 if (ret < 0) 726 return ret; 727 728 call->operation_ID = ntohl(call->tmp); 729 call->state = AFS_CALL_AWAIT_REQUEST; 730 call->offset = 0; 731 732 /* ask the cache manager to route the call (it'll change the call type 733 * if successful) */ 734 if (!afs_cm_incoming_call(call)) 735 return -ENOTSUPP; 736 737 trace_afs_cb_call(call); 738 739 /* pass responsibility for the remainer of this message off to the 740 * cache manager op */ 741 return call->type->deliver(call); 742 } 743 744 /* 745 * send an empty reply 746 */ 747 void afs_send_empty_reply(struct afs_call *call) 748 { 749 struct msghdr msg; 750 751 _enter(""); 752 753 rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, 0); 754 755 msg.msg_name = NULL; 756 msg.msg_namelen = 0; 757 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); 758 msg.msg_control = NULL; 759 msg.msg_controllen = 0; 760 msg.msg_flags = 0; 761 762 call->state = AFS_CALL_AWAIT_ACK; 763 switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) { 764 case 0: 765 _leave(" [replied]"); 766 return; 767 768 case -ENOMEM: 769 _debug("oom"); 770 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 771 RX_USER_ABORT, -ENOMEM, "KOO"); 772 default: 773 _leave(" [error]"); 774 return; 775 } 776 } 777 778 /* 779 * send a simple reply 780 */ 781 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 782 { 783 struct msghdr msg; 784 struct kvec iov[1]; 785 int n; 786 787 _enter(""); 788 789 rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, len); 790 791 iov[0].iov_base = (void *) buf; 792 iov[0].iov_len = len; 793 msg.msg_name = NULL; 794 msg.msg_namelen = 0; 795 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); 796 msg.msg_control = NULL; 797 msg.msg_controllen = 0; 798 msg.msg_flags = 0; 799 800 call->state = AFS_CALL_AWAIT_ACK; 801 n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len); 802 if (n >= 0) { 803 /* Success */ 804 _leave(" [replied]"); 805 return; 806 } 807 808 if (n == -ENOMEM) { 809 _debug("oom"); 810 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 811 RX_USER_ABORT, -ENOMEM, "KOO"); 812 } 813 _leave(" [error]"); 814 } 815 816 /* 817 * Extract a piece of data from the received data socket buffers. 818 */ 819 int afs_extract_data(struct afs_call *call, void *buf, size_t count, 820 bool want_more) 821 { 822 int ret; 823 824 _enter("{%s,%zu},,%zu,%d", 825 call->type->name, call->offset, count, want_more); 826 827 ASSERTCMP(call->offset, <=, count); 828 829 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, 830 buf, count, &call->offset, 831 want_more, &call->abort_code); 832 trace_afs_recv_data(call, count, call->offset, want_more, ret); 833 if (ret == 0 || ret == -EAGAIN) 834 return ret; 835 836 if (ret == 1) { 837 switch (call->state) { 838 case AFS_CALL_AWAIT_REPLY: 839 call->state = AFS_CALL_COMPLETE; 840 break; 841 case AFS_CALL_AWAIT_REQUEST: 842 call->state = AFS_CALL_REPLYING; 843 break; 844 default: 845 break; 846 } 847 return 0; 848 } 849 850 if (ret == -ECONNABORTED) 851 call->error = call->type->abort_to_error(call->abort_code); 852 else 853 call->error = ret; 854 call->state = AFS_CALL_COMPLETE; 855 return ret; 856 } 857