xref: /openbmc/linux/fs/afs/rxrpc.c (revision 4e1a33b1)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <net/af_rxrpc.h>
15 #include <rxrpc/packet.h>
16 #include "internal.h"
17 #include "afs_cm.h"
18 
19 struct socket *afs_socket; /* my RxRPC socket */
20 static struct workqueue_struct *afs_async_calls;
21 static struct afs_call *afs_spare_incoming_call;
22 atomic_t afs_outstanding_calls;
23 
24 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
25 static int afs_wait_for_call_to_complete(struct afs_call *);
26 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
27 static void afs_process_async_call(struct work_struct *);
28 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
29 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
30 static int afs_deliver_cm_op_id(struct afs_call *);
31 
32 /* asynchronous incoming call initial processing */
33 static const struct afs_call_type afs_RXCMxxxx = {
34 	.name		= "CB.xxxx",
35 	.deliver	= afs_deliver_cm_op_id,
36 	.abort_to_error	= afs_abort_to_error,
37 };
38 
39 static void afs_charge_preallocation(struct work_struct *);
40 
41 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
42 
43 static int afs_wait_atomic_t(atomic_t *p)
44 {
45 	schedule();
46 	return 0;
47 }
48 
49 /*
50  * open an RxRPC socket and bind it to be a server for callback notifications
51  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
52  */
53 int afs_open_socket(void)
54 {
55 	struct sockaddr_rxrpc srx;
56 	struct socket *socket;
57 	int ret;
58 
59 	_enter("");
60 
61 	ret = -ENOMEM;
62 	afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
63 	if (!afs_async_calls)
64 		goto error_0;
65 
66 	ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
67 	if (ret < 0)
68 		goto error_1;
69 
70 	socket->sk->sk_allocation = GFP_NOFS;
71 
72 	/* bind the callback manager's address to make this a server socket */
73 	srx.srx_family			= AF_RXRPC;
74 	srx.srx_service			= CM_SERVICE;
75 	srx.transport_type		= SOCK_DGRAM;
76 	srx.transport_len		= sizeof(srx.transport.sin);
77 	srx.transport.sin.sin_family	= AF_INET;
78 	srx.transport.sin.sin_port	= htons(AFS_CM_PORT);
79 	memset(&srx.transport.sin.sin_addr, 0,
80 	       sizeof(srx.transport.sin.sin_addr));
81 
82 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
83 	if (ret < 0)
84 		goto error_2;
85 
86 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
87 					   afs_rx_discard_new_call);
88 
89 	ret = kernel_listen(socket, INT_MAX);
90 	if (ret < 0)
91 		goto error_2;
92 
93 	afs_socket = socket;
94 	afs_charge_preallocation(NULL);
95 	_leave(" = 0");
96 	return 0;
97 
98 error_2:
99 	sock_release(socket);
100 error_1:
101 	destroy_workqueue(afs_async_calls);
102 error_0:
103 	_leave(" = %d", ret);
104 	return ret;
105 }
106 
107 /*
108  * close the RxRPC socket AFS was using
109  */
110 void afs_close_socket(void)
111 {
112 	_enter("");
113 
114 	kernel_listen(afs_socket, 0);
115 	flush_workqueue(afs_async_calls);
116 
117 	if (afs_spare_incoming_call) {
118 		afs_put_call(afs_spare_incoming_call);
119 		afs_spare_incoming_call = NULL;
120 	}
121 
122 	_debug("outstanding %u", atomic_read(&afs_outstanding_calls));
123 	wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
124 			 TASK_UNINTERRUPTIBLE);
125 	_debug("no outstanding calls");
126 
127 	kernel_sock_shutdown(afs_socket, SHUT_RDWR);
128 	flush_workqueue(afs_async_calls);
129 	sock_release(afs_socket);
130 
131 	_debug("dework");
132 	destroy_workqueue(afs_async_calls);
133 	_leave("");
134 }
135 
136 /*
137  * Allocate a call.
138  */
139 static struct afs_call *afs_alloc_call(const struct afs_call_type *type,
140 				       gfp_t gfp)
141 {
142 	struct afs_call *call;
143 	int o;
144 
145 	call = kzalloc(sizeof(*call), gfp);
146 	if (!call)
147 		return NULL;
148 
149 	call->type = type;
150 	atomic_set(&call->usage, 1);
151 	INIT_WORK(&call->async_work, afs_process_async_call);
152 	init_waitqueue_head(&call->waitq);
153 
154 	o = atomic_inc_return(&afs_outstanding_calls);
155 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
156 		       __builtin_return_address(0));
157 	return call;
158 }
159 
160 /*
161  * Dispose of a reference on a call.
162  */
163 void afs_put_call(struct afs_call *call)
164 {
165 	int n = atomic_dec_return(&call->usage);
166 	int o = atomic_read(&afs_outstanding_calls);
167 
168 	trace_afs_call(call, afs_call_trace_put, n + 1, o,
169 		       __builtin_return_address(0));
170 
171 	ASSERTCMP(n, >=, 0);
172 	if (n == 0) {
173 		ASSERT(!work_pending(&call->async_work));
174 		ASSERT(call->type->name != NULL);
175 
176 		if (call->rxcall) {
177 			rxrpc_kernel_end_call(afs_socket, call->rxcall);
178 			call->rxcall = NULL;
179 		}
180 		if (call->type->destructor)
181 			call->type->destructor(call);
182 
183 		kfree(call->request);
184 		kfree(call);
185 
186 		o = atomic_dec_return(&afs_outstanding_calls);
187 		trace_afs_call(call, afs_call_trace_free, 0, o,
188 			       __builtin_return_address(0));
189 		if (o == 0)
190 			wake_up_atomic_t(&afs_outstanding_calls);
191 	}
192 }
193 
194 /*
195  * Queue the call for actual work.  Returns 0 unconditionally for convenience.
196  */
197 int afs_queue_call_work(struct afs_call *call)
198 {
199 	int u = atomic_inc_return(&call->usage);
200 
201 	trace_afs_call(call, afs_call_trace_work, u,
202 		       atomic_read(&afs_outstanding_calls),
203 		       __builtin_return_address(0));
204 
205 	INIT_WORK(&call->work, call->type->work);
206 
207 	if (!queue_work(afs_wq, &call->work))
208 		afs_put_call(call);
209 	return 0;
210 }
211 
212 /*
213  * allocate a call with flat request and reply buffers
214  */
215 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
216 				     size_t request_size, size_t reply_max)
217 {
218 	struct afs_call *call;
219 
220 	call = afs_alloc_call(type, GFP_NOFS);
221 	if (!call)
222 		goto nomem_call;
223 
224 	if (request_size) {
225 		call->request_size = request_size;
226 		call->request = kmalloc(request_size, GFP_NOFS);
227 		if (!call->request)
228 			goto nomem_free;
229 	}
230 
231 	if (reply_max) {
232 		call->reply_max = reply_max;
233 		call->buffer = kmalloc(reply_max, GFP_NOFS);
234 		if (!call->buffer)
235 			goto nomem_free;
236 	}
237 
238 	init_waitqueue_head(&call->waitq);
239 	return call;
240 
241 nomem_free:
242 	afs_put_call(call);
243 nomem_call:
244 	return NULL;
245 }
246 
247 /*
248  * clean up a call with flat buffer
249  */
250 void afs_flat_call_destructor(struct afs_call *call)
251 {
252 	_enter("");
253 
254 	kfree(call->request);
255 	call->request = NULL;
256 	kfree(call->buffer);
257 	call->buffer = NULL;
258 }
259 
260 /*
261  * attach the data from a bunch of pages on an inode to a call
262  */
263 static int afs_send_pages(struct afs_call *call, struct msghdr *msg,
264 			  struct kvec *iov)
265 {
266 	struct page *pages[8];
267 	unsigned count, n, loop, offset, to;
268 	pgoff_t first = call->first, last = call->last;
269 	int ret;
270 
271 	_enter("");
272 
273 	offset = call->first_offset;
274 	call->first_offset = 0;
275 
276 	do {
277 		_debug("attach %lx-%lx", first, last);
278 
279 		count = last - first + 1;
280 		if (count > ARRAY_SIZE(pages))
281 			count = ARRAY_SIZE(pages);
282 		n = find_get_pages_contig(call->mapping, first, count, pages);
283 		ASSERTCMP(n, ==, count);
284 
285 		loop = 0;
286 		do {
287 			msg->msg_flags = 0;
288 			to = PAGE_SIZE;
289 			if (first + loop >= last)
290 				to = call->last_to;
291 			else
292 				msg->msg_flags = MSG_MORE;
293 			iov->iov_base = kmap(pages[loop]) + offset;
294 			iov->iov_len = to - offset;
295 			offset = 0;
296 
297 			_debug("- range %u-%u%s",
298 			       offset, to, msg->msg_flags ? " [more]" : "");
299 			iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC,
300 				      iov, 1, to - offset);
301 
302 			/* have to change the state *before* sending the last
303 			 * packet as RxRPC might give us the reply before it
304 			 * returns from sending the request */
305 			if (first + loop >= last)
306 				call->state = AFS_CALL_AWAIT_REPLY;
307 			ret = rxrpc_kernel_send_data(afs_socket, call->rxcall,
308 						     msg, to - offset);
309 			kunmap(pages[loop]);
310 			if (ret < 0)
311 				break;
312 		} while (++loop < count);
313 		first += count;
314 
315 		for (loop = 0; loop < count; loop++)
316 			put_page(pages[loop]);
317 		if (ret < 0)
318 			break;
319 	} while (first <= last);
320 
321 	_leave(" = %d", ret);
322 	return ret;
323 }
324 
325 /*
326  * initiate a call
327  */
328 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
329 		  bool async)
330 {
331 	struct sockaddr_rxrpc srx;
332 	struct rxrpc_call *rxcall;
333 	struct msghdr msg;
334 	struct kvec iov[1];
335 	int ret;
336 
337 	_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
338 
339 	ASSERT(call->type != NULL);
340 	ASSERT(call->type->name != NULL);
341 
342 	_debug("____MAKE %p{%s,%x} [%d]____",
343 	       call, call->type->name, key_serial(call->key),
344 	       atomic_read(&afs_outstanding_calls));
345 
346 	call->async = async;
347 
348 	memset(&srx, 0, sizeof(srx));
349 	srx.srx_family = AF_RXRPC;
350 	srx.srx_service = call->service_id;
351 	srx.transport_type = SOCK_DGRAM;
352 	srx.transport_len = sizeof(srx.transport.sin);
353 	srx.transport.sin.sin_family = AF_INET;
354 	srx.transport.sin.sin_port = call->port;
355 	memcpy(&srx.transport.sin.sin_addr, addr, 4);
356 
357 	/* create a call */
358 	rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
359 					 (unsigned long) call, gfp,
360 					 (async ?
361 					  afs_wake_up_async_call :
362 					  afs_wake_up_call_waiter));
363 	call->key = NULL;
364 	if (IS_ERR(rxcall)) {
365 		ret = PTR_ERR(rxcall);
366 		goto error_kill_call;
367 	}
368 
369 	call->rxcall = rxcall;
370 
371 	/* send the request */
372 	iov[0].iov_base	= call->request;
373 	iov[0].iov_len	= call->request_size;
374 
375 	msg.msg_name		= NULL;
376 	msg.msg_namelen		= 0;
377 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
378 		      call->request_size);
379 	msg.msg_control		= NULL;
380 	msg.msg_controllen	= 0;
381 	msg.msg_flags		= (call->send_pages ? MSG_MORE : 0);
382 
383 	/* have to change the state *before* sending the last packet as RxRPC
384 	 * might give us the reply before it returns from sending the
385 	 * request */
386 	if (!call->send_pages)
387 		call->state = AFS_CALL_AWAIT_REPLY;
388 	ret = rxrpc_kernel_send_data(afs_socket, rxcall,
389 				     &msg, call->request_size);
390 	if (ret < 0)
391 		goto error_do_abort;
392 
393 	if (call->send_pages) {
394 		ret = afs_send_pages(call, &msg, iov);
395 		if (ret < 0)
396 			goto error_do_abort;
397 	}
398 
399 	/* at this point, an async call may no longer exist as it may have
400 	 * already completed */
401 	if (call->async)
402 		return -EINPROGRESS;
403 
404 	return afs_wait_for_call_to_complete(call);
405 
406 error_do_abort:
407 	rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT, -ret, "KSD");
408 error_kill_call:
409 	afs_put_call(call);
410 	_leave(" = %d", ret);
411 	return ret;
412 }
413 
414 /*
415  * deliver messages to a call
416  */
417 static void afs_deliver_to_call(struct afs_call *call)
418 {
419 	u32 abort_code;
420 	int ret;
421 
422 	_enter("%s", call->type->name);
423 
424 	while (call->state == AFS_CALL_AWAIT_REPLY ||
425 	       call->state == AFS_CALL_AWAIT_OP_ID ||
426 	       call->state == AFS_CALL_AWAIT_REQUEST ||
427 	       call->state == AFS_CALL_AWAIT_ACK
428 	       ) {
429 		if (call->state == AFS_CALL_AWAIT_ACK) {
430 			size_t offset = 0;
431 			ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
432 						     NULL, 0, &offset, false,
433 						     &call->abort_code);
434 			trace_afs_recv_data(call, 0, offset, false, ret);
435 
436 			if (ret == -EINPROGRESS || ret == -EAGAIN)
437 				return;
438 			if (ret == 1 || ret < 0) {
439 				call->state = AFS_CALL_COMPLETE;
440 				goto done;
441 			}
442 			return;
443 		}
444 
445 		ret = call->type->deliver(call);
446 		switch (ret) {
447 		case 0:
448 			if (call->state == AFS_CALL_AWAIT_REPLY)
449 				call->state = AFS_CALL_COMPLETE;
450 			goto done;
451 		case -EINPROGRESS:
452 		case -EAGAIN:
453 			goto out;
454 		case -ENOTCONN:
455 			abort_code = RX_CALL_DEAD;
456 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
457 						abort_code, -ret, "KNC");
458 			goto do_abort;
459 		case -ENOTSUPP:
460 			abort_code = RX_INVALID_OPERATION;
461 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
462 						abort_code, -ret, "KIV");
463 			goto do_abort;
464 		case -ENODATA:
465 		case -EBADMSG:
466 		case -EMSGSIZE:
467 		default:
468 			abort_code = RXGEN_CC_UNMARSHAL;
469 			if (call->state != AFS_CALL_AWAIT_REPLY)
470 				abort_code = RXGEN_SS_UNMARSHAL;
471 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
472 						abort_code, EBADMSG, "KUM");
473 			goto do_abort;
474 		}
475 	}
476 
477 done:
478 	if (call->state == AFS_CALL_COMPLETE && call->incoming)
479 		afs_put_call(call);
480 out:
481 	_leave("");
482 	return;
483 
484 do_abort:
485 	call->error = ret;
486 	call->state = AFS_CALL_COMPLETE;
487 	goto done;
488 }
489 
490 /*
491  * wait synchronously for a call to complete
492  */
493 static int afs_wait_for_call_to_complete(struct afs_call *call)
494 {
495 	const char *abort_why;
496 	int ret;
497 
498 	DECLARE_WAITQUEUE(myself, current);
499 
500 	_enter("");
501 
502 	add_wait_queue(&call->waitq, &myself);
503 	for (;;) {
504 		set_current_state(TASK_INTERRUPTIBLE);
505 
506 		/* deliver any messages that are in the queue */
507 		if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
508 			call->need_attention = false;
509 			__set_current_state(TASK_RUNNING);
510 			afs_deliver_to_call(call);
511 			continue;
512 		}
513 
514 		abort_why = "KWC";
515 		ret = call->error;
516 		if (call->state == AFS_CALL_COMPLETE)
517 			break;
518 		abort_why = "KWI";
519 		ret = -EINTR;
520 		if (signal_pending(current))
521 			break;
522 		schedule();
523 	}
524 
525 	remove_wait_queue(&call->waitq, &myself);
526 	__set_current_state(TASK_RUNNING);
527 
528 	/* kill the call */
529 	if (call->state < AFS_CALL_COMPLETE) {
530 		_debug("call incomplete");
531 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
532 					RX_CALL_DEAD, -ret, abort_why);
533 	}
534 
535 	_debug("call complete");
536 	afs_put_call(call);
537 	_leave(" = %d", ret);
538 	return ret;
539 }
540 
541 /*
542  * wake up a waiting call
543  */
544 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
545 				    unsigned long call_user_ID)
546 {
547 	struct afs_call *call = (struct afs_call *)call_user_ID;
548 
549 	call->need_attention = true;
550 	wake_up(&call->waitq);
551 }
552 
553 /*
554  * wake up an asynchronous call
555  */
556 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
557 				   unsigned long call_user_ID)
558 {
559 	struct afs_call *call = (struct afs_call *)call_user_ID;
560 	int u;
561 
562 	trace_afs_notify_call(rxcall, call);
563 	call->need_attention = true;
564 
565 	u = __atomic_add_unless(&call->usage, 1, 0);
566 	if (u != 0) {
567 		trace_afs_call(call, afs_call_trace_wake, u,
568 			       atomic_read(&afs_outstanding_calls),
569 			       __builtin_return_address(0));
570 
571 		if (!queue_work(afs_async_calls, &call->async_work))
572 			afs_put_call(call);
573 	}
574 }
575 
576 /*
577  * Delete an asynchronous call.  The work item carries a ref to the call struct
578  * that we need to release.
579  */
580 static void afs_delete_async_call(struct work_struct *work)
581 {
582 	struct afs_call *call = container_of(work, struct afs_call, async_work);
583 
584 	_enter("");
585 
586 	afs_put_call(call);
587 
588 	_leave("");
589 }
590 
591 /*
592  * Perform I/O processing on an asynchronous call.  The work item carries a ref
593  * to the call struct that we either need to release or to pass on.
594  */
595 static void afs_process_async_call(struct work_struct *work)
596 {
597 	struct afs_call *call = container_of(work, struct afs_call, async_work);
598 
599 	_enter("");
600 
601 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
602 		call->need_attention = false;
603 		afs_deliver_to_call(call);
604 	}
605 
606 	if (call->state == AFS_CALL_COMPLETE) {
607 		call->reply = NULL;
608 
609 		/* We have two refs to release - one from the alloc and one
610 		 * queued with the work item - and we can't just deallocate the
611 		 * call because the work item may be queued again.
612 		 */
613 		call->async_work.func = afs_delete_async_call;
614 		if (!queue_work(afs_async_calls, &call->async_work))
615 			afs_put_call(call);
616 	}
617 
618 	afs_put_call(call);
619 	_leave("");
620 }
621 
622 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
623 {
624 	struct afs_call *call = (struct afs_call *)user_call_ID;
625 
626 	call->rxcall = rxcall;
627 }
628 
629 /*
630  * Charge the incoming call preallocation.
631  */
632 static void afs_charge_preallocation(struct work_struct *work)
633 {
634 	struct afs_call *call = afs_spare_incoming_call;
635 
636 	for (;;) {
637 		if (!call) {
638 			call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL);
639 			if (!call)
640 				break;
641 
642 			call->async = true;
643 			call->state = AFS_CALL_AWAIT_OP_ID;
644 			init_waitqueue_head(&call->waitq);
645 		}
646 
647 		if (rxrpc_kernel_charge_accept(afs_socket,
648 					       afs_wake_up_async_call,
649 					       afs_rx_attach,
650 					       (unsigned long)call,
651 					       GFP_KERNEL) < 0)
652 			break;
653 		call = NULL;
654 	}
655 	afs_spare_incoming_call = call;
656 }
657 
658 /*
659  * Discard a preallocated call when a socket is shut down.
660  */
661 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
662 				    unsigned long user_call_ID)
663 {
664 	struct afs_call *call = (struct afs_call *)user_call_ID;
665 
666 	call->rxcall = NULL;
667 	afs_put_call(call);
668 }
669 
670 /*
671  * Notification of an incoming call.
672  */
673 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
674 			    unsigned long user_call_ID)
675 {
676 	queue_work(afs_wq, &afs_charge_preallocation_work);
677 }
678 
679 /*
680  * Grab the operation ID from an incoming cache manager call.  The socket
681  * buffer is discarded on error or if we don't yet have sufficient data.
682  */
683 static int afs_deliver_cm_op_id(struct afs_call *call)
684 {
685 	int ret;
686 
687 	_enter("{%zu}", call->offset);
688 
689 	ASSERTCMP(call->offset, <, 4);
690 
691 	/* the operation ID forms the first four bytes of the request data */
692 	ret = afs_extract_data(call, &call->tmp, 4, true);
693 	if (ret < 0)
694 		return ret;
695 
696 	call->operation_ID = ntohl(call->tmp);
697 	call->state = AFS_CALL_AWAIT_REQUEST;
698 	call->offset = 0;
699 
700 	/* ask the cache manager to route the call (it'll change the call type
701 	 * if successful) */
702 	if (!afs_cm_incoming_call(call))
703 		return -ENOTSUPP;
704 
705 	trace_afs_cb_call(call);
706 
707 	/* pass responsibility for the remainer of this message off to the
708 	 * cache manager op */
709 	return call->type->deliver(call);
710 }
711 
712 /*
713  * send an empty reply
714  */
715 void afs_send_empty_reply(struct afs_call *call)
716 {
717 	struct msghdr msg;
718 
719 	_enter("");
720 
721 	msg.msg_name		= NULL;
722 	msg.msg_namelen		= 0;
723 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
724 	msg.msg_control		= NULL;
725 	msg.msg_controllen	= 0;
726 	msg.msg_flags		= 0;
727 
728 	call->state = AFS_CALL_AWAIT_ACK;
729 	switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) {
730 	case 0:
731 		_leave(" [replied]");
732 		return;
733 
734 	case -ENOMEM:
735 		_debug("oom");
736 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
737 					RX_USER_ABORT, ENOMEM, "KOO");
738 	default:
739 		_leave(" [error]");
740 		return;
741 	}
742 }
743 
744 /*
745  * send a simple reply
746  */
747 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
748 {
749 	struct msghdr msg;
750 	struct kvec iov[1];
751 	int n;
752 
753 	_enter("");
754 
755 	iov[0].iov_base		= (void *) buf;
756 	iov[0].iov_len		= len;
757 	msg.msg_name		= NULL;
758 	msg.msg_namelen		= 0;
759 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
760 	msg.msg_control		= NULL;
761 	msg.msg_controllen	= 0;
762 	msg.msg_flags		= 0;
763 
764 	call->state = AFS_CALL_AWAIT_ACK;
765 	n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len);
766 	if (n >= 0) {
767 		/* Success */
768 		_leave(" [replied]");
769 		return;
770 	}
771 
772 	if (n == -ENOMEM) {
773 		_debug("oom");
774 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
775 					RX_USER_ABORT, ENOMEM, "KOO");
776 	}
777 	_leave(" [error]");
778 }
779 
780 /*
781  * Extract a piece of data from the received data socket buffers.
782  */
783 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
784 		     bool want_more)
785 {
786 	int ret;
787 
788 	_enter("{%s,%zu},,%zu,%d",
789 	       call->type->name, call->offset, count, want_more);
790 
791 	ASSERTCMP(call->offset, <=, count);
792 
793 	ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
794 				     buf, count, &call->offset,
795 				     want_more, &call->abort_code);
796 	trace_afs_recv_data(call, count, call->offset, want_more, ret);
797 	if (ret == 0 || ret == -EAGAIN)
798 		return ret;
799 
800 	if (ret == 1) {
801 		switch (call->state) {
802 		case AFS_CALL_AWAIT_REPLY:
803 			call->state = AFS_CALL_COMPLETE;
804 			break;
805 		case AFS_CALL_AWAIT_REQUEST:
806 			call->state = AFS_CALL_REPLYING;
807 			break;
808 		default:
809 			break;
810 		}
811 		return 0;
812 	}
813 
814 	if (ret == -ECONNABORTED)
815 		call->error = call->type->abort_to_error(call->abort_code);
816 	else
817 		call->error = ret;
818 	call->state = AFS_CALL_COMPLETE;
819 	return ret;
820 }
821