xref: /openbmc/linux/fs/afs/rxrpc.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include <rxrpc/packet.h>
18 #include "internal.h"
19 #include "afs_cm.h"
20 
21 struct socket *afs_socket; /* my RxRPC socket */
22 static struct workqueue_struct *afs_async_calls;
23 static struct afs_call *afs_spare_incoming_call;
24 atomic_t afs_outstanding_calls;
25 
26 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
27 static int afs_wait_for_call_to_complete(struct afs_call *);
28 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
29 static void afs_process_async_call(struct work_struct *);
30 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
31 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
32 static int afs_deliver_cm_op_id(struct afs_call *);
33 
34 /* asynchronous incoming call initial processing */
35 static const struct afs_call_type afs_RXCMxxxx = {
36 	.name		= "CB.xxxx",
37 	.deliver	= afs_deliver_cm_op_id,
38 	.abort_to_error	= afs_abort_to_error,
39 };
40 
41 static void afs_charge_preallocation(struct work_struct *);
42 
43 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
44 
45 static int afs_wait_atomic_t(atomic_t *p)
46 {
47 	schedule();
48 	return 0;
49 }
50 
51 /*
52  * open an RxRPC socket and bind it to be a server for callback notifications
53  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
54  */
55 int afs_open_socket(void)
56 {
57 	struct sockaddr_rxrpc srx;
58 	struct socket *socket;
59 	int ret;
60 
61 	_enter("");
62 
63 	ret = -ENOMEM;
64 	afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
65 	if (!afs_async_calls)
66 		goto error_0;
67 
68 	ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
69 	if (ret < 0)
70 		goto error_1;
71 
72 	socket->sk->sk_allocation = GFP_NOFS;
73 
74 	/* bind the callback manager's address to make this a server socket */
75 	srx.srx_family			= AF_RXRPC;
76 	srx.srx_service			= CM_SERVICE;
77 	srx.transport_type		= SOCK_DGRAM;
78 	srx.transport_len		= sizeof(srx.transport.sin);
79 	srx.transport.sin.sin_family	= AF_INET;
80 	srx.transport.sin.sin_port	= htons(AFS_CM_PORT);
81 	memset(&srx.transport.sin.sin_addr, 0,
82 	       sizeof(srx.transport.sin.sin_addr));
83 
84 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
85 	if (ret < 0)
86 		goto error_2;
87 
88 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
89 					   afs_rx_discard_new_call);
90 
91 	ret = kernel_listen(socket, INT_MAX);
92 	if (ret < 0)
93 		goto error_2;
94 
95 	afs_socket = socket;
96 	afs_charge_preallocation(NULL);
97 	_leave(" = 0");
98 	return 0;
99 
100 error_2:
101 	sock_release(socket);
102 error_1:
103 	destroy_workqueue(afs_async_calls);
104 error_0:
105 	_leave(" = %d", ret);
106 	return ret;
107 }
108 
109 /*
110  * close the RxRPC socket AFS was using
111  */
112 void afs_close_socket(void)
113 {
114 	_enter("");
115 
116 	kernel_listen(afs_socket, 0);
117 	flush_workqueue(afs_async_calls);
118 
119 	if (afs_spare_incoming_call) {
120 		afs_put_call(afs_spare_incoming_call);
121 		afs_spare_incoming_call = NULL;
122 	}
123 
124 	_debug("outstanding %u", atomic_read(&afs_outstanding_calls));
125 	wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
126 			 TASK_UNINTERRUPTIBLE);
127 	_debug("no outstanding calls");
128 
129 	kernel_sock_shutdown(afs_socket, SHUT_RDWR);
130 	flush_workqueue(afs_async_calls);
131 	sock_release(afs_socket);
132 
133 	_debug("dework");
134 	destroy_workqueue(afs_async_calls);
135 	_leave("");
136 }
137 
138 /*
139  * Allocate a call.
140  */
141 static struct afs_call *afs_alloc_call(const struct afs_call_type *type,
142 				       gfp_t gfp)
143 {
144 	struct afs_call *call;
145 	int o;
146 
147 	call = kzalloc(sizeof(*call), gfp);
148 	if (!call)
149 		return NULL;
150 
151 	call->type = type;
152 	atomic_set(&call->usage, 1);
153 	INIT_WORK(&call->async_work, afs_process_async_call);
154 	init_waitqueue_head(&call->waitq);
155 
156 	o = atomic_inc_return(&afs_outstanding_calls);
157 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
158 		       __builtin_return_address(0));
159 	return call;
160 }
161 
162 /*
163  * Dispose of a reference on a call.
164  */
165 void afs_put_call(struct afs_call *call)
166 {
167 	int n = atomic_dec_return(&call->usage);
168 	int o = atomic_read(&afs_outstanding_calls);
169 
170 	trace_afs_call(call, afs_call_trace_put, n + 1, o,
171 		       __builtin_return_address(0));
172 
173 	ASSERTCMP(n, >=, 0);
174 	if (n == 0) {
175 		ASSERT(!work_pending(&call->async_work));
176 		ASSERT(call->type->name != NULL);
177 
178 		if (call->rxcall) {
179 			rxrpc_kernel_end_call(afs_socket, call->rxcall);
180 			call->rxcall = NULL;
181 		}
182 		if (call->type->destructor)
183 			call->type->destructor(call);
184 
185 		kfree(call->request);
186 		kfree(call);
187 
188 		o = atomic_dec_return(&afs_outstanding_calls);
189 		trace_afs_call(call, afs_call_trace_free, 0, o,
190 			       __builtin_return_address(0));
191 		if (o == 0)
192 			wake_up_atomic_t(&afs_outstanding_calls);
193 	}
194 }
195 
196 /*
197  * Queue the call for actual work.  Returns 0 unconditionally for convenience.
198  */
199 int afs_queue_call_work(struct afs_call *call)
200 {
201 	int u = atomic_inc_return(&call->usage);
202 
203 	trace_afs_call(call, afs_call_trace_work, u,
204 		       atomic_read(&afs_outstanding_calls),
205 		       __builtin_return_address(0));
206 
207 	INIT_WORK(&call->work, call->type->work);
208 
209 	if (!queue_work(afs_wq, &call->work))
210 		afs_put_call(call);
211 	return 0;
212 }
213 
214 /*
215  * allocate a call with flat request and reply buffers
216  */
217 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
218 				     size_t request_size, size_t reply_max)
219 {
220 	struct afs_call *call;
221 
222 	call = afs_alloc_call(type, GFP_NOFS);
223 	if (!call)
224 		goto nomem_call;
225 
226 	if (request_size) {
227 		call->request_size = request_size;
228 		call->request = kmalloc(request_size, GFP_NOFS);
229 		if (!call->request)
230 			goto nomem_free;
231 	}
232 
233 	if (reply_max) {
234 		call->reply_max = reply_max;
235 		call->buffer = kmalloc(reply_max, GFP_NOFS);
236 		if (!call->buffer)
237 			goto nomem_free;
238 	}
239 
240 	init_waitqueue_head(&call->waitq);
241 	return call;
242 
243 nomem_free:
244 	afs_put_call(call);
245 nomem_call:
246 	return NULL;
247 }
248 
249 /*
250  * clean up a call with flat buffer
251  */
252 void afs_flat_call_destructor(struct afs_call *call)
253 {
254 	_enter("");
255 
256 	kfree(call->request);
257 	call->request = NULL;
258 	kfree(call->buffer);
259 	call->buffer = NULL;
260 }
261 
262 #define AFS_BVEC_MAX 8
263 
264 /*
265  * Load the given bvec with the next few pages.
266  */
267 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
268 			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
269 			  unsigned offset)
270 {
271 	struct page *pages[AFS_BVEC_MAX];
272 	unsigned int nr, n, i, to, bytes = 0;
273 
274 	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
275 	n = find_get_pages_contig(call->mapping, first, nr, pages);
276 	ASSERTCMP(n, ==, nr);
277 
278 	msg->msg_flags |= MSG_MORE;
279 	for (i = 0; i < nr; i++) {
280 		to = PAGE_SIZE;
281 		if (first + i >= last) {
282 			to = call->last_to;
283 			msg->msg_flags &= ~MSG_MORE;
284 		}
285 		bv[i].bv_page = pages[i];
286 		bv[i].bv_len = to - offset;
287 		bv[i].bv_offset = offset;
288 		bytes += to - offset;
289 		offset = 0;
290 	}
291 
292 	iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
293 }
294 
295 /*
296  * attach the data from a bunch of pages on an inode to a call
297  */
298 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
299 {
300 	struct bio_vec bv[AFS_BVEC_MAX];
301 	unsigned int bytes, nr, loop, offset;
302 	pgoff_t first = call->first, last = call->last;
303 	int ret;
304 
305 	offset = call->first_offset;
306 	call->first_offset = 0;
307 
308 	do {
309 		afs_load_bvec(call, msg, bv, first, last, offset);
310 		offset = 0;
311 		bytes = msg->msg_iter.count;
312 		nr = msg->msg_iter.nr_segs;
313 
314 		/* Have to change the state *before* sending the last
315 		 * packet as RxRPC might give us the reply before it
316 		 * returns from sending the request.
317 		 */
318 		if (first + nr - 1 >= last)
319 			call->state = AFS_CALL_AWAIT_REPLY;
320 		ret = rxrpc_kernel_send_data(afs_socket, call->rxcall,
321 					     msg, bytes);
322 		for (loop = 0; loop < nr; loop++)
323 			put_page(bv[loop].bv_page);
324 		if (ret < 0)
325 			break;
326 
327 		first += nr;
328 	} while (first <= last);
329 
330 	return ret;
331 }
332 
333 /*
334  * initiate a call
335  */
336 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
337 		  bool async)
338 {
339 	struct sockaddr_rxrpc srx;
340 	struct rxrpc_call *rxcall;
341 	struct msghdr msg;
342 	struct kvec iov[1];
343 	size_t offset;
344 	s64 tx_total_len;
345 	u32 abort_code;
346 	int ret;
347 
348 	_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
349 
350 	ASSERT(call->type != NULL);
351 	ASSERT(call->type->name != NULL);
352 
353 	_debug("____MAKE %p{%s,%x} [%d]____",
354 	       call, call->type->name, key_serial(call->key),
355 	       atomic_read(&afs_outstanding_calls));
356 
357 	call->async = async;
358 
359 	memset(&srx, 0, sizeof(srx));
360 	srx.srx_family = AF_RXRPC;
361 	srx.srx_service = call->service_id;
362 	srx.transport_type = SOCK_DGRAM;
363 	srx.transport_len = sizeof(srx.transport.sin);
364 	srx.transport.sin.sin_family = AF_INET;
365 	srx.transport.sin.sin_port = call->port;
366 	memcpy(&srx.transport.sin.sin_addr, addr, 4);
367 
368 	/* Work out the length we're going to transmit.  This is awkward for
369 	 * calls such as FS.StoreData where there's an extra injection of data
370 	 * after the initial fixed part.
371 	 */
372 	tx_total_len = call->request_size;
373 	if (call->send_pages) {
374 		tx_total_len += call->last_to - call->first_offset;
375 		tx_total_len += (call->last - call->first) * PAGE_SIZE;
376 	}
377 
378 	/* create a call */
379 	rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
380 					 (unsigned long)call,
381 					 tx_total_len, gfp,
382 					 (async ?
383 					  afs_wake_up_async_call :
384 					  afs_wake_up_call_waiter));
385 	call->key = NULL;
386 	if (IS_ERR(rxcall)) {
387 		ret = PTR_ERR(rxcall);
388 		goto error_kill_call;
389 	}
390 
391 	call->rxcall = rxcall;
392 
393 	/* send the request */
394 	iov[0].iov_base	= call->request;
395 	iov[0].iov_len	= call->request_size;
396 
397 	msg.msg_name		= NULL;
398 	msg.msg_namelen		= 0;
399 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
400 		      call->request_size);
401 	msg.msg_control		= NULL;
402 	msg.msg_controllen	= 0;
403 	msg.msg_flags		= (call->send_pages ? MSG_MORE : 0);
404 
405 	/* We have to change the state *before* sending the last packet as
406 	 * rxrpc might give us the reply before it returns from sending the
407 	 * request.  Further, if the send fails, we may already have been given
408 	 * a notification and may have collected it.
409 	 */
410 	if (!call->send_pages)
411 		call->state = AFS_CALL_AWAIT_REPLY;
412 	ret = rxrpc_kernel_send_data(afs_socket, rxcall,
413 				     &msg, call->request_size);
414 	if (ret < 0)
415 		goto error_do_abort;
416 
417 	if (call->send_pages) {
418 		ret = afs_send_pages(call, &msg);
419 		if (ret < 0)
420 			goto error_do_abort;
421 	}
422 
423 	/* at this point, an async call may no longer exist as it may have
424 	 * already completed */
425 	if (call->async)
426 		return -EINPROGRESS;
427 
428 	return afs_wait_for_call_to_complete(call);
429 
430 error_do_abort:
431 	call->state = AFS_CALL_COMPLETE;
432 	if (ret != -ECONNABORTED) {
433 		rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT,
434 					ret, "KSD");
435 	} else {
436 		abort_code = 0;
437 		offset = 0;
438 		rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset,
439 				       false, &abort_code);
440 		ret = call->type->abort_to_error(abort_code);
441 	}
442 error_kill_call:
443 	afs_put_call(call);
444 	_leave(" = %d", ret);
445 	return ret;
446 }
447 
448 /*
449  * deliver messages to a call
450  */
451 static void afs_deliver_to_call(struct afs_call *call)
452 {
453 	u32 abort_code;
454 	int ret;
455 
456 	_enter("%s", call->type->name);
457 
458 	while (call->state == AFS_CALL_AWAIT_REPLY ||
459 	       call->state == AFS_CALL_AWAIT_OP_ID ||
460 	       call->state == AFS_CALL_AWAIT_REQUEST ||
461 	       call->state == AFS_CALL_AWAIT_ACK
462 	       ) {
463 		if (call->state == AFS_CALL_AWAIT_ACK) {
464 			size_t offset = 0;
465 			ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
466 						     NULL, 0, &offset, false,
467 						     &call->abort_code);
468 			trace_afs_recv_data(call, 0, offset, false, ret);
469 
470 			if (ret == -EINPROGRESS || ret == -EAGAIN)
471 				return;
472 			if (ret == 1 || ret < 0) {
473 				call->state = AFS_CALL_COMPLETE;
474 				goto done;
475 			}
476 			return;
477 		}
478 
479 		ret = call->type->deliver(call);
480 		switch (ret) {
481 		case 0:
482 			if (call->state == AFS_CALL_AWAIT_REPLY)
483 				call->state = AFS_CALL_COMPLETE;
484 			goto done;
485 		case -EINPROGRESS:
486 		case -EAGAIN:
487 			goto out;
488 		case -ECONNABORTED:
489 			goto call_complete;
490 		case -ENOTCONN:
491 			abort_code = RX_CALL_DEAD;
492 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
493 						abort_code, ret, "KNC");
494 			goto save_error;
495 		case -ENOTSUPP:
496 			abort_code = RXGEN_OPCODE;
497 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
498 						abort_code, ret, "KIV");
499 			goto save_error;
500 		case -ENODATA:
501 		case -EBADMSG:
502 		case -EMSGSIZE:
503 		default:
504 			abort_code = RXGEN_CC_UNMARSHAL;
505 			if (call->state != AFS_CALL_AWAIT_REPLY)
506 				abort_code = RXGEN_SS_UNMARSHAL;
507 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
508 						abort_code, -EBADMSG, "KUM");
509 			goto save_error;
510 		}
511 	}
512 
513 done:
514 	if (call->state == AFS_CALL_COMPLETE && call->incoming)
515 		afs_put_call(call);
516 out:
517 	_leave("");
518 	return;
519 
520 save_error:
521 	call->error = ret;
522 call_complete:
523 	call->state = AFS_CALL_COMPLETE;
524 	goto done;
525 }
526 
527 /*
528  * wait synchronously for a call to complete
529  */
530 static int afs_wait_for_call_to_complete(struct afs_call *call)
531 {
532 	int ret;
533 
534 	DECLARE_WAITQUEUE(myself, current);
535 
536 	_enter("");
537 
538 	add_wait_queue(&call->waitq, &myself);
539 	for (;;) {
540 		set_current_state(TASK_INTERRUPTIBLE);
541 
542 		/* deliver any messages that are in the queue */
543 		if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
544 			call->need_attention = false;
545 			__set_current_state(TASK_RUNNING);
546 			afs_deliver_to_call(call);
547 			continue;
548 		}
549 
550 		if (call->state == AFS_CALL_COMPLETE ||
551 		    signal_pending(current))
552 			break;
553 		schedule();
554 	}
555 
556 	remove_wait_queue(&call->waitq, &myself);
557 	__set_current_state(TASK_RUNNING);
558 
559 	/* Kill off the call if it's still live. */
560 	if (call->state < AFS_CALL_COMPLETE) {
561 		_debug("call interrupted");
562 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
563 					RX_USER_ABORT, -EINTR, "KWI");
564 	}
565 
566 	ret = call->error;
567 	_debug("call complete");
568 	afs_put_call(call);
569 	_leave(" = %d", ret);
570 	return ret;
571 }
572 
573 /*
574  * wake up a waiting call
575  */
576 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
577 				    unsigned long call_user_ID)
578 {
579 	struct afs_call *call = (struct afs_call *)call_user_ID;
580 
581 	call->need_attention = true;
582 	wake_up(&call->waitq);
583 }
584 
585 /*
586  * wake up an asynchronous call
587  */
588 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
589 				   unsigned long call_user_ID)
590 {
591 	struct afs_call *call = (struct afs_call *)call_user_ID;
592 	int u;
593 
594 	trace_afs_notify_call(rxcall, call);
595 	call->need_attention = true;
596 
597 	u = __atomic_add_unless(&call->usage, 1, 0);
598 	if (u != 0) {
599 		trace_afs_call(call, afs_call_trace_wake, u,
600 			       atomic_read(&afs_outstanding_calls),
601 			       __builtin_return_address(0));
602 
603 		if (!queue_work(afs_async_calls, &call->async_work))
604 			afs_put_call(call);
605 	}
606 }
607 
608 /*
609  * Delete an asynchronous call.  The work item carries a ref to the call struct
610  * that we need to release.
611  */
612 static void afs_delete_async_call(struct work_struct *work)
613 {
614 	struct afs_call *call = container_of(work, struct afs_call, async_work);
615 
616 	_enter("");
617 
618 	afs_put_call(call);
619 
620 	_leave("");
621 }
622 
623 /*
624  * Perform I/O processing on an asynchronous call.  The work item carries a ref
625  * to the call struct that we either need to release or to pass on.
626  */
627 static void afs_process_async_call(struct work_struct *work)
628 {
629 	struct afs_call *call = container_of(work, struct afs_call, async_work);
630 
631 	_enter("");
632 
633 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
634 		call->need_attention = false;
635 		afs_deliver_to_call(call);
636 	}
637 
638 	if (call->state == AFS_CALL_COMPLETE) {
639 		call->reply = NULL;
640 
641 		/* We have two refs to release - one from the alloc and one
642 		 * queued with the work item - and we can't just deallocate the
643 		 * call because the work item may be queued again.
644 		 */
645 		call->async_work.func = afs_delete_async_call;
646 		if (!queue_work(afs_async_calls, &call->async_work))
647 			afs_put_call(call);
648 	}
649 
650 	afs_put_call(call);
651 	_leave("");
652 }
653 
654 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
655 {
656 	struct afs_call *call = (struct afs_call *)user_call_ID;
657 
658 	call->rxcall = rxcall;
659 }
660 
661 /*
662  * Charge the incoming call preallocation.
663  */
664 static void afs_charge_preallocation(struct work_struct *work)
665 {
666 	struct afs_call *call = afs_spare_incoming_call;
667 
668 	for (;;) {
669 		if (!call) {
670 			call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL);
671 			if (!call)
672 				break;
673 
674 			call->async = true;
675 			call->state = AFS_CALL_AWAIT_OP_ID;
676 			init_waitqueue_head(&call->waitq);
677 		}
678 
679 		if (rxrpc_kernel_charge_accept(afs_socket,
680 					       afs_wake_up_async_call,
681 					       afs_rx_attach,
682 					       (unsigned long)call,
683 					       GFP_KERNEL) < 0)
684 			break;
685 		call = NULL;
686 	}
687 	afs_spare_incoming_call = call;
688 }
689 
690 /*
691  * Discard a preallocated call when a socket is shut down.
692  */
693 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
694 				    unsigned long user_call_ID)
695 {
696 	struct afs_call *call = (struct afs_call *)user_call_ID;
697 
698 	call->rxcall = NULL;
699 	afs_put_call(call);
700 }
701 
702 /*
703  * Notification of an incoming call.
704  */
705 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
706 			    unsigned long user_call_ID)
707 {
708 	queue_work(afs_wq, &afs_charge_preallocation_work);
709 }
710 
711 /*
712  * Grab the operation ID from an incoming cache manager call.  The socket
713  * buffer is discarded on error or if we don't yet have sufficient data.
714  */
715 static int afs_deliver_cm_op_id(struct afs_call *call)
716 {
717 	int ret;
718 
719 	_enter("{%zu}", call->offset);
720 
721 	ASSERTCMP(call->offset, <, 4);
722 
723 	/* the operation ID forms the first four bytes of the request data */
724 	ret = afs_extract_data(call, &call->tmp, 4, true);
725 	if (ret < 0)
726 		return ret;
727 
728 	call->operation_ID = ntohl(call->tmp);
729 	call->state = AFS_CALL_AWAIT_REQUEST;
730 	call->offset = 0;
731 
732 	/* ask the cache manager to route the call (it'll change the call type
733 	 * if successful) */
734 	if (!afs_cm_incoming_call(call))
735 		return -ENOTSUPP;
736 
737 	trace_afs_cb_call(call);
738 
739 	/* pass responsibility for the remainer of this message off to the
740 	 * cache manager op */
741 	return call->type->deliver(call);
742 }
743 
744 /*
745  * send an empty reply
746  */
747 void afs_send_empty_reply(struct afs_call *call)
748 {
749 	struct msghdr msg;
750 
751 	_enter("");
752 
753 	rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, 0);
754 
755 	msg.msg_name		= NULL;
756 	msg.msg_namelen		= 0;
757 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
758 	msg.msg_control		= NULL;
759 	msg.msg_controllen	= 0;
760 	msg.msg_flags		= 0;
761 
762 	call->state = AFS_CALL_AWAIT_ACK;
763 	switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) {
764 	case 0:
765 		_leave(" [replied]");
766 		return;
767 
768 	case -ENOMEM:
769 		_debug("oom");
770 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
771 					RX_USER_ABORT, -ENOMEM, "KOO");
772 	default:
773 		_leave(" [error]");
774 		return;
775 	}
776 }
777 
778 /*
779  * send a simple reply
780  */
781 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
782 {
783 	struct msghdr msg;
784 	struct kvec iov[1];
785 	int n;
786 
787 	_enter("");
788 
789 	rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, len);
790 
791 	iov[0].iov_base		= (void *) buf;
792 	iov[0].iov_len		= len;
793 	msg.msg_name		= NULL;
794 	msg.msg_namelen		= 0;
795 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
796 	msg.msg_control		= NULL;
797 	msg.msg_controllen	= 0;
798 	msg.msg_flags		= 0;
799 
800 	call->state = AFS_CALL_AWAIT_ACK;
801 	n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len);
802 	if (n >= 0) {
803 		/* Success */
804 		_leave(" [replied]");
805 		return;
806 	}
807 
808 	if (n == -ENOMEM) {
809 		_debug("oom");
810 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
811 					RX_USER_ABORT, -ENOMEM, "KOO");
812 	}
813 	_leave(" [error]");
814 }
815 
816 /*
817  * Extract a piece of data from the received data socket buffers.
818  */
819 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
820 		     bool want_more)
821 {
822 	int ret;
823 
824 	_enter("{%s,%zu},,%zu,%d",
825 	       call->type->name, call->offset, count, want_more);
826 
827 	ASSERTCMP(call->offset, <=, count);
828 
829 	ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
830 				     buf, count, &call->offset,
831 				     want_more, &call->abort_code);
832 	trace_afs_recv_data(call, count, call->offset, want_more, ret);
833 	if (ret == 0 || ret == -EAGAIN)
834 		return ret;
835 
836 	if (ret == 1) {
837 		switch (call->state) {
838 		case AFS_CALL_AWAIT_REPLY:
839 			call->state = AFS_CALL_COMPLETE;
840 			break;
841 		case AFS_CALL_AWAIT_REQUEST:
842 			call->state = AFS_CALL_REPLYING;
843 			break;
844 		default:
845 			break;
846 		}
847 		return 0;
848 	}
849 
850 	if (ret == -ECONNABORTED)
851 		call->error = call->type->abort_to_error(call->abort_code);
852 	else
853 		call->error = ret;
854 	call->state = AFS_CALL_COMPLETE;
855 	return ret;
856 }
857