xref: /openbmc/linux/fs/afs/rxrpc.c (revision 2c64e9cb)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
19 #include "protocol_yfs.h"
20 
21 struct workqueue_struct *afs_async_calls;
22 
23 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_delete_async_call(struct work_struct *);
26 static void afs_process_async_call(struct work_struct *);
27 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
28 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
29 static int afs_deliver_cm_op_id(struct afs_call *);
30 
31 /* asynchronous incoming call initial processing */
32 static const struct afs_call_type afs_RXCMxxxx = {
33 	.name		= "CB.xxxx",
34 	.deliver	= afs_deliver_cm_op_id,
35 };
36 
37 /*
38  * open an RxRPC socket and bind it to be a server for callback notifications
39  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
40  */
41 int afs_open_socket(struct afs_net *net)
42 {
43 	struct sockaddr_rxrpc srx;
44 	struct socket *socket;
45 	unsigned int min_level;
46 	int ret;
47 
48 	_enter("");
49 
50 	ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
51 	if (ret < 0)
52 		goto error_1;
53 
54 	socket->sk->sk_allocation = GFP_NOFS;
55 
56 	/* bind the callback manager's address to make this a server socket */
57 	memset(&srx, 0, sizeof(srx));
58 	srx.srx_family			= AF_RXRPC;
59 	srx.srx_service			= CM_SERVICE;
60 	srx.transport_type		= SOCK_DGRAM;
61 	srx.transport_len		= sizeof(srx.transport.sin6);
62 	srx.transport.sin6.sin6_family	= AF_INET6;
63 	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
64 
65 	min_level = RXRPC_SECURITY_ENCRYPT;
66 	ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
67 				(void *)&min_level, sizeof(min_level));
68 	if (ret < 0)
69 		goto error_2;
70 
71 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
72 	if (ret == -EADDRINUSE) {
73 		srx.transport.sin6.sin6_port = 0;
74 		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
75 	}
76 	if (ret < 0)
77 		goto error_2;
78 
79 	srx.srx_service = YFS_CM_SERVICE;
80 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
81 	if (ret < 0)
82 		goto error_2;
83 
84 	/* Ideally, we'd turn on service upgrade here, but we can't because
85 	 * OpenAFS is buggy and leaks the userStatus field from packet to
86 	 * packet and between FS packets and CB packets - so if we try to do an
87 	 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
88 	 * it sends back to us.
89 	 */
90 
91 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
92 					   afs_rx_discard_new_call);
93 
94 	ret = kernel_listen(socket, INT_MAX);
95 	if (ret < 0)
96 		goto error_2;
97 
98 	net->socket = socket;
99 	afs_charge_preallocation(&net->charge_preallocation_work);
100 	_leave(" = 0");
101 	return 0;
102 
103 error_2:
104 	sock_release(socket);
105 error_1:
106 	_leave(" = %d", ret);
107 	return ret;
108 }
109 
110 /*
111  * close the RxRPC socket AFS was using
112  */
113 void afs_close_socket(struct afs_net *net)
114 {
115 	_enter("");
116 
117 	kernel_listen(net->socket, 0);
118 	flush_workqueue(afs_async_calls);
119 
120 	if (net->spare_incoming_call) {
121 		afs_put_call(net->spare_incoming_call);
122 		net->spare_incoming_call = NULL;
123 	}
124 
125 	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
126 	wait_var_event(&net->nr_outstanding_calls,
127 		       !atomic_read(&net->nr_outstanding_calls));
128 	_debug("no outstanding calls");
129 
130 	kernel_sock_shutdown(net->socket, SHUT_RDWR);
131 	flush_workqueue(afs_async_calls);
132 	sock_release(net->socket);
133 
134 	_debug("dework");
135 	_leave("");
136 }
137 
138 /*
139  * Allocate a call.
140  */
141 static struct afs_call *afs_alloc_call(struct afs_net *net,
142 				       const struct afs_call_type *type,
143 				       gfp_t gfp)
144 {
145 	struct afs_call *call;
146 	int o;
147 
148 	call = kzalloc(sizeof(*call), gfp);
149 	if (!call)
150 		return NULL;
151 
152 	call->type = type;
153 	call->net = net;
154 	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
155 	atomic_set(&call->usage, 1);
156 	INIT_WORK(&call->async_work, afs_process_async_call);
157 	init_waitqueue_head(&call->waitq);
158 	spin_lock_init(&call->state_lock);
159 	call->_iter = &call->iter;
160 
161 	o = atomic_inc_return(&net->nr_outstanding_calls);
162 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
163 		       __builtin_return_address(0));
164 	return call;
165 }
166 
167 /*
168  * Dispose of a reference on a call.
169  */
170 void afs_put_call(struct afs_call *call)
171 {
172 	struct afs_net *net = call->net;
173 	int n = atomic_dec_return(&call->usage);
174 	int o = atomic_read(&net->nr_outstanding_calls);
175 
176 	trace_afs_call(call, afs_call_trace_put, n + 1, o,
177 		       __builtin_return_address(0));
178 
179 	ASSERTCMP(n, >=, 0);
180 	if (n == 0) {
181 		ASSERT(!work_pending(&call->async_work));
182 		ASSERT(call->type->name != NULL);
183 
184 		if (call->rxcall) {
185 			rxrpc_kernel_end_call(net->socket, call->rxcall);
186 			call->rxcall = NULL;
187 		}
188 		if (call->type->destructor)
189 			call->type->destructor(call);
190 
191 		afs_put_server(call->net, call->cm_server);
192 		afs_put_cb_interest(call->net, call->cbi);
193 		afs_put_addrlist(call->alist);
194 		kfree(call->request);
195 
196 		trace_afs_call(call, afs_call_trace_free, 0, o,
197 			       __builtin_return_address(0));
198 		kfree(call);
199 
200 		o = atomic_dec_return(&net->nr_outstanding_calls);
201 		if (o == 0)
202 			wake_up_var(&net->nr_outstanding_calls);
203 	}
204 }
205 
206 static struct afs_call *afs_get_call(struct afs_call *call,
207 				     enum afs_call_trace why)
208 {
209 	int u = atomic_inc_return(&call->usage);
210 
211 	trace_afs_call(call, why, u,
212 		       atomic_read(&call->net->nr_outstanding_calls),
213 		       __builtin_return_address(0));
214 	return call;
215 }
216 
217 /*
218  * Queue the call for actual work.
219  */
220 static void afs_queue_call_work(struct afs_call *call)
221 {
222 	if (call->type->work) {
223 		INIT_WORK(&call->work, call->type->work);
224 
225 		afs_get_call(call, afs_call_trace_work);
226 		if (!queue_work(afs_wq, &call->work))
227 			afs_put_call(call);
228 	}
229 }
230 
231 /*
232  * allocate a call with flat request and reply buffers
233  */
234 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
235 				     const struct afs_call_type *type,
236 				     size_t request_size, size_t reply_max)
237 {
238 	struct afs_call *call;
239 
240 	call = afs_alloc_call(net, type, GFP_NOFS);
241 	if (!call)
242 		goto nomem_call;
243 
244 	if (request_size) {
245 		call->request_size = request_size;
246 		call->request = kmalloc(request_size, GFP_NOFS);
247 		if (!call->request)
248 			goto nomem_free;
249 	}
250 
251 	if (reply_max) {
252 		call->reply_max = reply_max;
253 		call->buffer = kmalloc(reply_max, GFP_NOFS);
254 		if (!call->buffer)
255 			goto nomem_free;
256 	}
257 
258 	afs_extract_to_buf(call, call->reply_max);
259 	call->operation_ID = type->op;
260 	init_waitqueue_head(&call->waitq);
261 	return call;
262 
263 nomem_free:
264 	afs_put_call(call);
265 nomem_call:
266 	return NULL;
267 }
268 
269 /*
270  * clean up a call with flat buffer
271  */
272 void afs_flat_call_destructor(struct afs_call *call)
273 {
274 	_enter("");
275 
276 	kfree(call->request);
277 	call->request = NULL;
278 	kfree(call->buffer);
279 	call->buffer = NULL;
280 }
281 
282 #define AFS_BVEC_MAX 8
283 
284 /*
285  * Load the given bvec with the next few pages.
286  */
287 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
288 			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
289 			  unsigned offset)
290 {
291 	struct page *pages[AFS_BVEC_MAX];
292 	unsigned int nr, n, i, to, bytes = 0;
293 
294 	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
295 	n = find_get_pages_contig(call->mapping, first, nr, pages);
296 	ASSERTCMP(n, ==, nr);
297 
298 	msg->msg_flags |= MSG_MORE;
299 	for (i = 0; i < nr; i++) {
300 		to = PAGE_SIZE;
301 		if (first + i >= last) {
302 			to = call->last_to;
303 			msg->msg_flags &= ~MSG_MORE;
304 		}
305 		bv[i].bv_page = pages[i];
306 		bv[i].bv_len = to - offset;
307 		bv[i].bv_offset = offset;
308 		bytes += to - offset;
309 		offset = 0;
310 	}
311 
312 	iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
313 }
314 
315 /*
316  * Advance the AFS call state when the RxRPC call ends the transmit phase.
317  */
318 static void afs_notify_end_request_tx(struct sock *sock,
319 				      struct rxrpc_call *rxcall,
320 				      unsigned long call_user_ID)
321 {
322 	struct afs_call *call = (struct afs_call *)call_user_ID;
323 
324 	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
325 }
326 
327 /*
328  * attach the data from a bunch of pages on an inode to a call
329  */
330 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
331 {
332 	struct bio_vec bv[AFS_BVEC_MAX];
333 	unsigned int bytes, nr, loop, offset;
334 	pgoff_t first = call->first, last = call->last;
335 	int ret;
336 
337 	offset = call->first_offset;
338 	call->first_offset = 0;
339 
340 	do {
341 		afs_load_bvec(call, msg, bv, first, last, offset);
342 		trace_afs_send_pages(call, msg, first, last, offset);
343 
344 		offset = 0;
345 		bytes = msg->msg_iter.count;
346 		nr = msg->msg_iter.nr_segs;
347 
348 		ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
349 					     bytes, afs_notify_end_request_tx);
350 		for (loop = 0; loop < nr; loop++)
351 			put_page(bv[loop].bv_page);
352 		if (ret < 0)
353 			break;
354 
355 		first += nr;
356 	} while (first <= last);
357 
358 	trace_afs_sent_pages(call, call->first, last, first, ret);
359 	return ret;
360 }
361 
362 /*
363  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
364  * error is stored into the call struct, which the caller must check for.
365  */
366 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
367 {
368 	struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
369 	struct rxrpc_call *rxcall;
370 	struct msghdr msg;
371 	struct kvec iov[1];
372 	s64 tx_total_len;
373 	int ret;
374 
375 	_enter(",{%pISp},", &srx->transport);
376 
377 	ASSERT(call->type != NULL);
378 	ASSERT(call->type->name != NULL);
379 
380 	_debug("____MAKE %p{%s,%x} [%d]____",
381 	       call, call->type->name, key_serial(call->key),
382 	       atomic_read(&call->net->nr_outstanding_calls));
383 
384 	call->addr_ix = ac->index;
385 	call->alist = afs_get_addrlist(ac->alist);
386 
387 	/* Work out the length we're going to transmit.  This is awkward for
388 	 * calls such as FS.StoreData where there's an extra injection of data
389 	 * after the initial fixed part.
390 	 */
391 	tx_total_len = call->request_size;
392 	if (call->send_pages) {
393 		if (call->last == call->first) {
394 			tx_total_len += call->last_to - call->first_offset;
395 		} else {
396 			/* It looks mathematically like you should be able to
397 			 * combine the following lines with the ones above, but
398 			 * unsigned arithmetic is fun when it wraps...
399 			 */
400 			tx_total_len += PAGE_SIZE - call->first_offset;
401 			tx_total_len += call->last_to;
402 			tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
403 		}
404 	}
405 
406 	/* If the call is going to be asynchronous, we need an extra ref for
407 	 * the call to hold itself so the caller need not hang on to its ref.
408 	 */
409 	if (call->async)
410 		afs_get_call(call, afs_call_trace_get);
411 
412 	/* create a call */
413 	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
414 					 (unsigned long)call,
415 					 tx_total_len, gfp,
416 					 (call->async ?
417 					  afs_wake_up_async_call :
418 					  afs_wake_up_call_waiter),
419 					 call->upgrade,
420 					 call->debug_id);
421 	if (IS_ERR(rxcall)) {
422 		ret = PTR_ERR(rxcall);
423 		call->error = ret;
424 		goto error_kill_call;
425 	}
426 
427 	call->rxcall = rxcall;
428 
429 	/* send the request */
430 	iov[0].iov_base	= call->request;
431 	iov[0].iov_len	= call->request_size;
432 
433 	msg.msg_name		= NULL;
434 	msg.msg_namelen		= 0;
435 	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
436 	msg.msg_control		= NULL;
437 	msg.msg_controllen	= 0;
438 	msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
439 
440 	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
441 				     &msg, call->request_size,
442 				     afs_notify_end_request_tx);
443 	if (ret < 0)
444 		goto error_do_abort;
445 
446 	if (call->send_pages) {
447 		ret = afs_send_pages(call, &msg);
448 		if (ret < 0)
449 			goto error_do_abort;
450 	}
451 
452 	/* Note that at this point, we may have received the reply or an abort
453 	 * - and an asynchronous call may already have completed.
454 	 *
455 	 * afs_wait_for_call_to_complete(call, ac)
456 	 * must be called to synchronously clean up.
457 	 */
458 	return;
459 
460 error_do_abort:
461 	if (ret != -ECONNABORTED) {
462 		rxrpc_kernel_abort_call(call->net->socket, rxcall,
463 					RX_USER_ABORT, ret, "KSD");
464 	} else {
465 		iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
466 		rxrpc_kernel_recv_data(call->net->socket, rxcall,
467 				       &msg.msg_iter, false,
468 				       &call->abort_code, &call->service_id);
469 		ac->abort_code = call->abort_code;
470 		ac->responded = true;
471 	}
472 	call->error = ret;
473 	trace_afs_call_done(call);
474 error_kill_call:
475 	if (call->type->done)
476 		call->type->done(call);
477 
478 	/* We need to dispose of the extra ref we grabbed for an async call.
479 	 * The call, however, might be queued on afs_async_calls and we need to
480 	 * make sure we don't get any more notifications that might requeue it.
481 	 */
482 	if (call->rxcall) {
483 		rxrpc_kernel_end_call(call->net->socket, call->rxcall);
484 		call->rxcall = NULL;
485 	}
486 	if (call->async) {
487 		if (cancel_work_sync(&call->async_work))
488 			afs_put_call(call);
489 		afs_put_call(call);
490 	}
491 
492 	ac->error = ret;
493 	call->state = AFS_CALL_COMPLETE;
494 	_leave(" = %d", ret);
495 }
496 
497 /*
498  * deliver messages to a call
499  */
500 static void afs_deliver_to_call(struct afs_call *call)
501 {
502 	enum afs_call_state state;
503 	u32 abort_code, remote_abort = 0;
504 	int ret;
505 
506 	_enter("%s", call->type->name);
507 
508 	while (state = READ_ONCE(call->state),
509 	       state == AFS_CALL_CL_AWAIT_REPLY ||
510 	       state == AFS_CALL_SV_AWAIT_OP_ID ||
511 	       state == AFS_CALL_SV_AWAIT_REQUEST ||
512 	       state == AFS_CALL_SV_AWAIT_ACK
513 	       ) {
514 		if (state == AFS_CALL_SV_AWAIT_ACK) {
515 			iov_iter_kvec(&call->iter, READ, NULL, 0, 0);
516 			ret = rxrpc_kernel_recv_data(call->net->socket,
517 						     call->rxcall, &call->iter,
518 						     false, &remote_abort,
519 						     &call->service_id);
520 			trace_afs_receive_data(call, &call->iter, false, ret);
521 
522 			if (ret == -EINPROGRESS || ret == -EAGAIN)
523 				return;
524 			if (ret < 0 || ret == 1) {
525 				if (ret == 1)
526 					ret = 0;
527 				goto call_complete;
528 			}
529 			return;
530 		}
531 
532 		if (call->want_reply_time &&
533 		    rxrpc_kernel_get_reply_time(call->net->socket,
534 						call->rxcall,
535 						&call->reply_time))
536 			call->want_reply_time = false;
537 
538 		ret = call->type->deliver(call);
539 		state = READ_ONCE(call->state);
540 		switch (ret) {
541 		case 0:
542 			afs_queue_call_work(call);
543 			if (state == AFS_CALL_CL_PROC_REPLY) {
544 				if (call->cbi)
545 					set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
546 						&call->cbi->server->flags);
547 				goto call_complete;
548 			}
549 			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
550 			goto done;
551 		case -EINPROGRESS:
552 		case -EAGAIN:
553 			goto out;
554 		case -ECONNABORTED:
555 			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
556 			goto done;
557 		case -ENOTSUPP:
558 			abort_code = RXGEN_OPCODE;
559 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
560 						abort_code, ret, "KIV");
561 			goto local_abort;
562 		case -EIO:
563 			pr_err("kAFS: Call %u in bad state %u\n",
564 			       call->debug_id, state);
565 			/* Fall through */
566 		case -ENODATA:
567 		case -EBADMSG:
568 		case -EMSGSIZE:
569 			abort_code = RXGEN_CC_UNMARSHAL;
570 			if (state != AFS_CALL_CL_AWAIT_REPLY)
571 				abort_code = RXGEN_SS_UNMARSHAL;
572 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
573 						abort_code, ret, "KUM");
574 			goto local_abort;
575 		default:
576 			abort_code = RX_USER_ABORT;
577 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
578 						abort_code, ret, "KER");
579 			goto local_abort;
580 		}
581 	}
582 
583 done:
584 	if (call->type->done)
585 		call->type->done(call);
586 	if (state == AFS_CALL_COMPLETE && call->incoming)
587 		afs_put_call(call);
588 out:
589 	_leave("");
590 	return;
591 
592 local_abort:
593 	abort_code = 0;
594 call_complete:
595 	afs_set_call_complete(call, ret, remote_abort);
596 	state = AFS_CALL_COMPLETE;
597 	goto done;
598 }
599 
600 /*
601  * Wait synchronously for a call to complete and clean up the call struct.
602  */
603 long afs_wait_for_call_to_complete(struct afs_call *call,
604 				   struct afs_addr_cursor *ac)
605 {
606 	signed long rtt2, timeout;
607 	long ret;
608 	bool stalled = false;
609 	u64 rtt;
610 	u32 life, last_life;
611 	bool rxrpc_complete = false;
612 
613 	DECLARE_WAITQUEUE(myself, current);
614 
615 	_enter("");
616 
617 	ret = call->error;
618 	if (ret < 0)
619 		goto out;
620 
621 	rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
622 	rtt2 = nsecs_to_jiffies64(rtt) * 2;
623 	if (rtt2 < 2)
624 		rtt2 = 2;
625 
626 	timeout = rtt2;
627 	rxrpc_kernel_check_life(call->net->socket, call->rxcall, &last_life);
628 
629 	add_wait_queue(&call->waitq, &myself);
630 	for (;;) {
631 		set_current_state(TASK_UNINTERRUPTIBLE);
632 
633 		/* deliver any messages that are in the queue */
634 		if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
635 		    call->need_attention) {
636 			call->need_attention = false;
637 			__set_current_state(TASK_RUNNING);
638 			afs_deliver_to_call(call);
639 			continue;
640 		}
641 
642 		if (afs_check_call_state(call, AFS_CALL_COMPLETE))
643 			break;
644 
645 		if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall, &life)) {
646 			/* rxrpc terminated the call. */
647 			rxrpc_complete = true;
648 			break;
649 		}
650 
651 		if (timeout == 0 &&
652 		    life == last_life && signal_pending(current)) {
653 			if (stalled)
654 				break;
655 			__set_current_state(TASK_RUNNING);
656 			rxrpc_kernel_probe_life(call->net->socket, call->rxcall);
657 			timeout = rtt2;
658 			stalled = true;
659 			continue;
660 		}
661 
662 		if (life != last_life) {
663 			timeout = rtt2;
664 			last_life = life;
665 			stalled = false;
666 		}
667 
668 		timeout = schedule_timeout(timeout);
669 	}
670 
671 	remove_wait_queue(&call->waitq, &myself);
672 	__set_current_state(TASK_RUNNING);
673 
674 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
675 		if (rxrpc_complete) {
676 			afs_set_call_complete(call, call->error, call->abort_code);
677 		} else {
678 			/* Kill off the call if it's still live. */
679 			_debug("call interrupted");
680 			if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
681 						    RX_USER_ABORT, -EINTR, "KWI"))
682 				afs_set_call_complete(call, -EINTR, 0);
683 		}
684 	}
685 
686 	spin_lock_bh(&call->state_lock);
687 	ac->abort_code = call->abort_code;
688 	ac->error = call->error;
689 	spin_unlock_bh(&call->state_lock);
690 
691 	ret = ac->error;
692 	switch (ret) {
693 	case 0:
694 		if (call->ret_reply0) {
695 			ret = (long)call->reply[0];
696 			call->reply[0] = NULL;
697 		}
698 		/* Fall through */
699 	case -ECONNABORTED:
700 		ac->responded = true;
701 		break;
702 	}
703 
704 out:
705 	_debug("call complete");
706 	afs_put_call(call);
707 	_leave(" = %p", (void *)ret);
708 	return ret;
709 }
710 
711 /*
712  * wake up a waiting call
713  */
714 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
715 				    unsigned long call_user_ID)
716 {
717 	struct afs_call *call = (struct afs_call *)call_user_ID;
718 
719 	call->need_attention = true;
720 	wake_up(&call->waitq);
721 }
722 
723 /*
724  * wake up an asynchronous call
725  */
726 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
727 				   unsigned long call_user_ID)
728 {
729 	struct afs_call *call = (struct afs_call *)call_user_ID;
730 	int u;
731 
732 	trace_afs_notify_call(rxcall, call);
733 	call->need_attention = true;
734 
735 	u = atomic_fetch_add_unless(&call->usage, 1, 0);
736 	if (u != 0) {
737 		trace_afs_call(call, afs_call_trace_wake, u,
738 			       atomic_read(&call->net->nr_outstanding_calls),
739 			       __builtin_return_address(0));
740 
741 		if (!queue_work(afs_async_calls, &call->async_work))
742 			afs_put_call(call);
743 	}
744 }
745 
746 /*
747  * Delete an asynchronous call.  The work item carries a ref to the call struct
748  * that we need to release.
749  */
750 static void afs_delete_async_call(struct work_struct *work)
751 {
752 	struct afs_call *call = container_of(work, struct afs_call, async_work);
753 
754 	_enter("");
755 
756 	afs_put_call(call);
757 
758 	_leave("");
759 }
760 
761 /*
762  * Perform I/O processing on an asynchronous call.  The work item carries a ref
763  * to the call struct that we either need to release or to pass on.
764  */
765 static void afs_process_async_call(struct work_struct *work)
766 {
767 	struct afs_call *call = container_of(work, struct afs_call, async_work);
768 
769 	_enter("");
770 
771 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
772 		call->need_attention = false;
773 		afs_deliver_to_call(call);
774 	}
775 
776 	if (call->state == AFS_CALL_COMPLETE) {
777 		/* We have two refs to release - one from the alloc and one
778 		 * queued with the work item - and we can't just deallocate the
779 		 * call because the work item may be queued again.
780 		 */
781 		call->async_work.func = afs_delete_async_call;
782 		if (!queue_work(afs_async_calls, &call->async_work))
783 			afs_put_call(call);
784 	}
785 
786 	afs_put_call(call);
787 	_leave("");
788 }
789 
790 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
791 {
792 	struct afs_call *call = (struct afs_call *)user_call_ID;
793 
794 	call->rxcall = rxcall;
795 }
796 
797 /*
798  * Charge the incoming call preallocation.
799  */
800 void afs_charge_preallocation(struct work_struct *work)
801 {
802 	struct afs_net *net =
803 		container_of(work, struct afs_net, charge_preallocation_work);
804 	struct afs_call *call = net->spare_incoming_call;
805 
806 	for (;;) {
807 		if (!call) {
808 			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
809 			if (!call)
810 				break;
811 
812 			call->async = true;
813 			call->state = AFS_CALL_SV_AWAIT_OP_ID;
814 			init_waitqueue_head(&call->waitq);
815 			afs_extract_to_tmp(call);
816 		}
817 
818 		if (rxrpc_kernel_charge_accept(net->socket,
819 					       afs_wake_up_async_call,
820 					       afs_rx_attach,
821 					       (unsigned long)call,
822 					       GFP_KERNEL,
823 					       call->debug_id) < 0)
824 			break;
825 		call = NULL;
826 	}
827 	net->spare_incoming_call = call;
828 }
829 
830 /*
831  * Discard a preallocated call when a socket is shut down.
832  */
833 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
834 				    unsigned long user_call_ID)
835 {
836 	struct afs_call *call = (struct afs_call *)user_call_ID;
837 
838 	call->rxcall = NULL;
839 	afs_put_call(call);
840 }
841 
842 /*
843  * Notification of an incoming call.
844  */
845 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
846 			    unsigned long user_call_ID)
847 {
848 	struct afs_net *net = afs_sock2net(sk);
849 
850 	queue_work(afs_wq, &net->charge_preallocation_work);
851 }
852 
853 /*
854  * Grab the operation ID from an incoming cache manager call.  The socket
855  * buffer is discarded on error or if we don't yet have sufficient data.
856  */
857 static int afs_deliver_cm_op_id(struct afs_call *call)
858 {
859 	int ret;
860 
861 	_enter("{%zu}", iov_iter_count(call->_iter));
862 
863 	/* the operation ID forms the first four bytes of the request data */
864 	ret = afs_extract_data(call, true);
865 	if (ret < 0)
866 		return ret;
867 
868 	call->operation_ID = ntohl(call->tmp);
869 	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
870 
871 	/* ask the cache manager to route the call (it'll change the call type
872 	 * if successful) */
873 	if (!afs_cm_incoming_call(call))
874 		return -ENOTSUPP;
875 
876 	trace_afs_cb_call(call);
877 
878 	/* pass responsibility for the remainer of this message off to the
879 	 * cache manager op */
880 	return call->type->deliver(call);
881 }
882 
883 /*
884  * Advance the AFS call state when an RxRPC service call ends the transmit
885  * phase.
886  */
887 static void afs_notify_end_reply_tx(struct sock *sock,
888 				    struct rxrpc_call *rxcall,
889 				    unsigned long call_user_ID)
890 {
891 	struct afs_call *call = (struct afs_call *)call_user_ID;
892 
893 	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
894 }
895 
896 /*
897  * send an empty reply
898  */
899 void afs_send_empty_reply(struct afs_call *call)
900 {
901 	struct afs_net *net = call->net;
902 	struct msghdr msg;
903 
904 	_enter("");
905 
906 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
907 
908 	msg.msg_name		= NULL;
909 	msg.msg_namelen		= 0;
910 	iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
911 	msg.msg_control		= NULL;
912 	msg.msg_controllen	= 0;
913 	msg.msg_flags		= 0;
914 
915 	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
916 				       afs_notify_end_reply_tx)) {
917 	case 0:
918 		_leave(" [replied]");
919 		return;
920 
921 	case -ENOMEM:
922 		_debug("oom");
923 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
924 					RX_USER_ABORT, -ENOMEM, "KOO");
925 		/* Fall through */
926 	default:
927 		_leave(" [error]");
928 		return;
929 	}
930 }
931 
932 /*
933  * send a simple reply
934  */
935 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
936 {
937 	struct afs_net *net = call->net;
938 	struct msghdr msg;
939 	struct kvec iov[1];
940 	int n;
941 
942 	_enter("");
943 
944 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
945 
946 	iov[0].iov_base		= (void *) buf;
947 	iov[0].iov_len		= len;
948 	msg.msg_name		= NULL;
949 	msg.msg_namelen		= 0;
950 	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
951 	msg.msg_control		= NULL;
952 	msg.msg_controllen	= 0;
953 	msg.msg_flags		= 0;
954 
955 	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
956 				   afs_notify_end_reply_tx);
957 	if (n >= 0) {
958 		/* Success */
959 		_leave(" [replied]");
960 		return;
961 	}
962 
963 	if (n == -ENOMEM) {
964 		_debug("oom");
965 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
966 					RX_USER_ABORT, -ENOMEM, "KOO");
967 	}
968 	_leave(" [error]");
969 }
970 
971 /*
972  * Extract a piece of data from the received data socket buffers.
973  */
974 int afs_extract_data(struct afs_call *call, bool want_more)
975 {
976 	struct afs_net *net = call->net;
977 	struct iov_iter *iter = call->_iter;
978 	enum afs_call_state state;
979 	u32 remote_abort = 0;
980 	int ret;
981 
982 	_enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
983 
984 	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
985 				     want_more, &remote_abort,
986 				     &call->service_id);
987 	if (ret == 0 || ret == -EAGAIN)
988 		return ret;
989 
990 	state = READ_ONCE(call->state);
991 	if (ret == 1) {
992 		switch (state) {
993 		case AFS_CALL_CL_AWAIT_REPLY:
994 			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
995 			break;
996 		case AFS_CALL_SV_AWAIT_REQUEST:
997 			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
998 			break;
999 		case AFS_CALL_COMPLETE:
1000 			kdebug("prem complete %d", call->error);
1001 			return afs_io_error(call, afs_io_error_extract);
1002 		default:
1003 			break;
1004 		}
1005 		return 0;
1006 	}
1007 
1008 	afs_set_call_complete(call, ret, remote_abort);
1009 	return ret;
1010 }
1011 
1012 /*
1013  * Log protocol error production.
1014  */
1015 noinline int afs_protocol_error(struct afs_call *call, int error,
1016 				enum afs_eproto_cause cause)
1017 {
1018 	trace_afs_protocol_error(call, error, cause);
1019 	return error;
1020 }
1021