1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 15 #include <net/sock.h> 16 #include <net/af_rxrpc.h> 17 #include "internal.h" 18 #include "afs_cm.h" 19 20 struct workqueue_struct *afs_async_calls; 21 22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 23 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *); 24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 25 static void afs_process_async_call(struct work_struct *); 26 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 27 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 28 static int afs_deliver_cm_op_id(struct afs_call *); 29 30 /* asynchronous incoming call initial processing */ 31 static const struct afs_call_type afs_RXCMxxxx = { 32 .name = "CB.xxxx", 33 .deliver = afs_deliver_cm_op_id, 34 }; 35 36 /* 37 * open an RxRPC socket and bind it to be a server for callback notifications 38 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 39 */ 40 int afs_open_socket(struct afs_net *net) 41 { 42 struct sockaddr_rxrpc srx; 43 struct socket *socket; 44 int ret; 45 46 _enter(""); 47 48 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 49 if (ret < 0) 50 goto error_1; 51 52 socket->sk->sk_allocation = GFP_NOFS; 53 54 /* bind the callback manager's address to make this a server socket */ 55 memset(&srx, 0, sizeof(srx)); 56 srx.srx_family = AF_RXRPC; 57 srx.srx_service = CM_SERVICE; 58 srx.transport_type = SOCK_DGRAM; 59 srx.transport_len = sizeof(srx.transport.sin6); 60 srx.transport.sin6.sin6_family = AF_INET6; 61 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 62 63 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 64 if (ret == -EADDRINUSE) { 65 srx.transport.sin6.sin6_port = 0; 66 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 67 } 68 if (ret < 0) 69 goto error_2; 70 71 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 72 afs_rx_discard_new_call); 73 74 ret = kernel_listen(socket, INT_MAX); 75 if (ret < 0) 76 goto error_2; 77 78 net->socket = socket; 79 afs_charge_preallocation(&net->charge_preallocation_work); 80 _leave(" = 0"); 81 return 0; 82 83 error_2: 84 sock_release(socket); 85 error_1: 86 _leave(" = %d", ret); 87 return ret; 88 } 89 90 /* 91 * close the RxRPC socket AFS was using 92 */ 93 void afs_close_socket(struct afs_net *net) 94 { 95 _enter(""); 96 97 kernel_listen(net->socket, 0); 98 flush_workqueue(afs_async_calls); 99 100 if (net->spare_incoming_call) { 101 afs_put_call(net->spare_incoming_call); 102 net->spare_incoming_call = NULL; 103 } 104 105 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 106 wait_var_event(&net->nr_outstanding_calls, 107 !atomic_read(&net->nr_outstanding_calls)); 108 _debug("no outstanding calls"); 109 110 kernel_sock_shutdown(net->socket, SHUT_RDWR); 111 flush_workqueue(afs_async_calls); 112 sock_release(net->socket); 113 114 _debug("dework"); 115 _leave(""); 116 } 117 118 /* 119 * Allocate a call. 120 */ 121 static struct afs_call *afs_alloc_call(struct afs_net *net, 122 const struct afs_call_type *type, 123 gfp_t gfp) 124 { 125 struct afs_call *call; 126 int o; 127 128 call = kzalloc(sizeof(*call), gfp); 129 if (!call) 130 return NULL; 131 132 call->type = type; 133 call->net = net; 134 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 135 atomic_set(&call->usage, 1); 136 INIT_WORK(&call->async_work, afs_process_async_call); 137 init_waitqueue_head(&call->waitq); 138 spin_lock_init(&call->state_lock); 139 140 o = atomic_inc_return(&net->nr_outstanding_calls); 141 trace_afs_call(call, afs_call_trace_alloc, 1, o, 142 __builtin_return_address(0)); 143 return call; 144 } 145 146 /* 147 * Dispose of a reference on a call. 148 */ 149 void afs_put_call(struct afs_call *call) 150 { 151 struct afs_net *net = call->net; 152 int n = atomic_dec_return(&call->usage); 153 int o = atomic_read(&net->nr_outstanding_calls); 154 155 trace_afs_call(call, afs_call_trace_put, n + 1, o, 156 __builtin_return_address(0)); 157 158 ASSERTCMP(n, >=, 0); 159 if (n == 0) { 160 ASSERT(!work_pending(&call->async_work)); 161 ASSERT(call->type->name != NULL); 162 163 if (call->rxcall) { 164 rxrpc_kernel_end_call(net->socket, call->rxcall); 165 call->rxcall = NULL; 166 } 167 if (call->type->destructor) 168 call->type->destructor(call); 169 170 afs_put_server(call->net, call->cm_server); 171 afs_put_cb_interest(call->net, call->cbi); 172 kfree(call->request); 173 174 trace_afs_call(call, afs_call_trace_free, 0, o, 175 __builtin_return_address(0)); 176 kfree(call); 177 178 o = atomic_dec_return(&net->nr_outstanding_calls); 179 if (o == 0) 180 wake_up_var(&net->nr_outstanding_calls); 181 } 182 } 183 184 /* 185 * Queue the call for actual work. Returns 0 unconditionally for convenience. 186 */ 187 int afs_queue_call_work(struct afs_call *call) 188 { 189 int u = atomic_inc_return(&call->usage); 190 191 trace_afs_call(call, afs_call_trace_work, u, 192 atomic_read(&call->net->nr_outstanding_calls), 193 __builtin_return_address(0)); 194 195 INIT_WORK(&call->work, call->type->work); 196 197 if (!queue_work(afs_wq, &call->work)) 198 afs_put_call(call); 199 return 0; 200 } 201 202 /* 203 * allocate a call with flat request and reply buffers 204 */ 205 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 206 const struct afs_call_type *type, 207 size_t request_size, size_t reply_max) 208 { 209 struct afs_call *call; 210 211 call = afs_alloc_call(net, type, GFP_NOFS); 212 if (!call) 213 goto nomem_call; 214 215 if (request_size) { 216 call->request_size = request_size; 217 call->request = kmalloc(request_size, GFP_NOFS); 218 if (!call->request) 219 goto nomem_free; 220 } 221 222 if (reply_max) { 223 call->reply_max = reply_max; 224 call->buffer = kmalloc(reply_max, GFP_NOFS); 225 if (!call->buffer) 226 goto nomem_free; 227 } 228 229 call->operation_ID = type->op; 230 init_waitqueue_head(&call->waitq); 231 return call; 232 233 nomem_free: 234 afs_put_call(call); 235 nomem_call: 236 return NULL; 237 } 238 239 /* 240 * clean up a call with flat buffer 241 */ 242 void afs_flat_call_destructor(struct afs_call *call) 243 { 244 _enter(""); 245 246 kfree(call->request); 247 call->request = NULL; 248 kfree(call->buffer); 249 call->buffer = NULL; 250 } 251 252 #define AFS_BVEC_MAX 8 253 254 /* 255 * Load the given bvec with the next few pages. 256 */ 257 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, 258 struct bio_vec *bv, pgoff_t first, pgoff_t last, 259 unsigned offset) 260 { 261 struct page *pages[AFS_BVEC_MAX]; 262 unsigned int nr, n, i, to, bytes = 0; 263 264 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); 265 n = find_get_pages_contig(call->mapping, first, nr, pages); 266 ASSERTCMP(n, ==, nr); 267 268 msg->msg_flags |= MSG_MORE; 269 for (i = 0; i < nr; i++) { 270 to = PAGE_SIZE; 271 if (first + i >= last) { 272 to = call->last_to; 273 msg->msg_flags &= ~MSG_MORE; 274 } 275 bv[i].bv_page = pages[i]; 276 bv[i].bv_len = to - offset; 277 bv[i].bv_offset = offset; 278 bytes += to - offset; 279 offset = 0; 280 } 281 282 iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes); 283 } 284 285 /* 286 * Advance the AFS call state when the RxRPC call ends the transmit phase. 287 */ 288 static void afs_notify_end_request_tx(struct sock *sock, 289 struct rxrpc_call *rxcall, 290 unsigned long call_user_ID) 291 { 292 struct afs_call *call = (struct afs_call *)call_user_ID; 293 294 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 295 } 296 297 /* 298 * attach the data from a bunch of pages on an inode to a call 299 */ 300 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 301 { 302 struct bio_vec bv[AFS_BVEC_MAX]; 303 unsigned int bytes, nr, loop, offset; 304 pgoff_t first = call->first, last = call->last; 305 int ret; 306 307 offset = call->first_offset; 308 call->first_offset = 0; 309 310 do { 311 afs_load_bvec(call, msg, bv, first, last, offset); 312 trace_afs_send_pages(call, msg, first, last, offset); 313 314 offset = 0; 315 bytes = msg->msg_iter.count; 316 nr = msg->msg_iter.nr_segs; 317 318 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg, 319 bytes, afs_notify_end_request_tx); 320 for (loop = 0; loop < nr; loop++) 321 put_page(bv[loop].bv_page); 322 if (ret < 0) 323 break; 324 325 first += nr; 326 } while (first <= last); 327 328 trace_afs_sent_pages(call, call->first, last, first, ret); 329 return ret; 330 } 331 332 /* 333 * initiate a call 334 */ 335 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, 336 gfp_t gfp, bool async) 337 { 338 struct sockaddr_rxrpc *srx = ac->addr; 339 struct rxrpc_call *rxcall; 340 struct msghdr msg; 341 struct kvec iov[1]; 342 size_t offset; 343 s64 tx_total_len; 344 int ret; 345 346 _enter(",{%pISp},", &srx->transport); 347 348 ASSERT(call->type != NULL); 349 ASSERT(call->type->name != NULL); 350 351 _debug("____MAKE %p{%s,%x} [%d]____", 352 call, call->type->name, key_serial(call->key), 353 atomic_read(&call->net->nr_outstanding_calls)); 354 355 call->async = async; 356 357 /* Work out the length we're going to transmit. This is awkward for 358 * calls such as FS.StoreData where there's an extra injection of data 359 * after the initial fixed part. 360 */ 361 tx_total_len = call->request_size; 362 if (call->send_pages) { 363 if (call->last == call->first) { 364 tx_total_len += call->last_to - call->first_offset; 365 } else { 366 /* It looks mathematically like you should be able to 367 * combine the following lines with the ones above, but 368 * unsigned arithmetic is fun when it wraps... 369 */ 370 tx_total_len += PAGE_SIZE - call->first_offset; 371 tx_total_len += call->last_to; 372 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE; 373 } 374 } 375 376 /* create a call */ 377 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 378 (unsigned long)call, 379 tx_total_len, gfp, 380 (async ? 381 afs_wake_up_async_call : 382 afs_wake_up_call_waiter), 383 call->upgrade, 384 call->debug_id); 385 if (IS_ERR(rxcall)) { 386 ret = PTR_ERR(rxcall); 387 goto error_kill_call; 388 } 389 390 call->rxcall = rxcall; 391 392 /* send the request */ 393 iov[0].iov_base = call->request; 394 iov[0].iov_len = call->request_size; 395 396 msg.msg_name = NULL; 397 msg.msg_namelen = 0; 398 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, 399 call->request_size); 400 msg.msg_control = NULL; 401 msg.msg_controllen = 0; 402 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); 403 404 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 405 &msg, call->request_size, 406 afs_notify_end_request_tx); 407 if (ret < 0) 408 goto error_do_abort; 409 410 if (call->send_pages) { 411 ret = afs_send_pages(call, &msg); 412 if (ret < 0) 413 goto error_do_abort; 414 } 415 416 /* at this point, an async call may no longer exist as it may have 417 * already completed */ 418 if (call->async) 419 return -EINPROGRESS; 420 421 return afs_wait_for_call_to_complete(call, ac); 422 423 error_do_abort: 424 call->state = AFS_CALL_COMPLETE; 425 if (ret != -ECONNABORTED) { 426 rxrpc_kernel_abort_call(call->net->socket, rxcall, 427 RX_USER_ABORT, ret, "KSD"); 428 } else { 429 offset = 0; 430 rxrpc_kernel_recv_data(call->net->socket, rxcall, NULL, 431 0, &offset, false, &call->abort_code, 432 &call->service_id); 433 ac->abort_code = call->abort_code; 434 ac->responded = true; 435 } 436 call->error = ret; 437 trace_afs_call_done(call); 438 error_kill_call: 439 afs_put_call(call); 440 ac->error = ret; 441 _leave(" = %d", ret); 442 return ret; 443 } 444 445 /* 446 * deliver messages to a call 447 */ 448 static void afs_deliver_to_call(struct afs_call *call) 449 { 450 enum afs_call_state state; 451 u32 abort_code, remote_abort = 0; 452 int ret; 453 454 _enter("%s", call->type->name); 455 456 while (state = READ_ONCE(call->state), 457 state == AFS_CALL_CL_AWAIT_REPLY || 458 state == AFS_CALL_SV_AWAIT_OP_ID || 459 state == AFS_CALL_SV_AWAIT_REQUEST || 460 state == AFS_CALL_SV_AWAIT_ACK 461 ) { 462 if (state == AFS_CALL_SV_AWAIT_ACK) { 463 size_t offset = 0; 464 ret = rxrpc_kernel_recv_data(call->net->socket, 465 call->rxcall, 466 NULL, 0, &offset, false, 467 &remote_abort, 468 &call->service_id); 469 trace_afs_recv_data(call, 0, offset, false, ret); 470 471 if (ret == -EINPROGRESS || ret == -EAGAIN) 472 return; 473 if (ret < 0 || ret == 1) { 474 if (ret == 1) 475 ret = 0; 476 goto call_complete; 477 } 478 return; 479 } 480 481 ret = call->type->deliver(call); 482 state = READ_ONCE(call->state); 483 switch (ret) { 484 case 0: 485 if (state == AFS_CALL_CL_PROC_REPLY) 486 goto call_complete; 487 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 488 goto done; 489 case -EINPROGRESS: 490 case -EAGAIN: 491 goto out; 492 case -EIO: 493 case -ECONNABORTED: 494 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 495 goto done; 496 case -ENOTCONN: 497 abort_code = RX_CALL_DEAD; 498 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 499 abort_code, ret, "KNC"); 500 goto local_abort; 501 case -ENOTSUPP: 502 abort_code = RXGEN_OPCODE; 503 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 504 abort_code, ret, "KIV"); 505 goto local_abort; 506 case -ENODATA: 507 case -EBADMSG: 508 case -EMSGSIZE: 509 default: 510 abort_code = RXGEN_CC_UNMARSHAL; 511 if (state != AFS_CALL_CL_AWAIT_REPLY) 512 abort_code = RXGEN_SS_UNMARSHAL; 513 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 514 abort_code, -EBADMSG, "KUM"); 515 goto local_abort; 516 } 517 } 518 519 done: 520 if (state == AFS_CALL_COMPLETE && call->incoming) 521 afs_put_call(call); 522 out: 523 _leave(""); 524 return; 525 526 local_abort: 527 abort_code = 0; 528 call_complete: 529 afs_set_call_complete(call, ret, remote_abort); 530 state = AFS_CALL_COMPLETE; 531 goto done; 532 } 533 534 /* 535 * wait synchronously for a call to complete 536 */ 537 static long afs_wait_for_call_to_complete(struct afs_call *call, 538 struct afs_addr_cursor *ac) 539 { 540 signed long rtt2, timeout; 541 long ret; 542 u64 rtt; 543 u32 life, last_life; 544 545 DECLARE_WAITQUEUE(myself, current); 546 547 _enter(""); 548 549 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall); 550 rtt2 = nsecs_to_jiffies64(rtt) * 2; 551 if (rtt2 < 2) 552 rtt2 = 2; 553 554 timeout = rtt2; 555 last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); 556 557 add_wait_queue(&call->waitq, &myself); 558 for (;;) { 559 set_current_state(TASK_UNINTERRUPTIBLE); 560 561 /* deliver any messages that are in the queue */ 562 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 563 call->need_attention) { 564 call->need_attention = false; 565 __set_current_state(TASK_RUNNING); 566 afs_deliver_to_call(call); 567 continue; 568 } 569 570 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 571 break; 572 573 life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); 574 if (timeout == 0 && 575 life == last_life && signal_pending(current)) 576 break; 577 578 if (life != last_life) { 579 timeout = rtt2; 580 last_life = life; 581 } 582 583 timeout = schedule_timeout(timeout); 584 } 585 586 remove_wait_queue(&call->waitq, &myself); 587 __set_current_state(TASK_RUNNING); 588 589 /* Kill off the call if it's still live. */ 590 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 591 _debug("call interrupted"); 592 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 593 RX_USER_ABORT, -EINTR, "KWI")) 594 afs_set_call_complete(call, -EINTR, 0); 595 } 596 597 spin_lock_bh(&call->state_lock); 598 ac->abort_code = call->abort_code; 599 ac->error = call->error; 600 spin_unlock_bh(&call->state_lock); 601 602 ret = ac->error; 603 switch (ret) { 604 case 0: 605 if (call->ret_reply0) { 606 ret = (long)call->reply[0]; 607 call->reply[0] = NULL; 608 } 609 /* Fall through */ 610 case -ECONNABORTED: 611 ac->responded = true; 612 break; 613 } 614 615 _debug("call complete"); 616 afs_put_call(call); 617 _leave(" = %p", (void *)ret); 618 return ret; 619 } 620 621 /* 622 * wake up a waiting call 623 */ 624 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 625 unsigned long call_user_ID) 626 { 627 struct afs_call *call = (struct afs_call *)call_user_ID; 628 629 call->need_attention = true; 630 wake_up(&call->waitq); 631 } 632 633 /* 634 * wake up an asynchronous call 635 */ 636 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 637 unsigned long call_user_ID) 638 { 639 struct afs_call *call = (struct afs_call *)call_user_ID; 640 int u; 641 642 trace_afs_notify_call(rxcall, call); 643 call->need_attention = true; 644 645 u = __atomic_add_unless(&call->usage, 1, 0); 646 if (u != 0) { 647 trace_afs_call(call, afs_call_trace_wake, u, 648 atomic_read(&call->net->nr_outstanding_calls), 649 __builtin_return_address(0)); 650 651 if (!queue_work(afs_async_calls, &call->async_work)) 652 afs_put_call(call); 653 } 654 } 655 656 /* 657 * Delete an asynchronous call. The work item carries a ref to the call struct 658 * that we need to release. 659 */ 660 static void afs_delete_async_call(struct work_struct *work) 661 { 662 struct afs_call *call = container_of(work, struct afs_call, async_work); 663 664 _enter(""); 665 666 afs_put_call(call); 667 668 _leave(""); 669 } 670 671 /* 672 * Perform I/O processing on an asynchronous call. The work item carries a ref 673 * to the call struct that we either need to release or to pass on. 674 */ 675 static void afs_process_async_call(struct work_struct *work) 676 { 677 struct afs_call *call = container_of(work, struct afs_call, async_work); 678 679 _enter(""); 680 681 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 682 call->need_attention = false; 683 afs_deliver_to_call(call); 684 } 685 686 if (call->state == AFS_CALL_COMPLETE) { 687 call->reply[0] = NULL; 688 689 /* We have two refs to release - one from the alloc and one 690 * queued with the work item - and we can't just deallocate the 691 * call because the work item may be queued again. 692 */ 693 call->async_work.func = afs_delete_async_call; 694 if (!queue_work(afs_async_calls, &call->async_work)) 695 afs_put_call(call); 696 } 697 698 afs_put_call(call); 699 _leave(""); 700 } 701 702 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 703 { 704 struct afs_call *call = (struct afs_call *)user_call_ID; 705 706 call->rxcall = rxcall; 707 } 708 709 /* 710 * Charge the incoming call preallocation. 711 */ 712 void afs_charge_preallocation(struct work_struct *work) 713 { 714 struct afs_net *net = 715 container_of(work, struct afs_net, charge_preallocation_work); 716 struct afs_call *call = net->spare_incoming_call; 717 718 for (;;) { 719 if (!call) { 720 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 721 if (!call) 722 break; 723 724 call->async = true; 725 call->state = AFS_CALL_SV_AWAIT_OP_ID; 726 init_waitqueue_head(&call->waitq); 727 } 728 729 if (rxrpc_kernel_charge_accept(net->socket, 730 afs_wake_up_async_call, 731 afs_rx_attach, 732 (unsigned long)call, 733 GFP_KERNEL, 734 call->debug_id) < 0) 735 break; 736 call = NULL; 737 } 738 net->spare_incoming_call = call; 739 } 740 741 /* 742 * Discard a preallocated call when a socket is shut down. 743 */ 744 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 745 unsigned long user_call_ID) 746 { 747 struct afs_call *call = (struct afs_call *)user_call_ID; 748 749 call->rxcall = NULL; 750 afs_put_call(call); 751 } 752 753 /* 754 * Notification of an incoming call. 755 */ 756 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 757 unsigned long user_call_ID) 758 { 759 struct afs_net *net = afs_sock2net(sk); 760 761 queue_work(afs_wq, &net->charge_preallocation_work); 762 } 763 764 /* 765 * Grab the operation ID from an incoming cache manager call. The socket 766 * buffer is discarded on error or if we don't yet have sufficient data. 767 */ 768 static int afs_deliver_cm_op_id(struct afs_call *call) 769 { 770 int ret; 771 772 _enter("{%zu}", call->offset); 773 774 ASSERTCMP(call->offset, <, 4); 775 776 /* the operation ID forms the first four bytes of the request data */ 777 ret = afs_extract_data(call, &call->tmp, 4, true); 778 if (ret < 0) 779 return ret; 780 781 call->operation_ID = ntohl(call->tmp); 782 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 783 call->offset = 0; 784 785 /* ask the cache manager to route the call (it'll change the call type 786 * if successful) */ 787 if (!afs_cm_incoming_call(call)) 788 return -ENOTSUPP; 789 790 trace_afs_cb_call(call); 791 792 /* pass responsibility for the remainer of this message off to the 793 * cache manager op */ 794 return call->type->deliver(call); 795 } 796 797 /* 798 * Advance the AFS call state when an RxRPC service call ends the transmit 799 * phase. 800 */ 801 static void afs_notify_end_reply_tx(struct sock *sock, 802 struct rxrpc_call *rxcall, 803 unsigned long call_user_ID) 804 { 805 struct afs_call *call = (struct afs_call *)call_user_ID; 806 807 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 808 } 809 810 /* 811 * send an empty reply 812 */ 813 void afs_send_empty_reply(struct afs_call *call) 814 { 815 struct afs_net *net = call->net; 816 struct msghdr msg; 817 818 _enter(""); 819 820 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 821 822 msg.msg_name = NULL; 823 msg.msg_namelen = 0; 824 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); 825 msg.msg_control = NULL; 826 msg.msg_controllen = 0; 827 msg.msg_flags = 0; 828 829 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 830 afs_notify_end_reply_tx)) { 831 case 0: 832 _leave(" [replied]"); 833 return; 834 835 case -ENOMEM: 836 _debug("oom"); 837 rxrpc_kernel_abort_call(net->socket, call->rxcall, 838 RX_USER_ABORT, -ENOMEM, "KOO"); 839 default: 840 _leave(" [error]"); 841 return; 842 } 843 } 844 845 /* 846 * send a simple reply 847 */ 848 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 849 { 850 struct afs_net *net = call->net; 851 struct msghdr msg; 852 struct kvec iov[1]; 853 int n; 854 855 _enter(""); 856 857 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 858 859 iov[0].iov_base = (void *) buf; 860 iov[0].iov_len = len; 861 msg.msg_name = NULL; 862 msg.msg_namelen = 0; 863 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); 864 msg.msg_control = NULL; 865 msg.msg_controllen = 0; 866 msg.msg_flags = 0; 867 868 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 869 afs_notify_end_reply_tx); 870 if (n >= 0) { 871 /* Success */ 872 _leave(" [replied]"); 873 return; 874 } 875 876 if (n == -ENOMEM) { 877 _debug("oom"); 878 rxrpc_kernel_abort_call(net->socket, call->rxcall, 879 RX_USER_ABORT, -ENOMEM, "KOO"); 880 } 881 _leave(" [error]"); 882 } 883 884 /* 885 * Extract a piece of data from the received data socket buffers. 886 */ 887 int afs_extract_data(struct afs_call *call, void *buf, size_t count, 888 bool want_more) 889 { 890 struct afs_net *net = call->net; 891 enum afs_call_state state; 892 u32 remote_abort = 0; 893 int ret; 894 895 _enter("{%s,%zu},,%zu,%d", 896 call->type->name, call->offset, count, want_more); 897 898 ASSERTCMP(call->offset, <=, count); 899 900 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, 901 buf, count, &call->offset, 902 want_more, &remote_abort, 903 &call->service_id); 904 trace_afs_recv_data(call, count, call->offset, want_more, ret); 905 if (ret == 0 || ret == -EAGAIN) 906 return ret; 907 908 state = READ_ONCE(call->state); 909 if (ret == 1) { 910 switch (state) { 911 case AFS_CALL_CL_AWAIT_REPLY: 912 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 913 break; 914 case AFS_CALL_SV_AWAIT_REQUEST: 915 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 916 break; 917 case AFS_CALL_COMPLETE: 918 kdebug("prem complete %d", call->error); 919 return -EIO; 920 default: 921 break; 922 } 923 return 0; 924 } 925 926 afs_set_call_complete(call, ret, remote_abort); 927 return ret; 928 } 929 930 /* 931 * Log protocol error production. 932 */ 933 noinline int afs_protocol_error(struct afs_call *call, int error) 934 { 935 trace_afs_protocol_error(call, error, __builtin_return_address(0)); 936 return error; 937 } 938