1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Maintain an RxRPC server socket to do AFS communications through 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/sched/signal.h> 10 11 #include <net/sock.h> 12 #include <net/af_rxrpc.h> 13 #include "internal.h" 14 #include "afs_cm.h" 15 #include "protocol_yfs.h" 16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS 17 #include <trace/events/rxrpc.h> 18 19 struct workqueue_struct *afs_async_calls; 20 21 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 22 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 23 static void afs_process_async_call(struct work_struct *); 24 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 25 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 26 static int afs_deliver_cm_op_id(struct afs_call *); 27 28 /* asynchronous incoming call initial processing */ 29 static const struct afs_call_type afs_RXCMxxxx = { 30 .name = "CB.xxxx", 31 .deliver = afs_deliver_cm_op_id, 32 }; 33 34 /* 35 * open an RxRPC socket and bind it to be a server for callback notifications 36 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 37 */ 38 int afs_open_socket(struct afs_net *net) 39 { 40 struct sockaddr_rxrpc srx; 41 struct socket *socket; 42 int ret; 43 44 _enter(""); 45 46 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 47 if (ret < 0) 48 goto error_1; 49 50 socket->sk->sk_allocation = GFP_NOFS; 51 52 /* bind the callback manager's address to make this a server socket */ 53 memset(&srx, 0, sizeof(srx)); 54 srx.srx_family = AF_RXRPC; 55 srx.srx_service = CM_SERVICE; 56 srx.transport_type = SOCK_DGRAM; 57 srx.transport_len = sizeof(srx.transport.sin6); 58 srx.transport.sin6.sin6_family = AF_INET6; 59 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 60 61 ret = rxrpc_sock_set_min_security_level(socket->sk, 62 RXRPC_SECURITY_ENCRYPT); 63 if (ret < 0) 64 goto error_2; 65 66 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 67 if (ret == -EADDRINUSE) { 68 srx.transport.sin6.sin6_port = 0; 69 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 70 } 71 if (ret < 0) 72 goto error_2; 73 74 srx.srx_service = YFS_CM_SERVICE; 75 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 76 if (ret < 0) 77 goto error_2; 78 79 /* Ideally, we'd turn on service upgrade here, but we can't because 80 * OpenAFS is buggy and leaks the userStatus field from packet to 81 * packet and between FS packets and CB packets - so if we try to do an 82 * upgrade on an FS packet, OpenAFS will leak that into the CB packet 83 * it sends back to us. 84 */ 85 86 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 87 afs_rx_discard_new_call); 88 89 ret = kernel_listen(socket, INT_MAX); 90 if (ret < 0) 91 goto error_2; 92 93 net->socket = socket; 94 afs_charge_preallocation(&net->charge_preallocation_work); 95 _leave(" = 0"); 96 return 0; 97 98 error_2: 99 sock_release(socket); 100 error_1: 101 _leave(" = %d", ret); 102 return ret; 103 } 104 105 /* 106 * close the RxRPC socket AFS was using 107 */ 108 void afs_close_socket(struct afs_net *net) 109 { 110 _enter(""); 111 112 kernel_listen(net->socket, 0); 113 flush_workqueue(afs_async_calls); 114 115 if (net->spare_incoming_call) { 116 afs_put_call(net->spare_incoming_call); 117 net->spare_incoming_call = NULL; 118 } 119 120 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 121 wait_var_event(&net->nr_outstanding_calls, 122 !atomic_read(&net->nr_outstanding_calls)); 123 _debug("no outstanding calls"); 124 125 kernel_sock_shutdown(net->socket, SHUT_RDWR); 126 flush_workqueue(afs_async_calls); 127 sock_release(net->socket); 128 129 _debug("dework"); 130 _leave(""); 131 } 132 133 /* 134 * Allocate a call. 135 */ 136 static struct afs_call *afs_alloc_call(struct afs_net *net, 137 const struct afs_call_type *type, 138 gfp_t gfp) 139 { 140 struct afs_call *call; 141 int o; 142 143 call = kzalloc(sizeof(*call), gfp); 144 if (!call) 145 return NULL; 146 147 call->type = type; 148 call->net = net; 149 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 150 refcount_set(&call->ref, 1); 151 INIT_WORK(&call->async_work, afs_process_async_call); 152 init_waitqueue_head(&call->waitq); 153 spin_lock_init(&call->state_lock); 154 call->iter = &call->def_iter; 155 156 o = atomic_inc_return(&net->nr_outstanding_calls); 157 trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o, 158 __builtin_return_address(0)); 159 return call; 160 } 161 162 /* 163 * Dispose of a reference on a call. 164 */ 165 void afs_put_call(struct afs_call *call) 166 { 167 struct afs_net *net = call->net; 168 unsigned int debug_id = call->debug_id; 169 bool zero; 170 int r, o; 171 172 zero = __refcount_dec_and_test(&call->ref, &r); 173 o = atomic_read(&net->nr_outstanding_calls); 174 trace_afs_call(debug_id, afs_call_trace_put, r - 1, o, 175 __builtin_return_address(0)); 176 177 if (zero) { 178 ASSERT(!work_pending(&call->async_work)); 179 ASSERT(call->type->name != NULL); 180 181 if (call->rxcall) { 182 rxrpc_kernel_end_call(net->socket, call->rxcall); 183 call->rxcall = NULL; 184 } 185 if (call->type->destructor) 186 call->type->destructor(call); 187 188 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call); 189 afs_put_addrlist(call->alist); 190 kfree(call->request); 191 192 trace_afs_call(call->debug_id, afs_call_trace_free, 0, o, 193 __builtin_return_address(0)); 194 kfree(call); 195 196 o = atomic_dec_return(&net->nr_outstanding_calls); 197 if (o == 0) 198 wake_up_var(&net->nr_outstanding_calls); 199 } 200 } 201 202 static struct afs_call *afs_get_call(struct afs_call *call, 203 enum afs_call_trace why) 204 { 205 int r; 206 207 __refcount_inc(&call->ref, &r); 208 209 trace_afs_call(call->debug_id, why, r + 1, 210 atomic_read(&call->net->nr_outstanding_calls), 211 __builtin_return_address(0)); 212 return call; 213 } 214 215 /* 216 * Queue the call for actual work. 217 */ 218 static void afs_queue_call_work(struct afs_call *call) 219 { 220 if (call->type->work) { 221 INIT_WORK(&call->work, call->type->work); 222 223 afs_get_call(call, afs_call_trace_work); 224 if (!queue_work(afs_wq, &call->work)) 225 afs_put_call(call); 226 } 227 } 228 229 /* 230 * allocate a call with flat request and reply buffers 231 */ 232 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 233 const struct afs_call_type *type, 234 size_t request_size, size_t reply_max) 235 { 236 struct afs_call *call; 237 238 call = afs_alloc_call(net, type, GFP_NOFS); 239 if (!call) 240 goto nomem_call; 241 242 if (request_size) { 243 call->request_size = request_size; 244 call->request = kmalloc(request_size, GFP_NOFS); 245 if (!call->request) 246 goto nomem_free; 247 } 248 249 if (reply_max) { 250 call->reply_max = reply_max; 251 call->buffer = kmalloc(reply_max, GFP_NOFS); 252 if (!call->buffer) 253 goto nomem_free; 254 } 255 256 afs_extract_to_buf(call, call->reply_max); 257 call->operation_ID = type->op; 258 init_waitqueue_head(&call->waitq); 259 return call; 260 261 nomem_free: 262 afs_put_call(call); 263 nomem_call: 264 return NULL; 265 } 266 267 /* 268 * clean up a call with flat buffer 269 */ 270 void afs_flat_call_destructor(struct afs_call *call) 271 { 272 _enter(""); 273 274 kfree(call->request); 275 call->request = NULL; 276 kfree(call->buffer); 277 call->buffer = NULL; 278 } 279 280 /* 281 * Advance the AFS call state when the RxRPC call ends the transmit phase. 282 */ 283 static void afs_notify_end_request_tx(struct sock *sock, 284 struct rxrpc_call *rxcall, 285 unsigned long call_user_ID) 286 { 287 struct afs_call *call = (struct afs_call *)call_user_ID; 288 289 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 290 } 291 292 /* 293 * Initiate a call and synchronously queue up the parameters for dispatch. Any 294 * error is stored into the call struct, which the caller must check for. 295 */ 296 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp) 297 { 298 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; 299 struct rxrpc_call *rxcall; 300 struct msghdr msg; 301 struct kvec iov[1]; 302 size_t len; 303 s64 tx_total_len; 304 int ret; 305 306 _enter(",{%pISp},", &srx->transport); 307 308 ASSERT(call->type != NULL); 309 ASSERT(call->type->name != NULL); 310 311 _debug("____MAKE %p{%s,%x} [%d]____", 312 call, call->type->name, key_serial(call->key), 313 atomic_read(&call->net->nr_outstanding_calls)); 314 315 call->addr_ix = ac->index; 316 call->alist = afs_get_addrlist(ac->alist); 317 318 /* Work out the length we're going to transmit. This is awkward for 319 * calls such as FS.StoreData where there's an extra injection of data 320 * after the initial fixed part. 321 */ 322 tx_total_len = call->request_size; 323 if (call->write_iter) 324 tx_total_len += iov_iter_count(call->write_iter); 325 326 /* If the call is going to be asynchronous, we need an extra ref for 327 * the call to hold itself so the caller need not hang on to its ref. 328 */ 329 if (call->async) { 330 afs_get_call(call, afs_call_trace_get); 331 call->drop_ref = true; 332 } 333 334 /* create a call */ 335 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 336 (unsigned long)call, 337 tx_total_len, gfp, 338 (call->async ? 339 afs_wake_up_async_call : 340 afs_wake_up_call_waiter), 341 call->upgrade, 342 (call->intr ? RXRPC_PREINTERRUPTIBLE : 343 RXRPC_UNINTERRUPTIBLE), 344 call->debug_id); 345 if (IS_ERR(rxcall)) { 346 ret = PTR_ERR(rxcall); 347 call->error = ret; 348 goto error_kill_call; 349 } 350 351 call->rxcall = rxcall; 352 353 if (call->max_lifespan) 354 rxrpc_kernel_set_max_life(call->net->socket, rxcall, 355 call->max_lifespan); 356 call->issue_time = ktime_get_real(); 357 358 /* send the request */ 359 iov[0].iov_base = call->request; 360 iov[0].iov_len = call->request_size; 361 362 msg.msg_name = NULL; 363 msg.msg_namelen = 0; 364 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size); 365 msg.msg_control = NULL; 366 msg.msg_controllen = 0; 367 msg.msg_flags = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0); 368 369 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 370 &msg, call->request_size, 371 afs_notify_end_request_tx); 372 if (ret < 0) 373 goto error_do_abort; 374 375 if (call->write_iter) { 376 msg.msg_iter = *call->write_iter; 377 msg.msg_flags &= ~MSG_MORE; 378 trace_afs_send_data(call, &msg); 379 380 ret = rxrpc_kernel_send_data(call->net->socket, 381 call->rxcall, &msg, 382 iov_iter_count(&msg.msg_iter), 383 afs_notify_end_request_tx); 384 *call->write_iter = msg.msg_iter; 385 386 trace_afs_sent_data(call, &msg, ret); 387 if (ret < 0) 388 goto error_do_abort; 389 } 390 391 /* Note that at this point, we may have received the reply or an abort 392 * - and an asynchronous call may already have completed. 393 * 394 * afs_wait_for_call_to_complete(call, ac) 395 * must be called to synchronously clean up. 396 */ 397 return; 398 399 error_do_abort: 400 if (ret != -ECONNABORTED) { 401 rxrpc_kernel_abort_call(call->net->socket, rxcall, 402 RX_USER_ABORT, ret, 403 afs_abort_send_data_error); 404 } else { 405 len = 0; 406 iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0); 407 rxrpc_kernel_recv_data(call->net->socket, rxcall, 408 &msg.msg_iter, &len, false, 409 &call->abort_code, &call->service_id); 410 ac->abort_code = call->abort_code; 411 ac->responded = true; 412 } 413 call->error = ret; 414 trace_afs_call_done(call); 415 error_kill_call: 416 if (call->type->done) 417 call->type->done(call); 418 419 /* We need to dispose of the extra ref we grabbed for an async call. 420 * The call, however, might be queued on afs_async_calls and we need to 421 * make sure we don't get any more notifications that might requeue it. 422 */ 423 if (call->rxcall) { 424 rxrpc_kernel_end_call(call->net->socket, call->rxcall); 425 call->rxcall = NULL; 426 } 427 if (call->async) { 428 if (cancel_work_sync(&call->async_work)) 429 afs_put_call(call); 430 afs_put_call(call); 431 } 432 433 ac->error = ret; 434 call->state = AFS_CALL_COMPLETE; 435 _leave(" = %d", ret); 436 } 437 438 /* 439 * Log remote abort codes that indicate that we have a protocol disagreement 440 * with the server. 441 */ 442 static void afs_log_error(struct afs_call *call, s32 remote_abort) 443 { 444 static int max = 0; 445 const char *msg; 446 int m; 447 448 switch (remote_abort) { 449 case RX_EOF: msg = "unexpected EOF"; break; 450 case RXGEN_CC_MARSHAL: msg = "client marshalling"; break; 451 case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling"; break; 452 case RXGEN_SS_MARSHAL: msg = "server marshalling"; break; 453 case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling"; break; 454 case RXGEN_DECODE: msg = "opcode decode"; break; 455 case RXGEN_SS_XDRFREE: msg = "server XDR cleanup"; break; 456 case RXGEN_CC_XDRFREE: msg = "client XDR cleanup"; break; 457 case -32: msg = "insufficient data"; break; 458 default: 459 return; 460 } 461 462 m = max; 463 if (m < 3) { 464 max = m + 1; 465 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n", 466 msg, call->type->name, 467 &call->alist->addrs[call->addr_ix].transport); 468 } 469 } 470 471 /* 472 * deliver messages to a call 473 */ 474 static void afs_deliver_to_call(struct afs_call *call) 475 { 476 enum afs_call_state state; 477 size_t len; 478 u32 abort_code, remote_abort = 0; 479 int ret; 480 481 _enter("%s", call->type->name); 482 483 while (state = READ_ONCE(call->state), 484 state == AFS_CALL_CL_AWAIT_REPLY || 485 state == AFS_CALL_SV_AWAIT_OP_ID || 486 state == AFS_CALL_SV_AWAIT_REQUEST || 487 state == AFS_CALL_SV_AWAIT_ACK 488 ) { 489 if (state == AFS_CALL_SV_AWAIT_ACK) { 490 len = 0; 491 iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0); 492 ret = rxrpc_kernel_recv_data(call->net->socket, 493 call->rxcall, &call->def_iter, 494 &len, false, &remote_abort, 495 &call->service_id); 496 trace_afs_receive_data(call, &call->def_iter, false, ret); 497 498 if (ret == -EINPROGRESS || ret == -EAGAIN) 499 return; 500 if (ret < 0 || ret == 1) { 501 if (ret == 1) 502 ret = 0; 503 goto call_complete; 504 } 505 return; 506 } 507 508 ret = call->type->deliver(call); 509 state = READ_ONCE(call->state); 510 if (ret == 0 && call->unmarshalling_error) 511 ret = -EBADMSG; 512 switch (ret) { 513 case 0: 514 afs_queue_call_work(call); 515 if (state == AFS_CALL_CL_PROC_REPLY) { 516 if (call->op) 517 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 518 &call->op->server->flags); 519 goto call_complete; 520 } 521 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 522 goto done; 523 case -EINPROGRESS: 524 case -EAGAIN: 525 goto out; 526 case -ECONNABORTED: 527 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 528 afs_log_error(call, call->abort_code); 529 goto done; 530 case -ENOTSUPP: 531 abort_code = RXGEN_OPCODE; 532 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 533 abort_code, ret, 534 afs_abort_op_not_supported); 535 goto local_abort; 536 case -EIO: 537 pr_err("kAFS: Call %u in bad state %u\n", 538 call->debug_id, state); 539 fallthrough; 540 case -ENODATA: 541 case -EBADMSG: 542 case -EMSGSIZE: 543 case -ENOMEM: 544 case -EFAULT: 545 abort_code = RXGEN_CC_UNMARSHAL; 546 if (state != AFS_CALL_CL_AWAIT_REPLY) 547 abort_code = RXGEN_SS_UNMARSHAL; 548 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 549 abort_code, ret, 550 afs_abort_unmarshal_error); 551 goto local_abort; 552 default: 553 abort_code = RX_CALL_DEAD; 554 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 555 abort_code, ret, 556 afs_abort_general_error); 557 goto local_abort; 558 } 559 } 560 561 done: 562 if (call->type->done) 563 call->type->done(call); 564 out: 565 _leave(""); 566 return; 567 568 local_abort: 569 abort_code = 0; 570 call_complete: 571 afs_set_call_complete(call, ret, remote_abort); 572 state = AFS_CALL_COMPLETE; 573 goto done; 574 } 575 576 /* 577 * Wait synchronously for a call to complete and clean up the call struct. 578 */ 579 long afs_wait_for_call_to_complete(struct afs_call *call, 580 struct afs_addr_cursor *ac) 581 { 582 long ret; 583 bool rxrpc_complete = false; 584 585 DECLARE_WAITQUEUE(myself, current); 586 587 _enter(""); 588 589 ret = call->error; 590 if (ret < 0) 591 goto out; 592 593 add_wait_queue(&call->waitq, &myself); 594 for (;;) { 595 set_current_state(TASK_UNINTERRUPTIBLE); 596 597 /* deliver any messages that are in the queue */ 598 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 599 call->need_attention) { 600 call->need_attention = false; 601 __set_current_state(TASK_RUNNING); 602 afs_deliver_to_call(call); 603 continue; 604 } 605 606 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 607 break; 608 609 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) { 610 /* rxrpc terminated the call. */ 611 rxrpc_complete = true; 612 break; 613 } 614 615 schedule(); 616 } 617 618 remove_wait_queue(&call->waitq, &myself); 619 __set_current_state(TASK_RUNNING); 620 621 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 622 if (rxrpc_complete) { 623 afs_set_call_complete(call, call->error, call->abort_code); 624 } else { 625 /* Kill off the call if it's still live. */ 626 _debug("call interrupted"); 627 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 628 RX_USER_ABORT, -EINTR, 629 afs_abort_interrupted)) 630 afs_set_call_complete(call, -EINTR, 0); 631 } 632 } 633 634 spin_lock_bh(&call->state_lock); 635 ac->abort_code = call->abort_code; 636 ac->error = call->error; 637 spin_unlock_bh(&call->state_lock); 638 639 ret = ac->error; 640 switch (ret) { 641 case 0: 642 ret = call->ret0; 643 call->ret0 = 0; 644 645 fallthrough; 646 case -ECONNABORTED: 647 ac->responded = true; 648 break; 649 } 650 651 out: 652 _debug("call complete"); 653 afs_put_call(call); 654 _leave(" = %p", (void *)ret); 655 return ret; 656 } 657 658 /* 659 * wake up a waiting call 660 */ 661 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 662 unsigned long call_user_ID) 663 { 664 struct afs_call *call = (struct afs_call *)call_user_ID; 665 666 call->need_attention = true; 667 wake_up(&call->waitq); 668 } 669 670 /* 671 * wake up an asynchronous call 672 */ 673 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 674 unsigned long call_user_ID) 675 { 676 struct afs_call *call = (struct afs_call *)call_user_ID; 677 int r; 678 679 trace_afs_notify_call(rxcall, call); 680 call->need_attention = true; 681 682 if (__refcount_inc_not_zero(&call->ref, &r)) { 683 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1, 684 atomic_read(&call->net->nr_outstanding_calls), 685 __builtin_return_address(0)); 686 687 if (!queue_work(afs_async_calls, &call->async_work)) 688 afs_put_call(call); 689 } 690 } 691 692 /* 693 * Perform I/O processing on an asynchronous call. The work item carries a ref 694 * to the call struct that we either need to release or to pass on. 695 */ 696 static void afs_process_async_call(struct work_struct *work) 697 { 698 struct afs_call *call = container_of(work, struct afs_call, async_work); 699 700 _enter(""); 701 702 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 703 call->need_attention = false; 704 afs_deliver_to_call(call); 705 } 706 707 afs_put_call(call); 708 _leave(""); 709 } 710 711 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 712 { 713 struct afs_call *call = (struct afs_call *)user_call_ID; 714 715 call->rxcall = rxcall; 716 } 717 718 /* 719 * Charge the incoming call preallocation. 720 */ 721 void afs_charge_preallocation(struct work_struct *work) 722 { 723 struct afs_net *net = 724 container_of(work, struct afs_net, charge_preallocation_work); 725 struct afs_call *call = net->spare_incoming_call; 726 727 for (;;) { 728 if (!call) { 729 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 730 if (!call) 731 break; 732 733 call->drop_ref = true; 734 call->async = true; 735 call->state = AFS_CALL_SV_AWAIT_OP_ID; 736 init_waitqueue_head(&call->waitq); 737 afs_extract_to_tmp(call); 738 } 739 740 if (rxrpc_kernel_charge_accept(net->socket, 741 afs_wake_up_async_call, 742 afs_rx_attach, 743 (unsigned long)call, 744 GFP_KERNEL, 745 call->debug_id) < 0) 746 break; 747 call = NULL; 748 } 749 net->spare_incoming_call = call; 750 } 751 752 /* 753 * Discard a preallocated call when a socket is shut down. 754 */ 755 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 756 unsigned long user_call_ID) 757 { 758 struct afs_call *call = (struct afs_call *)user_call_ID; 759 760 call->rxcall = NULL; 761 afs_put_call(call); 762 } 763 764 /* 765 * Notification of an incoming call. 766 */ 767 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 768 unsigned long user_call_ID) 769 { 770 struct afs_net *net = afs_sock2net(sk); 771 772 queue_work(afs_wq, &net->charge_preallocation_work); 773 } 774 775 /* 776 * Grab the operation ID from an incoming cache manager call. The socket 777 * buffer is discarded on error or if we don't yet have sufficient data. 778 */ 779 static int afs_deliver_cm_op_id(struct afs_call *call) 780 { 781 int ret; 782 783 _enter("{%zu}", iov_iter_count(call->iter)); 784 785 /* the operation ID forms the first four bytes of the request data */ 786 ret = afs_extract_data(call, true); 787 if (ret < 0) 788 return ret; 789 790 call->operation_ID = ntohl(call->tmp); 791 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 792 793 /* ask the cache manager to route the call (it'll change the call type 794 * if successful) */ 795 if (!afs_cm_incoming_call(call)) 796 return -ENOTSUPP; 797 798 trace_afs_cb_call(call); 799 800 /* pass responsibility for the remainer of this message off to the 801 * cache manager op */ 802 return call->type->deliver(call); 803 } 804 805 /* 806 * Advance the AFS call state when an RxRPC service call ends the transmit 807 * phase. 808 */ 809 static void afs_notify_end_reply_tx(struct sock *sock, 810 struct rxrpc_call *rxcall, 811 unsigned long call_user_ID) 812 { 813 struct afs_call *call = (struct afs_call *)call_user_ID; 814 815 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 816 } 817 818 /* 819 * send an empty reply 820 */ 821 void afs_send_empty_reply(struct afs_call *call) 822 { 823 struct afs_net *net = call->net; 824 struct msghdr msg; 825 826 _enter(""); 827 828 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 829 830 msg.msg_name = NULL; 831 msg.msg_namelen = 0; 832 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0); 833 msg.msg_control = NULL; 834 msg.msg_controllen = 0; 835 msg.msg_flags = 0; 836 837 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 838 afs_notify_end_reply_tx)) { 839 case 0: 840 _leave(" [replied]"); 841 return; 842 843 case -ENOMEM: 844 _debug("oom"); 845 rxrpc_kernel_abort_call(net->socket, call->rxcall, 846 RXGEN_SS_MARSHAL, -ENOMEM, 847 afs_abort_oom); 848 fallthrough; 849 default: 850 _leave(" [error]"); 851 return; 852 } 853 } 854 855 /* 856 * send a simple reply 857 */ 858 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 859 { 860 struct afs_net *net = call->net; 861 struct msghdr msg; 862 struct kvec iov[1]; 863 int n; 864 865 _enter(""); 866 867 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 868 869 iov[0].iov_base = (void *) buf; 870 iov[0].iov_len = len; 871 msg.msg_name = NULL; 872 msg.msg_namelen = 0; 873 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len); 874 msg.msg_control = NULL; 875 msg.msg_controllen = 0; 876 msg.msg_flags = 0; 877 878 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 879 afs_notify_end_reply_tx); 880 if (n >= 0) { 881 /* Success */ 882 _leave(" [replied]"); 883 return; 884 } 885 886 if (n == -ENOMEM) { 887 _debug("oom"); 888 rxrpc_kernel_abort_call(net->socket, call->rxcall, 889 RXGEN_SS_MARSHAL, -ENOMEM, 890 afs_abort_oom); 891 } 892 _leave(" [error]"); 893 } 894 895 /* 896 * Extract a piece of data from the received data socket buffers. 897 */ 898 int afs_extract_data(struct afs_call *call, bool want_more) 899 { 900 struct afs_net *net = call->net; 901 struct iov_iter *iter = call->iter; 902 enum afs_call_state state; 903 u32 remote_abort = 0; 904 int ret; 905 906 _enter("{%s,%zu,%zu},%d", 907 call->type->name, call->iov_len, iov_iter_count(iter), want_more); 908 909 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, 910 &call->iov_len, want_more, &remote_abort, 911 &call->service_id); 912 trace_afs_receive_data(call, call->iter, want_more, ret); 913 if (ret == 0 || ret == -EAGAIN) 914 return ret; 915 916 state = READ_ONCE(call->state); 917 if (ret == 1) { 918 switch (state) { 919 case AFS_CALL_CL_AWAIT_REPLY: 920 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 921 break; 922 case AFS_CALL_SV_AWAIT_REQUEST: 923 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 924 break; 925 case AFS_CALL_COMPLETE: 926 kdebug("prem complete %d", call->error); 927 return afs_io_error(call, afs_io_error_extract); 928 default: 929 break; 930 } 931 return 0; 932 } 933 934 afs_set_call_complete(call, ret, remote_abort); 935 return ret; 936 } 937 938 /* 939 * Log protocol error production. 940 */ 941 noinline int afs_protocol_error(struct afs_call *call, 942 enum afs_eproto_cause cause) 943 { 944 trace_afs_protocol_error(call, cause); 945 if (call) 946 call->unmarshalling_error = true; 947 return -EBADMSG; 948 } 949