1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 15 #include <net/sock.h> 16 #include <net/af_rxrpc.h> 17 #include <rxrpc/packet.h> 18 #include "internal.h" 19 #include "afs_cm.h" 20 21 struct socket *afs_socket; /* my RxRPC socket */ 22 static struct workqueue_struct *afs_async_calls; 23 static struct afs_call *afs_spare_incoming_call; 24 atomic_t afs_outstanding_calls; 25 26 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 27 static int afs_wait_for_call_to_complete(struct afs_call *); 28 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 29 static void afs_process_async_call(struct work_struct *); 30 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 31 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 32 static int afs_deliver_cm_op_id(struct afs_call *); 33 34 /* asynchronous incoming call initial processing */ 35 static const struct afs_call_type afs_RXCMxxxx = { 36 .name = "CB.xxxx", 37 .deliver = afs_deliver_cm_op_id, 38 .abort_to_error = afs_abort_to_error, 39 }; 40 41 static void afs_charge_preallocation(struct work_struct *); 42 43 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation); 44 45 static int afs_wait_atomic_t(atomic_t *p) 46 { 47 schedule(); 48 return 0; 49 } 50 51 /* 52 * open an RxRPC socket and bind it to be a server for callback notifications 53 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 54 */ 55 int afs_open_socket(void) 56 { 57 struct sockaddr_rxrpc srx; 58 struct socket *socket; 59 int ret; 60 61 _enter(""); 62 63 ret = -ENOMEM; 64 afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0); 65 if (!afs_async_calls) 66 goto error_0; 67 68 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket); 69 if (ret < 0) 70 goto error_1; 71 72 socket->sk->sk_allocation = GFP_NOFS; 73 74 /* bind the callback manager's address to make this a server socket */ 75 srx.srx_family = AF_RXRPC; 76 srx.srx_service = CM_SERVICE; 77 srx.transport_type = SOCK_DGRAM; 78 srx.transport_len = sizeof(srx.transport.sin); 79 srx.transport.sin.sin_family = AF_INET; 80 srx.transport.sin.sin_port = htons(AFS_CM_PORT); 81 memset(&srx.transport.sin.sin_addr, 0, 82 sizeof(srx.transport.sin.sin_addr)); 83 84 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 85 if (ret < 0) 86 goto error_2; 87 88 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 89 afs_rx_discard_new_call); 90 91 ret = kernel_listen(socket, INT_MAX); 92 if (ret < 0) 93 goto error_2; 94 95 afs_socket = socket; 96 afs_charge_preallocation(NULL); 97 _leave(" = 0"); 98 return 0; 99 100 error_2: 101 sock_release(socket); 102 error_1: 103 destroy_workqueue(afs_async_calls); 104 error_0: 105 _leave(" = %d", ret); 106 return ret; 107 } 108 109 /* 110 * close the RxRPC socket AFS was using 111 */ 112 void afs_close_socket(void) 113 { 114 _enter(""); 115 116 kernel_listen(afs_socket, 0); 117 flush_workqueue(afs_async_calls); 118 119 if (afs_spare_incoming_call) { 120 afs_put_call(afs_spare_incoming_call); 121 afs_spare_incoming_call = NULL; 122 } 123 124 _debug("outstanding %u", atomic_read(&afs_outstanding_calls)); 125 wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t, 126 TASK_UNINTERRUPTIBLE); 127 _debug("no outstanding calls"); 128 129 kernel_sock_shutdown(afs_socket, SHUT_RDWR); 130 flush_workqueue(afs_async_calls); 131 sock_release(afs_socket); 132 133 _debug("dework"); 134 destroy_workqueue(afs_async_calls); 135 _leave(""); 136 } 137 138 /* 139 * Allocate a call. 140 */ 141 static struct afs_call *afs_alloc_call(const struct afs_call_type *type, 142 gfp_t gfp) 143 { 144 struct afs_call *call; 145 int o; 146 147 call = kzalloc(sizeof(*call), gfp); 148 if (!call) 149 return NULL; 150 151 call->type = type; 152 atomic_set(&call->usage, 1); 153 INIT_WORK(&call->async_work, afs_process_async_call); 154 init_waitqueue_head(&call->waitq); 155 156 o = atomic_inc_return(&afs_outstanding_calls); 157 trace_afs_call(call, afs_call_trace_alloc, 1, o, 158 __builtin_return_address(0)); 159 return call; 160 } 161 162 /* 163 * Dispose of a reference on a call. 164 */ 165 void afs_put_call(struct afs_call *call) 166 { 167 int n = atomic_dec_return(&call->usage); 168 int o = atomic_read(&afs_outstanding_calls); 169 170 trace_afs_call(call, afs_call_trace_put, n + 1, o, 171 __builtin_return_address(0)); 172 173 ASSERTCMP(n, >=, 0); 174 if (n == 0) { 175 ASSERT(!work_pending(&call->async_work)); 176 ASSERT(call->type->name != NULL); 177 178 if (call->rxcall) { 179 rxrpc_kernel_end_call(afs_socket, call->rxcall); 180 call->rxcall = NULL; 181 } 182 if (call->type->destructor) 183 call->type->destructor(call); 184 185 kfree(call->request); 186 kfree(call); 187 188 o = atomic_dec_return(&afs_outstanding_calls); 189 trace_afs_call(call, afs_call_trace_free, 0, o, 190 __builtin_return_address(0)); 191 if (o == 0) 192 wake_up_atomic_t(&afs_outstanding_calls); 193 } 194 } 195 196 /* 197 * Queue the call for actual work. Returns 0 unconditionally for convenience. 198 */ 199 int afs_queue_call_work(struct afs_call *call) 200 { 201 int u = atomic_inc_return(&call->usage); 202 203 trace_afs_call(call, afs_call_trace_work, u, 204 atomic_read(&afs_outstanding_calls), 205 __builtin_return_address(0)); 206 207 INIT_WORK(&call->work, call->type->work); 208 209 if (!queue_work(afs_wq, &call->work)) 210 afs_put_call(call); 211 return 0; 212 } 213 214 /* 215 * allocate a call with flat request and reply buffers 216 */ 217 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type, 218 size_t request_size, size_t reply_max) 219 { 220 struct afs_call *call; 221 222 call = afs_alloc_call(type, GFP_NOFS); 223 if (!call) 224 goto nomem_call; 225 226 if (request_size) { 227 call->request_size = request_size; 228 call->request = kmalloc(request_size, GFP_NOFS); 229 if (!call->request) 230 goto nomem_free; 231 } 232 233 if (reply_max) { 234 call->reply_max = reply_max; 235 call->buffer = kmalloc(reply_max, GFP_NOFS); 236 if (!call->buffer) 237 goto nomem_free; 238 } 239 240 init_waitqueue_head(&call->waitq); 241 return call; 242 243 nomem_free: 244 afs_put_call(call); 245 nomem_call: 246 return NULL; 247 } 248 249 /* 250 * clean up a call with flat buffer 251 */ 252 void afs_flat_call_destructor(struct afs_call *call) 253 { 254 _enter(""); 255 256 kfree(call->request); 257 call->request = NULL; 258 kfree(call->buffer); 259 call->buffer = NULL; 260 } 261 262 /* 263 * attach the data from a bunch of pages on an inode to a call 264 */ 265 static int afs_send_pages(struct afs_call *call, struct msghdr *msg, 266 struct kvec *iov) 267 { 268 struct page *pages[8]; 269 unsigned count, n, loop, offset, to; 270 pgoff_t first = call->first, last = call->last; 271 int ret; 272 273 _enter(""); 274 275 offset = call->first_offset; 276 call->first_offset = 0; 277 278 do { 279 _debug("attach %lx-%lx", first, last); 280 281 count = last - first + 1; 282 if (count > ARRAY_SIZE(pages)) 283 count = ARRAY_SIZE(pages); 284 n = find_get_pages_contig(call->mapping, first, count, pages); 285 ASSERTCMP(n, ==, count); 286 287 loop = 0; 288 do { 289 msg->msg_flags = 0; 290 to = PAGE_SIZE; 291 if (first + loop >= last) 292 to = call->last_to; 293 else 294 msg->msg_flags = MSG_MORE; 295 iov->iov_base = kmap(pages[loop]) + offset; 296 iov->iov_len = to - offset; 297 offset = 0; 298 299 _debug("- range %u-%u%s", 300 offset, to, msg->msg_flags ? " [more]" : ""); 301 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, 302 iov, 1, to - offset); 303 304 /* have to change the state *before* sending the last 305 * packet as RxRPC might give us the reply before it 306 * returns from sending the request */ 307 if (first + loop >= last) 308 call->state = AFS_CALL_AWAIT_REPLY; 309 ret = rxrpc_kernel_send_data(afs_socket, call->rxcall, 310 msg, to - offset); 311 kunmap(pages[loop]); 312 if (ret < 0) 313 break; 314 } while (++loop < count); 315 first += count; 316 317 for (loop = 0; loop < count; loop++) 318 put_page(pages[loop]); 319 if (ret < 0) 320 break; 321 } while (first <= last); 322 323 _leave(" = %d", ret); 324 return ret; 325 } 326 327 /* 328 * initiate a call 329 */ 330 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp, 331 bool async) 332 { 333 struct sockaddr_rxrpc srx; 334 struct rxrpc_call *rxcall; 335 struct msghdr msg; 336 struct kvec iov[1]; 337 int ret; 338 339 _enter("%x,{%d},", addr->s_addr, ntohs(call->port)); 340 341 ASSERT(call->type != NULL); 342 ASSERT(call->type->name != NULL); 343 344 _debug("____MAKE %p{%s,%x} [%d]____", 345 call, call->type->name, key_serial(call->key), 346 atomic_read(&afs_outstanding_calls)); 347 348 call->async = async; 349 350 memset(&srx, 0, sizeof(srx)); 351 srx.srx_family = AF_RXRPC; 352 srx.srx_service = call->service_id; 353 srx.transport_type = SOCK_DGRAM; 354 srx.transport_len = sizeof(srx.transport.sin); 355 srx.transport.sin.sin_family = AF_INET; 356 srx.transport.sin.sin_port = call->port; 357 memcpy(&srx.transport.sin.sin_addr, addr, 4); 358 359 /* create a call */ 360 rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key, 361 (unsigned long) call, gfp, 362 (async ? 363 afs_wake_up_async_call : 364 afs_wake_up_call_waiter)); 365 call->key = NULL; 366 if (IS_ERR(rxcall)) { 367 ret = PTR_ERR(rxcall); 368 goto error_kill_call; 369 } 370 371 call->rxcall = rxcall; 372 373 /* send the request */ 374 iov[0].iov_base = call->request; 375 iov[0].iov_len = call->request_size; 376 377 msg.msg_name = NULL; 378 msg.msg_namelen = 0; 379 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, 380 call->request_size); 381 msg.msg_control = NULL; 382 msg.msg_controllen = 0; 383 msg.msg_flags = (call->send_pages ? MSG_MORE : 0); 384 385 /* have to change the state *before* sending the last packet as RxRPC 386 * might give us the reply before it returns from sending the 387 * request */ 388 if (!call->send_pages) 389 call->state = AFS_CALL_AWAIT_REPLY; 390 ret = rxrpc_kernel_send_data(afs_socket, rxcall, 391 &msg, call->request_size); 392 if (ret < 0) 393 goto error_do_abort; 394 395 if (call->send_pages) { 396 ret = afs_send_pages(call, &msg, iov); 397 if (ret < 0) 398 goto error_do_abort; 399 } 400 401 /* at this point, an async call may no longer exist as it may have 402 * already completed */ 403 if (call->async) 404 return -EINPROGRESS; 405 406 return afs_wait_for_call_to_complete(call); 407 408 error_do_abort: 409 rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT, -ret, "KSD"); 410 error_kill_call: 411 afs_put_call(call); 412 _leave(" = %d", ret); 413 return ret; 414 } 415 416 /* 417 * deliver messages to a call 418 */ 419 static void afs_deliver_to_call(struct afs_call *call) 420 { 421 u32 abort_code; 422 int ret; 423 424 _enter("%s", call->type->name); 425 426 while (call->state == AFS_CALL_AWAIT_REPLY || 427 call->state == AFS_CALL_AWAIT_OP_ID || 428 call->state == AFS_CALL_AWAIT_REQUEST || 429 call->state == AFS_CALL_AWAIT_ACK 430 ) { 431 if (call->state == AFS_CALL_AWAIT_ACK) { 432 size_t offset = 0; 433 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, 434 NULL, 0, &offset, false, 435 &call->abort_code); 436 trace_afs_recv_data(call, 0, offset, false, ret); 437 438 if (ret == -EINPROGRESS || ret == -EAGAIN) 439 return; 440 if (ret == 1 || ret < 0) { 441 call->state = AFS_CALL_COMPLETE; 442 goto done; 443 } 444 return; 445 } 446 447 ret = call->type->deliver(call); 448 switch (ret) { 449 case 0: 450 if (call->state == AFS_CALL_AWAIT_REPLY) 451 call->state = AFS_CALL_COMPLETE; 452 goto done; 453 case -EINPROGRESS: 454 case -EAGAIN: 455 goto out; 456 case -ENOTCONN: 457 abort_code = RX_CALL_DEAD; 458 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 459 abort_code, -ret, "KNC"); 460 goto do_abort; 461 case -ENOTSUPP: 462 abort_code = RX_INVALID_OPERATION; 463 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 464 abort_code, -ret, "KIV"); 465 goto do_abort; 466 case -ENODATA: 467 case -EBADMSG: 468 case -EMSGSIZE: 469 default: 470 abort_code = RXGEN_CC_UNMARSHAL; 471 if (call->state != AFS_CALL_AWAIT_REPLY) 472 abort_code = RXGEN_SS_UNMARSHAL; 473 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 474 abort_code, EBADMSG, "KUM"); 475 goto do_abort; 476 } 477 } 478 479 done: 480 if (call->state == AFS_CALL_COMPLETE && call->incoming) 481 afs_put_call(call); 482 out: 483 _leave(""); 484 return; 485 486 do_abort: 487 call->error = ret; 488 call->state = AFS_CALL_COMPLETE; 489 goto done; 490 } 491 492 /* 493 * wait synchronously for a call to complete 494 */ 495 static int afs_wait_for_call_to_complete(struct afs_call *call) 496 { 497 const char *abort_why; 498 int ret; 499 500 DECLARE_WAITQUEUE(myself, current); 501 502 _enter(""); 503 504 add_wait_queue(&call->waitq, &myself); 505 for (;;) { 506 set_current_state(TASK_INTERRUPTIBLE); 507 508 /* deliver any messages that are in the queue */ 509 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 510 call->need_attention = false; 511 __set_current_state(TASK_RUNNING); 512 afs_deliver_to_call(call); 513 continue; 514 } 515 516 abort_why = "KWC"; 517 ret = call->error; 518 if (call->state == AFS_CALL_COMPLETE) 519 break; 520 abort_why = "KWI"; 521 ret = -EINTR; 522 if (signal_pending(current)) 523 break; 524 schedule(); 525 } 526 527 remove_wait_queue(&call->waitq, &myself); 528 __set_current_state(TASK_RUNNING); 529 530 /* kill the call */ 531 if (call->state < AFS_CALL_COMPLETE) { 532 _debug("call incomplete"); 533 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 534 RX_CALL_DEAD, -ret, abort_why); 535 } 536 537 _debug("call complete"); 538 afs_put_call(call); 539 _leave(" = %d", ret); 540 return ret; 541 } 542 543 /* 544 * wake up a waiting call 545 */ 546 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 547 unsigned long call_user_ID) 548 { 549 struct afs_call *call = (struct afs_call *)call_user_ID; 550 551 call->need_attention = true; 552 wake_up(&call->waitq); 553 } 554 555 /* 556 * wake up an asynchronous call 557 */ 558 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 559 unsigned long call_user_ID) 560 { 561 struct afs_call *call = (struct afs_call *)call_user_ID; 562 int u; 563 564 trace_afs_notify_call(rxcall, call); 565 call->need_attention = true; 566 567 u = __atomic_add_unless(&call->usage, 1, 0); 568 if (u != 0) { 569 trace_afs_call(call, afs_call_trace_wake, u, 570 atomic_read(&afs_outstanding_calls), 571 __builtin_return_address(0)); 572 573 if (!queue_work(afs_async_calls, &call->async_work)) 574 afs_put_call(call); 575 } 576 } 577 578 /* 579 * Delete an asynchronous call. The work item carries a ref to the call struct 580 * that we need to release. 581 */ 582 static void afs_delete_async_call(struct work_struct *work) 583 { 584 struct afs_call *call = container_of(work, struct afs_call, async_work); 585 586 _enter(""); 587 588 afs_put_call(call); 589 590 _leave(""); 591 } 592 593 /* 594 * Perform I/O processing on an asynchronous call. The work item carries a ref 595 * to the call struct that we either need to release or to pass on. 596 */ 597 static void afs_process_async_call(struct work_struct *work) 598 { 599 struct afs_call *call = container_of(work, struct afs_call, async_work); 600 601 _enter(""); 602 603 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 604 call->need_attention = false; 605 afs_deliver_to_call(call); 606 } 607 608 if (call->state == AFS_CALL_COMPLETE) { 609 call->reply = NULL; 610 611 /* We have two refs to release - one from the alloc and one 612 * queued with the work item - and we can't just deallocate the 613 * call because the work item may be queued again. 614 */ 615 call->async_work.func = afs_delete_async_call; 616 if (!queue_work(afs_async_calls, &call->async_work)) 617 afs_put_call(call); 618 } 619 620 afs_put_call(call); 621 _leave(""); 622 } 623 624 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 625 { 626 struct afs_call *call = (struct afs_call *)user_call_ID; 627 628 call->rxcall = rxcall; 629 } 630 631 /* 632 * Charge the incoming call preallocation. 633 */ 634 static void afs_charge_preallocation(struct work_struct *work) 635 { 636 struct afs_call *call = afs_spare_incoming_call; 637 638 for (;;) { 639 if (!call) { 640 call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL); 641 if (!call) 642 break; 643 644 call->async = true; 645 call->state = AFS_CALL_AWAIT_OP_ID; 646 init_waitqueue_head(&call->waitq); 647 } 648 649 if (rxrpc_kernel_charge_accept(afs_socket, 650 afs_wake_up_async_call, 651 afs_rx_attach, 652 (unsigned long)call, 653 GFP_KERNEL) < 0) 654 break; 655 call = NULL; 656 } 657 afs_spare_incoming_call = call; 658 } 659 660 /* 661 * Discard a preallocated call when a socket is shut down. 662 */ 663 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 664 unsigned long user_call_ID) 665 { 666 struct afs_call *call = (struct afs_call *)user_call_ID; 667 668 call->rxcall = NULL; 669 afs_put_call(call); 670 } 671 672 /* 673 * Notification of an incoming call. 674 */ 675 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 676 unsigned long user_call_ID) 677 { 678 queue_work(afs_wq, &afs_charge_preallocation_work); 679 } 680 681 /* 682 * Grab the operation ID from an incoming cache manager call. The socket 683 * buffer is discarded on error or if we don't yet have sufficient data. 684 */ 685 static int afs_deliver_cm_op_id(struct afs_call *call) 686 { 687 int ret; 688 689 _enter("{%zu}", call->offset); 690 691 ASSERTCMP(call->offset, <, 4); 692 693 /* the operation ID forms the first four bytes of the request data */ 694 ret = afs_extract_data(call, &call->tmp, 4, true); 695 if (ret < 0) 696 return ret; 697 698 call->operation_ID = ntohl(call->tmp); 699 call->state = AFS_CALL_AWAIT_REQUEST; 700 call->offset = 0; 701 702 /* ask the cache manager to route the call (it'll change the call type 703 * if successful) */ 704 if (!afs_cm_incoming_call(call)) 705 return -ENOTSUPP; 706 707 trace_afs_cb_call(call); 708 709 /* pass responsibility for the remainer of this message off to the 710 * cache manager op */ 711 return call->type->deliver(call); 712 } 713 714 /* 715 * send an empty reply 716 */ 717 void afs_send_empty_reply(struct afs_call *call) 718 { 719 struct msghdr msg; 720 721 _enter(""); 722 723 msg.msg_name = NULL; 724 msg.msg_namelen = 0; 725 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); 726 msg.msg_control = NULL; 727 msg.msg_controllen = 0; 728 msg.msg_flags = 0; 729 730 call->state = AFS_CALL_AWAIT_ACK; 731 switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) { 732 case 0: 733 _leave(" [replied]"); 734 return; 735 736 case -ENOMEM: 737 _debug("oom"); 738 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 739 RX_USER_ABORT, ENOMEM, "KOO"); 740 default: 741 _leave(" [error]"); 742 return; 743 } 744 } 745 746 /* 747 * send a simple reply 748 */ 749 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 750 { 751 struct msghdr msg; 752 struct kvec iov[1]; 753 int n; 754 755 _enter(""); 756 757 iov[0].iov_base = (void *) buf; 758 iov[0].iov_len = len; 759 msg.msg_name = NULL; 760 msg.msg_namelen = 0; 761 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); 762 msg.msg_control = NULL; 763 msg.msg_controllen = 0; 764 msg.msg_flags = 0; 765 766 call->state = AFS_CALL_AWAIT_ACK; 767 n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len); 768 if (n >= 0) { 769 /* Success */ 770 _leave(" [replied]"); 771 return; 772 } 773 774 if (n == -ENOMEM) { 775 _debug("oom"); 776 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 777 RX_USER_ABORT, ENOMEM, "KOO"); 778 } 779 _leave(" [error]"); 780 } 781 782 /* 783 * Extract a piece of data from the received data socket buffers. 784 */ 785 int afs_extract_data(struct afs_call *call, void *buf, size_t count, 786 bool want_more) 787 { 788 int ret; 789 790 _enter("{%s,%zu},,%zu,%d", 791 call->type->name, call->offset, count, want_more); 792 793 ASSERTCMP(call->offset, <=, count); 794 795 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, 796 buf, count, &call->offset, 797 want_more, &call->abort_code); 798 trace_afs_recv_data(call, count, call->offset, want_more, ret); 799 if (ret == 0 || ret == -EAGAIN) 800 return ret; 801 802 if (ret == 1) { 803 switch (call->state) { 804 case AFS_CALL_AWAIT_REPLY: 805 call->state = AFS_CALL_COMPLETE; 806 break; 807 case AFS_CALL_AWAIT_REQUEST: 808 call->state = AFS_CALL_REPLYING; 809 break; 810 default: 811 break; 812 } 813 return 0; 814 } 815 816 if (ret == -ECONNABORTED) 817 call->error = call->type->abort_to_error(call->abort_code); 818 else 819 call->error = ret; 820 call->state = AFS_CALL_COMPLETE; 821 return ret; 822 } 823