xref: /openbmc/linux/fs/afs/rxrpc.c (revision 10c1d542c7e871865bca381842fd04a92d2b95ec)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
19 
20 struct workqueue_struct *afs_async_calls;
21 
22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *);
24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_process_async_call(struct work_struct *);
26 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
27 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
28 static int afs_deliver_cm_op_id(struct afs_call *);
29 
30 /* asynchronous incoming call initial processing */
31 static const struct afs_call_type afs_RXCMxxxx = {
32 	.name		= "CB.xxxx",
33 	.deliver	= afs_deliver_cm_op_id,
34 };
35 
36 /*
37  * open an RxRPC socket and bind it to be a server for callback notifications
38  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
39  */
40 int afs_open_socket(struct afs_net *net)
41 {
42 	struct sockaddr_rxrpc srx;
43 	struct socket *socket;
44 	int ret;
45 
46 	_enter("");
47 
48 	ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
49 	if (ret < 0)
50 		goto error_1;
51 
52 	socket->sk->sk_allocation = GFP_NOFS;
53 
54 	/* bind the callback manager's address to make this a server socket */
55 	memset(&srx, 0, sizeof(srx));
56 	srx.srx_family			= AF_RXRPC;
57 	srx.srx_service			= CM_SERVICE;
58 	srx.transport_type		= SOCK_DGRAM;
59 	srx.transport_len		= sizeof(srx.transport.sin6);
60 	srx.transport.sin6.sin6_family	= AF_INET6;
61 	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
62 
63 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
64 	if (ret == -EADDRINUSE) {
65 		srx.transport.sin6.sin6_port = 0;
66 		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
67 	}
68 	if (ret < 0)
69 		goto error_2;
70 
71 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
72 					   afs_rx_discard_new_call);
73 
74 	ret = kernel_listen(socket, INT_MAX);
75 	if (ret < 0)
76 		goto error_2;
77 
78 	net->socket = socket;
79 	afs_charge_preallocation(&net->charge_preallocation_work);
80 	_leave(" = 0");
81 	return 0;
82 
83 error_2:
84 	sock_release(socket);
85 error_1:
86 	_leave(" = %d", ret);
87 	return ret;
88 }
89 
90 /*
91  * close the RxRPC socket AFS was using
92  */
93 void afs_close_socket(struct afs_net *net)
94 {
95 	_enter("");
96 
97 	kernel_listen(net->socket, 0);
98 	flush_workqueue(afs_async_calls);
99 
100 	if (net->spare_incoming_call) {
101 		afs_put_call(net->spare_incoming_call);
102 		net->spare_incoming_call = NULL;
103 	}
104 
105 	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
106 	wait_on_atomic_t(&net->nr_outstanding_calls, atomic_t_wait,
107 			 TASK_UNINTERRUPTIBLE);
108 	_debug("no outstanding calls");
109 
110 	kernel_sock_shutdown(net->socket, SHUT_RDWR);
111 	flush_workqueue(afs_async_calls);
112 	sock_release(net->socket);
113 
114 	_debug("dework");
115 	_leave("");
116 }
117 
118 /*
119  * Allocate a call.
120  */
121 static struct afs_call *afs_alloc_call(struct afs_net *net,
122 				       const struct afs_call_type *type,
123 				       gfp_t gfp)
124 {
125 	struct afs_call *call;
126 	int o;
127 
128 	call = kzalloc(sizeof(*call), gfp);
129 	if (!call)
130 		return NULL;
131 
132 	call->type = type;
133 	call->net = net;
134 	atomic_set(&call->usage, 1);
135 	INIT_WORK(&call->async_work, afs_process_async_call);
136 	init_waitqueue_head(&call->waitq);
137 	spin_lock_init(&call->state_lock);
138 
139 	o = atomic_inc_return(&net->nr_outstanding_calls);
140 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
141 		       __builtin_return_address(0));
142 	return call;
143 }
144 
145 /*
146  * Dispose of a reference on a call.
147  */
148 void afs_put_call(struct afs_call *call)
149 {
150 	struct afs_net *net = call->net;
151 	int n = atomic_dec_return(&call->usage);
152 	int o = atomic_read(&net->nr_outstanding_calls);
153 
154 	trace_afs_call(call, afs_call_trace_put, n + 1, o,
155 		       __builtin_return_address(0));
156 
157 	ASSERTCMP(n, >=, 0);
158 	if (n == 0) {
159 		ASSERT(!work_pending(&call->async_work));
160 		ASSERT(call->type->name != NULL);
161 
162 		if (call->rxcall) {
163 			rxrpc_kernel_end_call(net->socket, call->rxcall);
164 			call->rxcall = NULL;
165 		}
166 		if (call->type->destructor)
167 			call->type->destructor(call);
168 
169 		afs_put_server(call->net, call->cm_server);
170 		afs_put_cb_interest(call->net, call->cbi);
171 		kfree(call->request);
172 		kfree(call);
173 
174 		o = atomic_dec_return(&net->nr_outstanding_calls);
175 		trace_afs_call(call, afs_call_trace_free, 0, o,
176 			       __builtin_return_address(0));
177 		if (o == 0)
178 			wake_up_atomic_t(&net->nr_outstanding_calls);
179 	}
180 }
181 
182 /*
183  * Queue the call for actual work.  Returns 0 unconditionally for convenience.
184  */
185 int afs_queue_call_work(struct afs_call *call)
186 {
187 	int u = atomic_inc_return(&call->usage);
188 
189 	trace_afs_call(call, afs_call_trace_work, u,
190 		       atomic_read(&call->net->nr_outstanding_calls),
191 		       __builtin_return_address(0));
192 
193 	INIT_WORK(&call->work, call->type->work);
194 
195 	if (!queue_work(afs_wq, &call->work))
196 		afs_put_call(call);
197 	return 0;
198 }
199 
200 /*
201  * allocate a call with flat request and reply buffers
202  */
203 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
204 				     const struct afs_call_type *type,
205 				     size_t request_size, size_t reply_max)
206 {
207 	struct afs_call *call;
208 
209 	call = afs_alloc_call(net, type, GFP_NOFS);
210 	if (!call)
211 		goto nomem_call;
212 
213 	if (request_size) {
214 		call->request_size = request_size;
215 		call->request = kmalloc(request_size, GFP_NOFS);
216 		if (!call->request)
217 			goto nomem_free;
218 	}
219 
220 	if (reply_max) {
221 		call->reply_max = reply_max;
222 		call->buffer = kmalloc(reply_max, GFP_NOFS);
223 		if (!call->buffer)
224 			goto nomem_free;
225 	}
226 
227 	call->operation_ID = type->op;
228 	init_waitqueue_head(&call->waitq);
229 	return call;
230 
231 nomem_free:
232 	afs_put_call(call);
233 nomem_call:
234 	return NULL;
235 }
236 
237 /*
238  * clean up a call with flat buffer
239  */
240 void afs_flat_call_destructor(struct afs_call *call)
241 {
242 	_enter("");
243 
244 	kfree(call->request);
245 	call->request = NULL;
246 	kfree(call->buffer);
247 	call->buffer = NULL;
248 }
249 
250 #define AFS_BVEC_MAX 8
251 
252 /*
253  * Load the given bvec with the next few pages.
254  */
255 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
256 			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
257 			  unsigned offset)
258 {
259 	struct page *pages[AFS_BVEC_MAX];
260 	unsigned int nr, n, i, to, bytes = 0;
261 
262 	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
263 	n = find_get_pages_contig(call->mapping, first, nr, pages);
264 	ASSERTCMP(n, ==, nr);
265 
266 	msg->msg_flags |= MSG_MORE;
267 	for (i = 0; i < nr; i++) {
268 		to = PAGE_SIZE;
269 		if (first + i >= last) {
270 			to = call->last_to;
271 			msg->msg_flags &= ~MSG_MORE;
272 		}
273 		bv[i].bv_page = pages[i];
274 		bv[i].bv_len = to - offset;
275 		bv[i].bv_offset = offset;
276 		bytes += to - offset;
277 		offset = 0;
278 	}
279 
280 	iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
281 }
282 
283 /*
284  * Advance the AFS call state when the RxRPC call ends the transmit phase.
285  */
286 static void afs_notify_end_request_tx(struct sock *sock,
287 				      struct rxrpc_call *rxcall,
288 				      unsigned long call_user_ID)
289 {
290 	struct afs_call *call = (struct afs_call *)call_user_ID;
291 
292 	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
293 }
294 
295 /*
296  * attach the data from a bunch of pages on an inode to a call
297  */
298 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
299 {
300 	struct bio_vec bv[AFS_BVEC_MAX];
301 	unsigned int bytes, nr, loop, offset;
302 	pgoff_t first = call->first, last = call->last;
303 	int ret;
304 
305 	offset = call->first_offset;
306 	call->first_offset = 0;
307 
308 	do {
309 		afs_load_bvec(call, msg, bv, first, last, offset);
310 		trace_afs_send_pages(call, msg, first, last, offset);
311 
312 		offset = 0;
313 		bytes = msg->msg_iter.count;
314 		nr = msg->msg_iter.nr_segs;
315 
316 		ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
317 					     bytes, afs_notify_end_request_tx);
318 		for (loop = 0; loop < nr; loop++)
319 			put_page(bv[loop].bv_page);
320 		if (ret < 0)
321 			break;
322 
323 		first += nr;
324 	} while (first <= last);
325 
326 	trace_afs_sent_pages(call, call->first, last, first, ret);
327 	return ret;
328 }
329 
330 /*
331  * initiate a call
332  */
333 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call,
334 		   gfp_t gfp, bool async)
335 {
336 	struct sockaddr_rxrpc *srx = ac->addr;
337 	struct rxrpc_call *rxcall;
338 	struct msghdr msg;
339 	struct kvec iov[1];
340 	size_t offset;
341 	s64 tx_total_len;
342 	int ret;
343 
344 	_enter(",{%pISp},", &srx->transport);
345 
346 	ASSERT(call->type != NULL);
347 	ASSERT(call->type->name != NULL);
348 
349 	_debug("____MAKE %p{%s,%x} [%d]____",
350 	       call, call->type->name, key_serial(call->key),
351 	       atomic_read(&call->net->nr_outstanding_calls));
352 
353 	call->async = async;
354 
355 	/* Work out the length we're going to transmit.  This is awkward for
356 	 * calls such as FS.StoreData where there's an extra injection of data
357 	 * after the initial fixed part.
358 	 */
359 	tx_total_len = call->request_size;
360 	if (call->send_pages) {
361 		if (call->last == call->first) {
362 			tx_total_len += call->last_to - call->first_offset;
363 		} else {
364 			/* It looks mathematically like you should be able to
365 			 * combine the following lines with the ones above, but
366 			 * unsigned arithmetic is fun when it wraps...
367 			 */
368 			tx_total_len += PAGE_SIZE - call->first_offset;
369 			tx_total_len += call->last_to;
370 			tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
371 		}
372 	}
373 
374 	/* create a call */
375 	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
376 					 (unsigned long)call,
377 					 tx_total_len, gfp,
378 					 (async ?
379 					  afs_wake_up_async_call :
380 					  afs_wake_up_call_waiter),
381 					 call->upgrade);
382 	if (IS_ERR(rxcall)) {
383 		ret = PTR_ERR(rxcall);
384 		goto error_kill_call;
385 	}
386 
387 	call->rxcall = rxcall;
388 
389 	/* send the request */
390 	iov[0].iov_base	= call->request;
391 	iov[0].iov_len	= call->request_size;
392 
393 	msg.msg_name		= NULL;
394 	msg.msg_namelen		= 0;
395 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
396 		      call->request_size);
397 	msg.msg_control		= NULL;
398 	msg.msg_controllen	= 0;
399 	msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
400 
401 	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
402 				     &msg, call->request_size,
403 				     afs_notify_end_request_tx);
404 	if (ret < 0)
405 		goto error_do_abort;
406 
407 	if (call->send_pages) {
408 		ret = afs_send_pages(call, &msg);
409 		if (ret < 0)
410 			goto error_do_abort;
411 	}
412 
413 	/* at this point, an async call may no longer exist as it may have
414 	 * already completed */
415 	if (call->async)
416 		return -EINPROGRESS;
417 
418 	return afs_wait_for_call_to_complete(call, ac);
419 
420 error_do_abort:
421 	call->state = AFS_CALL_COMPLETE;
422 	if (ret != -ECONNABORTED) {
423 		rxrpc_kernel_abort_call(call->net->socket, rxcall,
424 					RX_USER_ABORT, ret, "KSD");
425 	} else {
426 		offset = 0;
427 		rxrpc_kernel_recv_data(call->net->socket, rxcall, NULL,
428 				       0, &offset, false, &call->abort_code,
429 				       &call->service_id);
430 		ac->abort_code = call->abort_code;
431 		ac->responded = true;
432 	}
433 	call->error = ret;
434 	trace_afs_call_done(call);
435 error_kill_call:
436 	afs_put_call(call);
437 	ac->error = ret;
438 	_leave(" = %d", ret);
439 	return ret;
440 }
441 
442 /*
443  * deliver messages to a call
444  */
445 static void afs_deliver_to_call(struct afs_call *call)
446 {
447 	enum afs_call_state state;
448 	u32 abort_code, remote_abort = 0;
449 	int ret;
450 
451 	_enter("%s", call->type->name);
452 
453 	while (state = READ_ONCE(call->state),
454 	       state == AFS_CALL_CL_AWAIT_REPLY ||
455 	       state == AFS_CALL_SV_AWAIT_OP_ID ||
456 	       state == AFS_CALL_SV_AWAIT_REQUEST ||
457 	       state == AFS_CALL_SV_AWAIT_ACK
458 	       ) {
459 		if (state == AFS_CALL_SV_AWAIT_ACK) {
460 			size_t offset = 0;
461 			ret = rxrpc_kernel_recv_data(call->net->socket,
462 						     call->rxcall,
463 						     NULL, 0, &offset, false,
464 						     &remote_abort,
465 						     &call->service_id);
466 			trace_afs_recv_data(call, 0, offset, false, ret);
467 
468 			if (ret == -EINPROGRESS || ret == -EAGAIN)
469 				return;
470 			if (ret < 0 || ret == 1) {
471 				if (ret == 1)
472 					ret = 0;
473 				goto call_complete;
474 			}
475 			return;
476 		}
477 
478 		ret = call->type->deliver(call);
479 		state = READ_ONCE(call->state);
480 		switch (ret) {
481 		case 0:
482 			if (state == AFS_CALL_CL_PROC_REPLY)
483 				goto call_complete;
484 			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
485 			goto done;
486 		case -EINPROGRESS:
487 		case -EAGAIN:
488 			goto out;
489 		case -EIO:
490 		case -ECONNABORTED:
491 			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
492 			goto done;
493 		case -ENOTCONN:
494 			abort_code = RX_CALL_DEAD;
495 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
496 						abort_code, ret, "KNC");
497 			goto local_abort;
498 		case -ENOTSUPP:
499 			abort_code = RXGEN_OPCODE;
500 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
501 						abort_code, ret, "KIV");
502 			goto local_abort;
503 		case -ENODATA:
504 		case -EBADMSG:
505 		case -EMSGSIZE:
506 		default:
507 			abort_code = RXGEN_CC_UNMARSHAL;
508 			if (state != AFS_CALL_CL_AWAIT_REPLY)
509 				abort_code = RXGEN_SS_UNMARSHAL;
510 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
511 						abort_code, -EBADMSG, "KUM");
512 			goto local_abort;
513 		}
514 	}
515 
516 done:
517 	if (state == AFS_CALL_COMPLETE && call->incoming)
518 		afs_put_call(call);
519 out:
520 	_leave("");
521 	return;
522 
523 local_abort:
524 	abort_code = 0;
525 call_complete:
526 	afs_set_call_complete(call, ret, remote_abort);
527 	state = AFS_CALL_COMPLETE;
528 	goto done;
529 }
530 
531 /*
532  * wait synchronously for a call to complete
533  */
534 static long afs_wait_for_call_to_complete(struct afs_call *call,
535 					  struct afs_addr_cursor *ac)
536 {
537 	signed long rtt2, timeout;
538 	long ret;
539 	u64 rtt;
540 	u32 life, last_life;
541 
542 	DECLARE_WAITQUEUE(myself, current);
543 
544 	_enter("");
545 
546 	rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
547 	rtt2 = nsecs_to_jiffies64(rtt) * 2;
548 	if (rtt2 < 2)
549 		rtt2 = 2;
550 
551 	timeout = rtt2;
552 	last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
553 
554 	add_wait_queue(&call->waitq, &myself);
555 	for (;;) {
556 		set_current_state(TASK_UNINTERRUPTIBLE);
557 
558 		/* deliver any messages that are in the queue */
559 		if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
560 		    call->need_attention) {
561 			call->need_attention = false;
562 			__set_current_state(TASK_RUNNING);
563 			afs_deliver_to_call(call);
564 			continue;
565 		}
566 
567 		if (afs_check_call_state(call, AFS_CALL_COMPLETE))
568 			break;
569 
570 		life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
571 		if (timeout == 0 &&
572 		    life == last_life && signal_pending(current))
573 				break;
574 
575 		if (life != last_life) {
576 			timeout = rtt2;
577 			last_life = life;
578 		}
579 
580 		timeout = schedule_timeout(timeout);
581 	}
582 
583 	remove_wait_queue(&call->waitq, &myself);
584 	__set_current_state(TASK_RUNNING);
585 
586 	/* Kill off the call if it's still live. */
587 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
588 		_debug("call interrupted");
589 		if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
590 					    RX_USER_ABORT, -EINTR, "KWI"))
591 			afs_set_call_complete(call, -EINTR, 0);
592 	}
593 
594 	spin_lock_bh(&call->state_lock);
595 	ac->abort_code = call->abort_code;
596 	ac->error = call->error;
597 	spin_unlock_bh(&call->state_lock);
598 
599 	ret = ac->error;
600 	switch (ret) {
601 	case 0:
602 		if (call->ret_reply0) {
603 			ret = (long)call->reply[0];
604 			call->reply[0] = NULL;
605 		}
606 		/* Fall through */
607 	case -ECONNABORTED:
608 		ac->responded = true;
609 		break;
610 	}
611 
612 	_debug("call complete");
613 	afs_put_call(call);
614 	_leave(" = %p", (void *)ret);
615 	return ret;
616 }
617 
618 /*
619  * wake up a waiting call
620  */
621 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
622 				    unsigned long call_user_ID)
623 {
624 	struct afs_call *call = (struct afs_call *)call_user_ID;
625 
626 	call->need_attention = true;
627 	wake_up(&call->waitq);
628 }
629 
630 /*
631  * wake up an asynchronous call
632  */
633 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
634 				   unsigned long call_user_ID)
635 {
636 	struct afs_call *call = (struct afs_call *)call_user_ID;
637 	int u;
638 
639 	trace_afs_notify_call(rxcall, call);
640 	call->need_attention = true;
641 
642 	u = __atomic_add_unless(&call->usage, 1, 0);
643 	if (u != 0) {
644 		trace_afs_call(call, afs_call_trace_wake, u,
645 			       atomic_read(&call->net->nr_outstanding_calls),
646 			       __builtin_return_address(0));
647 
648 		if (!queue_work(afs_async_calls, &call->async_work))
649 			afs_put_call(call);
650 	}
651 }
652 
653 /*
654  * Delete an asynchronous call.  The work item carries a ref to the call struct
655  * that we need to release.
656  */
657 static void afs_delete_async_call(struct work_struct *work)
658 {
659 	struct afs_call *call = container_of(work, struct afs_call, async_work);
660 
661 	_enter("");
662 
663 	afs_put_call(call);
664 
665 	_leave("");
666 }
667 
668 /*
669  * Perform I/O processing on an asynchronous call.  The work item carries a ref
670  * to the call struct that we either need to release or to pass on.
671  */
672 static void afs_process_async_call(struct work_struct *work)
673 {
674 	struct afs_call *call = container_of(work, struct afs_call, async_work);
675 
676 	_enter("");
677 
678 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
679 		call->need_attention = false;
680 		afs_deliver_to_call(call);
681 	}
682 
683 	if (call->state == AFS_CALL_COMPLETE) {
684 		call->reply[0] = NULL;
685 
686 		/* We have two refs to release - one from the alloc and one
687 		 * queued with the work item - and we can't just deallocate the
688 		 * call because the work item may be queued again.
689 		 */
690 		call->async_work.func = afs_delete_async_call;
691 		if (!queue_work(afs_async_calls, &call->async_work))
692 			afs_put_call(call);
693 	}
694 
695 	afs_put_call(call);
696 	_leave("");
697 }
698 
699 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
700 {
701 	struct afs_call *call = (struct afs_call *)user_call_ID;
702 
703 	call->rxcall = rxcall;
704 }
705 
706 /*
707  * Charge the incoming call preallocation.
708  */
709 void afs_charge_preallocation(struct work_struct *work)
710 {
711 	struct afs_net *net =
712 		container_of(work, struct afs_net, charge_preallocation_work);
713 	struct afs_call *call = net->spare_incoming_call;
714 
715 	for (;;) {
716 		if (!call) {
717 			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
718 			if (!call)
719 				break;
720 
721 			call->async = true;
722 			call->state = AFS_CALL_SV_AWAIT_OP_ID;
723 			init_waitqueue_head(&call->waitq);
724 		}
725 
726 		if (rxrpc_kernel_charge_accept(net->socket,
727 					       afs_wake_up_async_call,
728 					       afs_rx_attach,
729 					       (unsigned long)call,
730 					       GFP_KERNEL) < 0)
731 			break;
732 		call = NULL;
733 	}
734 	net->spare_incoming_call = call;
735 }
736 
737 /*
738  * Discard a preallocated call when a socket is shut down.
739  */
740 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
741 				    unsigned long user_call_ID)
742 {
743 	struct afs_call *call = (struct afs_call *)user_call_ID;
744 
745 	call->rxcall = NULL;
746 	afs_put_call(call);
747 }
748 
749 /*
750  * Notification of an incoming call.
751  */
752 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
753 			    unsigned long user_call_ID)
754 {
755 	struct afs_net *net = afs_sock2net(sk);
756 
757 	queue_work(afs_wq, &net->charge_preallocation_work);
758 }
759 
760 /*
761  * Grab the operation ID from an incoming cache manager call.  The socket
762  * buffer is discarded on error or if we don't yet have sufficient data.
763  */
764 static int afs_deliver_cm_op_id(struct afs_call *call)
765 {
766 	int ret;
767 
768 	_enter("{%zu}", call->offset);
769 
770 	ASSERTCMP(call->offset, <, 4);
771 
772 	/* the operation ID forms the first four bytes of the request data */
773 	ret = afs_extract_data(call, &call->tmp, 4, true);
774 	if (ret < 0)
775 		return ret;
776 
777 	call->operation_ID = ntohl(call->tmp);
778 	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
779 	call->offset = 0;
780 
781 	/* ask the cache manager to route the call (it'll change the call type
782 	 * if successful) */
783 	if (!afs_cm_incoming_call(call))
784 		return -ENOTSUPP;
785 
786 	trace_afs_cb_call(call);
787 
788 	/* pass responsibility for the remainer of this message off to the
789 	 * cache manager op */
790 	return call->type->deliver(call);
791 }
792 
793 /*
794  * Advance the AFS call state when an RxRPC service call ends the transmit
795  * phase.
796  */
797 static void afs_notify_end_reply_tx(struct sock *sock,
798 				    struct rxrpc_call *rxcall,
799 				    unsigned long call_user_ID)
800 {
801 	struct afs_call *call = (struct afs_call *)call_user_ID;
802 
803 	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
804 }
805 
806 /*
807  * send an empty reply
808  */
809 void afs_send_empty_reply(struct afs_call *call)
810 {
811 	struct afs_net *net = call->net;
812 	struct msghdr msg;
813 
814 	_enter("");
815 
816 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
817 
818 	msg.msg_name		= NULL;
819 	msg.msg_namelen		= 0;
820 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
821 	msg.msg_control		= NULL;
822 	msg.msg_controllen	= 0;
823 	msg.msg_flags		= 0;
824 
825 	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
826 				       afs_notify_end_reply_tx)) {
827 	case 0:
828 		_leave(" [replied]");
829 		return;
830 
831 	case -ENOMEM:
832 		_debug("oom");
833 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
834 					RX_USER_ABORT, -ENOMEM, "KOO");
835 	default:
836 		_leave(" [error]");
837 		return;
838 	}
839 }
840 
841 /*
842  * send a simple reply
843  */
844 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
845 {
846 	struct afs_net *net = call->net;
847 	struct msghdr msg;
848 	struct kvec iov[1];
849 	int n;
850 
851 	_enter("");
852 
853 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
854 
855 	iov[0].iov_base		= (void *) buf;
856 	iov[0].iov_len		= len;
857 	msg.msg_name		= NULL;
858 	msg.msg_namelen		= 0;
859 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
860 	msg.msg_control		= NULL;
861 	msg.msg_controllen	= 0;
862 	msg.msg_flags		= 0;
863 
864 	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
865 				   afs_notify_end_reply_tx);
866 	if (n >= 0) {
867 		/* Success */
868 		_leave(" [replied]");
869 		return;
870 	}
871 
872 	if (n == -ENOMEM) {
873 		_debug("oom");
874 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
875 					RX_USER_ABORT, -ENOMEM, "KOO");
876 	}
877 	_leave(" [error]");
878 }
879 
880 /*
881  * Extract a piece of data from the received data socket buffers.
882  */
883 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
884 		     bool want_more)
885 {
886 	struct afs_net *net = call->net;
887 	enum afs_call_state state;
888 	u32 remote_abort = 0;
889 	int ret;
890 
891 	_enter("{%s,%zu},,%zu,%d",
892 	       call->type->name, call->offset, count, want_more);
893 
894 	ASSERTCMP(call->offset, <=, count);
895 
896 	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall,
897 				     buf, count, &call->offset,
898 				     want_more, &remote_abort,
899 				     &call->service_id);
900 	trace_afs_recv_data(call, count, call->offset, want_more, ret);
901 	if (ret == 0 || ret == -EAGAIN)
902 		return ret;
903 
904 	state = READ_ONCE(call->state);
905 	if (ret == 1) {
906 		switch (state) {
907 		case AFS_CALL_CL_AWAIT_REPLY:
908 			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
909 			break;
910 		case AFS_CALL_SV_AWAIT_REQUEST:
911 			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
912 			break;
913 		case AFS_CALL_COMPLETE:
914 			kdebug("prem complete %d", call->error);
915 			return -EIO;
916 		default:
917 			break;
918 		}
919 		return 0;
920 	}
921 
922 	afs_set_call_complete(call, ret, remote_abort);
923 	return ret;
924 }
925